xref: /openbmc/linux/mm/swap.c (revision 9d637f8113deef57bbeb141a2c1a4eb00e8c14c4)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/mm/swap.c
4   *
5   *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6   */
7  
8  /*
9   * This file contains the default values for the operation of the
10   * Linux VM subsystem. Fine-tuning documentation can be found in
11   * Documentation/admin-guide/sysctl/vm.rst.
12   * Started 18.12.91
13   * Swap aging added 23.2.95, Stephen Tweedie.
14   * Buffermem limits added 12.3.98, Rik van Riel.
15   */
16  
17  #include <linux/mm.h>
18  #include <linux/sched.h>
19  #include <linux/kernel_stat.h>
20  #include <linux/swap.h>
21  #include <linux/mman.h>
22  #include <linux/pagemap.h>
23  #include <linux/pagevec.h>
24  #include <linux/init.h>
25  #include <linux/export.h>
26  #include <linux/mm_inline.h>
27  #include <linux/percpu_counter.h>
28  #include <linux/memremap.h>
29  #include <linux/percpu.h>
30  #include <linux/cpu.h>
31  #include <linux/notifier.h>
32  #include <linux/backing-dev.h>
33  #include <linux/memcontrol.h>
34  #include <linux/gfp.h>
35  #include <linux/uio.h>
36  #include <linux/hugetlb.h>
37  #include <linux/page_idle.h>
38  #include <linux/local_lock.h>
39  
40  #include "internal.h"
41  
42  #define CREATE_TRACE_POINTS
43  #include <trace/events/pagemap.h>
44  
45  /* How many pages do we try to swap or page in/out together? */
46  int page_cluster;
47  
48  /* Protecting only lru_rotate.pvec which requires disabling interrupts */
49  struct lru_rotate {
50  	local_lock_t lock;
51  	struct pagevec pvec;
52  };
53  static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54  	.lock = INIT_LOCAL_LOCK(lock),
55  };
56  
57  /*
58   * The following struct pagevec are grouped together because they are protected
59   * by disabling preemption (and interrupts remain enabled).
60   */
61  struct lru_pvecs {
62  	local_lock_t lock;
63  	struct pagevec lru_add;
64  	struct pagevec lru_deactivate_file;
65  	struct pagevec lru_deactivate;
66  	struct pagevec lru_lazyfree;
67  #ifdef CONFIG_SMP
68  	struct pagevec activate_page;
69  #endif
70  };
71  static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72  	.lock = INIT_LOCAL_LOCK(lock),
73  };
74  
75  /*
76   * This path almost never happens for VM activity - pages are normally
77   * freed via pagevecs.  But it gets used by networking.
78   */
79  static void __page_cache_release(struct page *page)
80  {
81  	if (PageLRU(page)) {
82  		pg_data_t *pgdat = page_pgdat(page);
83  		struct lruvec *lruvec;
84  		unsigned long flags;
85  
86  		spin_lock_irqsave(&pgdat->lru_lock, flags);
87  		lruvec = mem_cgroup_page_lruvec(page, pgdat);
88  		VM_BUG_ON_PAGE(!PageLRU(page), page);
89  		__ClearPageLRU(page);
90  		del_page_from_lru_list(page, lruvec, page_off_lru(page));
91  		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
92  	}
93  	__ClearPageWaiters(page);
94  }
95  
96  static void __put_single_page(struct page *page)
97  {
98  	__page_cache_release(page);
99  	mem_cgroup_uncharge(page);
100  	free_unref_page(page);
101  }
102  
103  static void __put_compound_page(struct page *page)
104  {
105  	/*
106  	 * __page_cache_release() is supposed to be called for thp, not for
107  	 * hugetlb. This is because hugetlb page does never have PageLRU set
108  	 * (it's never listed to any LRU lists) and no memcg routines should
109  	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
110  	 */
111  	if (!PageHuge(page))
112  		__page_cache_release(page);
113  	destroy_compound_page(page);
114  }
115  
116  void __put_page(struct page *page)
117  {
118  	if (is_zone_device_page(page)) {
119  		put_dev_pagemap(page->pgmap);
120  
121  		/*
122  		 * The page belongs to the device that created pgmap. Do
123  		 * not return it to page allocator.
124  		 */
125  		return;
126  	}
127  
128  	if (unlikely(PageCompound(page)))
129  		__put_compound_page(page);
130  	else
131  		__put_single_page(page);
132  }
133  EXPORT_SYMBOL(__put_page);
134  
135  /**
136   * put_pages_list() - release a list of pages
137   * @pages: list of pages threaded on page->lru
138   *
139   * Release a list of pages which are strung together on page.lru.  Currently
140   * used by read_cache_pages() and related error recovery code.
141   */
142  void put_pages_list(struct list_head *pages)
143  {
144  	while (!list_empty(pages)) {
145  		struct page *victim;
146  
147  		victim = lru_to_page(pages);
148  		list_del(&victim->lru);
149  		put_page(victim);
150  	}
151  }
152  EXPORT_SYMBOL(put_pages_list);
153  
154  /*
155   * get_kernel_pages() - pin kernel pages in memory
156   * @kiov:	An array of struct kvec structures
157   * @nr_segs:	number of segments to pin
158   * @write:	pinning for read/write, currently ignored
159   * @pages:	array that receives pointers to the pages pinned.
160   *		Should be at least nr_segs long.
161   *
162   * Returns number of pages pinned. This may be fewer than the number
163   * requested. If nr_pages is 0 or negative, returns 0. If no pages
164   * were pinned, returns -errno. Each page returned must be released
165   * with a put_page() call when it is finished with.
166   */
167  int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
168  		struct page **pages)
169  {
170  	int seg;
171  
172  	for (seg = 0; seg < nr_segs; seg++) {
173  		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
174  			return seg;
175  
176  		pages[seg] = kmap_to_page(kiov[seg].iov_base);
177  		get_page(pages[seg]);
178  	}
179  
180  	return seg;
181  }
182  EXPORT_SYMBOL_GPL(get_kernel_pages);
183  
184  /*
185   * get_kernel_page() - pin a kernel page in memory
186   * @start:	starting kernel address
187   * @write:	pinning for read/write, currently ignored
188   * @pages:	array that receives pointer to the page pinned.
189   *		Must be at least nr_segs long.
190   *
191   * Returns 1 if page is pinned. If the page was not pinned, returns
192   * -errno. The page returned must be released with a put_page() call
193   * when it is finished with.
194   */
195  int get_kernel_page(unsigned long start, int write, struct page **pages)
196  {
197  	const struct kvec kiov = {
198  		.iov_base = (void *)start,
199  		.iov_len = PAGE_SIZE
200  	};
201  
202  	return get_kernel_pages(&kiov, 1, write, pages);
203  }
204  EXPORT_SYMBOL_GPL(get_kernel_page);
205  
206  static void pagevec_lru_move_fn(struct pagevec *pvec,
207  	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
208  	void *arg)
209  {
210  	int i;
211  	struct pglist_data *pgdat = NULL;
212  	struct lruvec *lruvec;
213  	unsigned long flags = 0;
214  
215  	for (i = 0; i < pagevec_count(pvec); i++) {
216  		struct page *page = pvec->pages[i];
217  		struct pglist_data *pagepgdat = page_pgdat(page);
218  
219  		if (pagepgdat != pgdat) {
220  			if (pgdat)
221  				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
222  			pgdat = pagepgdat;
223  			spin_lock_irqsave(&pgdat->lru_lock, flags);
224  		}
225  
226  		lruvec = mem_cgroup_page_lruvec(page, pgdat);
227  		(*move_fn)(page, lruvec, arg);
228  	}
229  	if (pgdat)
230  		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
231  	release_pages(pvec->pages, pvec->nr);
232  	pagevec_reinit(pvec);
233  }
234  
235  static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
236  				 void *arg)
237  {
238  	int *pgmoved = arg;
239  
240  	if (PageLRU(page) && !PageUnevictable(page)) {
241  		del_page_from_lru_list(page, lruvec, page_lru(page));
242  		ClearPageActive(page);
243  		add_page_to_lru_list_tail(page, lruvec, page_lru(page));
244  		(*pgmoved) += thp_nr_pages(page);
245  	}
246  }
247  
248  /*
249   * pagevec_move_tail() must be called with IRQ disabled.
250   * Otherwise this may cause nasty races.
251   */
252  static void pagevec_move_tail(struct pagevec *pvec)
253  {
254  	int pgmoved = 0;
255  
256  	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
257  	__count_vm_events(PGROTATED, pgmoved);
258  }
259  
260  /*
261   * Writeback is about to end against a page which has been marked for immediate
262   * reclaim.  If it still appears to be reclaimable, move it to the tail of the
263   * inactive list.
264   */
265  void rotate_reclaimable_page(struct page *page)
266  {
267  	if (!PageLocked(page) && !PageDirty(page) &&
268  	    !PageUnevictable(page) && PageLRU(page)) {
269  		struct pagevec *pvec;
270  		unsigned long flags;
271  
272  		get_page(page);
273  		local_lock_irqsave(&lru_rotate.lock, flags);
274  		pvec = this_cpu_ptr(&lru_rotate.pvec);
275  		if (!pagevec_add(pvec, page) || PageCompound(page))
276  			pagevec_move_tail(pvec);
277  		local_unlock_irqrestore(&lru_rotate.lock, flags);
278  	}
279  }
280  
281  void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
282  {
283  	do {
284  		unsigned long lrusize;
285  
286  		/* Record cost event */
287  		if (file)
288  			lruvec->file_cost += nr_pages;
289  		else
290  			lruvec->anon_cost += nr_pages;
291  
292  		/*
293  		 * Decay previous events
294  		 *
295  		 * Because workloads change over time (and to avoid
296  		 * overflow) we keep these statistics as a floating
297  		 * average, which ends up weighing recent refaults
298  		 * more than old ones.
299  		 */
300  		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
301  			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
302  			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
303  			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
304  
305  		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
306  			lruvec->file_cost /= 2;
307  			lruvec->anon_cost /= 2;
308  		}
309  	} while ((lruvec = parent_lruvec(lruvec)));
310  }
311  
312  void lru_note_cost_page(struct page *page)
313  {
314  	lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
315  		      page_is_file_lru(page), thp_nr_pages(page));
316  }
317  
318  static void __activate_page(struct page *page, struct lruvec *lruvec,
319  			    void *arg)
320  {
321  	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
322  		int lru = page_lru_base_type(page);
323  		int nr_pages = thp_nr_pages(page);
324  
325  		del_page_from_lru_list(page, lruvec, lru);
326  		SetPageActive(page);
327  		lru += LRU_ACTIVE;
328  		add_page_to_lru_list(page, lruvec, lru);
329  		trace_mm_lru_activate(page);
330  
331  		__count_vm_events(PGACTIVATE, nr_pages);
332  		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
333  				     nr_pages);
334  	}
335  }
336  
337  #ifdef CONFIG_SMP
338  static void activate_page_drain(int cpu)
339  {
340  	struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
341  
342  	if (pagevec_count(pvec))
343  		pagevec_lru_move_fn(pvec, __activate_page, NULL);
344  }
345  
346  static bool need_activate_page_drain(int cpu)
347  {
348  	return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
349  }
350  
351  static void activate_page(struct page *page)
352  {
353  	page = compound_head(page);
354  	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
355  		struct pagevec *pvec;
356  
357  		local_lock(&lru_pvecs.lock);
358  		pvec = this_cpu_ptr(&lru_pvecs.activate_page);
359  		get_page(page);
360  		if (!pagevec_add(pvec, page) || PageCompound(page))
361  			pagevec_lru_move_fn(pvec, __activate_page, NULL);
362  		local_unlock(&lru_pvecs.lock);
363  	}
364  }
365  
366  #else
367  static inline void activate_page_drain(int cpu)
368  {
369  }
370  
371  static void activate_page(struct page *page)
372  {
373  	pg_data_t *pgdat = page_pgdat(page);
374  
375  	page = compound_head(page);
376  	spin_lock_irq(&pgdat->lru_lock);
377  	__activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
378  	spin_unlock_irq(&pgdat->lru_lock);
379  }
380  #endif
381  
382  static void __lru_cache_activate_page(struct page *page)
383  {
384  	struct pagevec *pvec;
385  	int i;
386  
387  	local_lock(&lru_pvecs.lock);
388  	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
389  
390  	/*
391  	 * Search backwards on the optimistic assumption that the page being
392  	 * activated has just been added to this pagevec. Note that only
393  	 * the local pagevec is examined as a !PageLRU page could be in the
394  	 * process of being released, reclaimed, migrated or on a remote
395  	 * pagevec that is currently being drained. Furthermore, marking
396  	 * a remote pagevec's page PageActive potentially hits a race where
397  	 * a page is marked PageActive just after it is added to the inactive
398  	 * list causing accounting errors and BUG_ON checks to trigger.
399  	 */
400  	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
401  		struct page *pagevec_page = pvec->pages[i];
402  
403  		if (pagevec_page == page) {
404  			SetPageActive(page);
405  			break;
406  		}
407  	}
408  
409  	local_unlock(&lru_pvecs.lock);
410  }
411  
412  /*
413   * Mark a page as having seen activity.
414   *
415   * inactive,unreferenced	->	inactive,referenced
416   * inactive,referenced		->	active,unreferenced
417   * active,unreferenced		->	active,referenced
418   *
419   * When a newly allocated page is not yet visible, so safe for non-atomic ops,
420   * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
421   */
422  void mark_page_accessed(struct page *page)
423  {
424  	page = compound_head(page);
425  
426  	if (!PageReferenced(page)) {
427  		SetPageReferenced(page);
428  	} else if (PageUnevictable(page)) {
429  		/*
430  		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
431  		 * this list is never rotated or maintained, so marking an
432  		 * evictable page accessed has no effect.
433  		 */
434  	} else if (!PageActive(page)) {
435  		/*
436  		 * If the page is on the LRU, queue it for activation via
437  		 * lru_pvecs.activate_page. Otherwise, assume the page is on a
438  		 * pagevec, mark it active and it'll be moved to the active
439  		 * LRU on the next drain.
440  		 */
441  		if (PageLRU(page))
442  			activate_page(page);
443  		else
444  			__lru_cache_activate_page(page);
445  		ClearPageReferenced(page);
446  		workingset_activation(page);
447  	}
448  	if (page_is_idle(page))
449  		clear_page_idle(page);
450  }
451  EXPORT_SYMBOL(mark_page_accessed);
452  
453  /**
454   * lru_cache_add - add a page to a page list
455   * @page: the page to be added to the LRU.
456   *
457   * Queue the page for addition to the LRU via pagevec. The decision on whether
458   * to add the page to the [in]active [file|anon] list is deferred until the
459   * pagevec is drained. This gives a chance for the caller of lru_cache_add()
460   * have the page added to the active list using mark_page_accessed().
461   */
462  void lru_cache_add(struct page *page)
463  {
464  	struct pagevec *pvec;
465  
466  	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
467  	VM_BUG_ON_PAGE(PageLRU(page), page);
468  
469  	get_page(page);
470  	local_lock(&lru_pvecs.lock);
471  	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
472  	if (!pagevec_add(pvec, page) || PageCompound(page))
473  		__pagevec_lru_add(pvec);
474  	local_unlock(&lru_pvecs.lock);
475  }
476  EXPORT_SYMBOL(lru_cache_add);
477  
478  /**
479   * lru_cache_add_inactive_or_unevictable
480   * @page:  the page to be added to LRU
481   * @vma:   vma in which page is mapped for determining reclaimability
482   *
483   * Place @page on the inactive or unevictable LRU list, depending on its
484   * evictability.
485   */
486  void lru_cache_add_inactive_or_unevictable(struct page *page,
487  					 struct vm_area_struct *vma)
488  {
489  	bool unevictable;
490  
491  	VM_BUG_ON_PAGE(PageLRU(page), page);
492  
493  	unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
494  	if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
495  		int nr_pages = thp_nr_pages(page);
496  		/*
497  		 * We use the irq-unsafe __mod_zone_page_stat because this
498  		 * counter is not modified from interrupt context, and the pte
499  		 * lock is held(spinlock), which implies preemption disabled.
500  		 */
501  		__mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
502  		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
503  	}
504  	lru_cache_add(page);
505  }
506  
507  /*
508   * If the page can not be invalidated, it is moved to the
509   * inactive list to speed up its reclaim.  It is moved to the
510   * head of the list, rather than the tail, to give the flusher
511   * threads some time to write it out, as this is much more
512   * effective than the single-page writeout from reclaim.
513   *
514   * If the page isn't page_mapped and dirty/writeback, the page
515   * could reclaim asap using PG_reclaim.
516   *
517   * 1. active, mapped page -> none
518   * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
519   * 3. inactive, mapped page -> none
520   * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
521   * 5. inactive, clean -> inactive, tail
522   * 6. Others -> none
523   *
524   * In 4, why it moves inactive's head, the VM expects the page would
525   * be write it out by flusher threads as this is much more effective
526   * than the single-page writeout from reclaim.
527   */
528  static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
529  			      void *arg)
530  {
531  	int lru;
532  	bool active;
533  	int nr_pages = thp_nr_pages(page);
534  
535  	if (!PageLRU(page))
536  		return;
537  
538  	if (PageUnevictable(page))
539  		return;
540  
541  	/* Some processes are using the page */
542  	if (page_mapped(page))
543  		return;
544  
545  	active = PageActive(page);
546  	lru = page_lru_base_type(page);
547  
548  	del_page_from_lru_list(page, lruvec, lru + active);
549  	ClearPageActive(page);
550  	ClearPageReferenced(page);
551  
552  	if (PageWriteback(page) || PageDirty(page)) {
553  		/*
554  		 * PG_reclaim could be raced with end_page_writeback
555  		 * It can make readahead confusing.  But race window
556  		 * is _really_ small and  it's non-critical problem.
557  		 */
558  		add_page_to_lru_list(page, lruvec, lru);
559  		SetPageReclaim(page);
560  	} else {
561  		/*
562  		 * The page's writeback ends up during pagevec
563  		 * We moves tha page into tail of inactive.
564  		 */
565  		add_page_to_lru_list_tail(page, lruvec, lru);
566  		__count_vm_events(PGROTATED, nr_pages);
567  	}
568  
569  	if (active) {
570  		__count_vm_events(PGDEACTIVATE, nr_pages);
571  		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
572  				     nr_pages);
573  	}
574  }
575  
576  static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
577  			    void *arg)
578  {
579  	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
580  		int lru = page_lru_base_type(page);
581  		int nr_pages = thp_nr_pages(page);
582  
583  		del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
584  		ClearPageActive(page);
585  		ClearPageReferenced(page);
586  		add_page_to_lru_list(page, lruvec, lru);
587  
588  		__count_vm_events(PGDEACTIVATE, nr_pages);
589  		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
590  				     nr_pages);
591  	}
592  }
593  
594  static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
595  			    void *arg)
596  {
597  	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
598  	    !PageSwapCache(page) && !PageUnevictable(page)) {
599  		bool active = PageActive(page);
600  		int nr_pages = thp_nr_pages(page);
601  
602  		del_page_from_lru_list(page, lruvec,
603  				       LRU_INACTIVE_ANON + active);
604  		ClearPageActive(page);
605  		ClearPageReferenced(page);
606  		/*
607  		 * Lazyfree pages are clean anonymous pages.  They have
608  		 * PG_swapbacked flag cleared, to distinguish them from normal
609  		 * anonymous pages
610  		 */
611  		ClearPageSwapBacked(page);
612  		add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
613  
614  		__count_vm_events(PGLAZYFREE, nr_pages);
615  		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
616  				     nr_pages);
617  	}
618  }
619  
620  /*
621   * Drain pages out of the cpu's pagevecs.
622   * Either "cpu" is the current CPU, and preemption has already been
623   * disabled; or "cpu" is being hot-unplugged, and is already dead.
624   */
625  void lru_add_drain_cpu(int cpu)
626  {
627  	struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
628  
629  	if (pagevec_count(pvec))
630  		__pagevec_lru_add(pvec);
631  
632  	pvec = &per_cpu(lru_rotate.pvec, cpu);
633  	/* Disabling interrupts below acts as a compiler barrier. */
634  	if (data_race(pagevec_count(pvec))) {
635  		unsigned long flags;
636  
637  		/* No harm done if a racing interrupt already did this */
638  		local_lock_irqsave(&lru_rotate.lock, flags);
639  		pagevec_move_tail(pvec);
640  		local_unlock_irqrestore(&lru_rotate.lock, flags);
641  	}
642  
643  	pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
644  	if (pagevec_count(pvec))
645  		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
646  
647  	pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
648  	if (pagevec_count(pvec))
649  		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
650  
651  	pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
652  	if (pagevec_count(pvec))
653  		pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
654  
655  	activate_page_drain(cpu);
656  }
657  
658  /**
659   * deactivate_file_page - forcefully deactivate a file page
660   * @page: page to deactivate
661   *
662   * This function hints the VM that @page is a good reclaim candidate,
663   * for example if its invalidation fails due to the page being dirty
664   * or under writeback.
665   */
666  void deactivate_file_page(struct page *page)
667  {
668  	/*
669  	 * In a workload with many unevictable page such as mprotect,
670  	 * unevictable page deactivation for accelerating reclaim is pointless.
671  	 */
672  	if (PageUnevictable(page))
673  		return;
674  
675  	if (likely(get_page_unless_zero(page))) {
676  		struct pagevec *pvec;
677  
678  		local_lock(&lru_pvecs.lock);
679  		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
680  
681  		if (!pagevec_add(pvec, page) || PageCompound(page))
682  			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
683  		local_unlock(&lru_pvecs.lock);
684  	}
685  }
686  
687  /*
688   * deactivate_page - deactivate a page
689   * @page: page to deactivate
690   *
691   * deactivate_page() moves @page to the inactive list if @page was on the active
692   * list and was not an unevictable page.  This is done to accelerate the reclaim
693   * of @page.
694   */
695  void deactivate_page(struct page *page)
696  {
697  	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
698  		struct pagevec *pvec;
699  
700  		local_lock(&lru_pvecs.lock);
701  		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
702  		get_page(page);
703  		if (!pagevec_add(pvec, page) || PageCompound(page))
704  			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
705  		local_unlock(&lru_pvecs.lock);
706  	}
707  }
708  
709  /**
710   * mark_page_lazyfree - make an anon page lazyfree
711   * @page: page to deactivate
712   *
713   * mark_page_lazyfree() moves @page to the inactive file list.
714   * This is done to accelerate the reclaim of @page.
715   */
716  void mark_page_lazyfree(struct page *page)
717  {
718  	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
719  	    !PageSwapCache(page) && !PageUnevictable(page)) {
720  		struct pagevec *pvec;
721  
722  		local_lock(&lru_pvecs.lock);
723  		pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
724  		get_page(page);
725  		if (!pagevec_add(pvec, page) || PageCompound(page))
726  			pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
727  		local_unlock(&lru_pvecs.lock);
728  	}
729  }
730  
731  void lru_add_drain(void)
732  {
733  	local_lock(&lru_pvecs.lock);
734  	lru_add_drain_cpu(smp_processor_id());
735  	local_unlock(&lru_pvecs.lock);
736  }
737  
738  void lru_add_drain_cpu_zone(struct zone *zone)
739  {
740  	local_lock(&lru_pvecs.lock);
741  	lru_add_drain_cpu(smp_processor_id());
742  	drain_local_pages(zone);
743  	local_unlock(&lru_pvecs.lock);
744  }
745  
746  #ifdef CONFIG_SMP
747  
748  static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
749  
750  static void lru_add_drain_per_cpu(struct work_struct *dummy)
751  {
752  	lru_add_drain();
753  }
754  
755  /*
756   * Doesn't need any cpu hotplug locking because we do rely on per-cpu
757   * kworkers being shut down before our page_alloc_cpu_dead callback is
758   * executed on the offlined cpu.
759   * Calling this function with cpu hotplug locks held can actually lead
760   * to obscure indirect dependencies via WQ context.
761   */
762  void lru_add_drain_all(void)
763  {
764  	/*
765  	 * lru_drain_gen - Global pages generation number
766  	 *
767  	 * (A) Definition: global lru_drain_gen = x implies that all generations
768  	 *     0 < n <= x are already *scheduled* for draining.
769  	 *
770  	 * This is an optimization for the highly-contended use case where a
771  	 * user space workload keeps constantly generating a flow of pages for
772  	 * each CPU.
773  	 */
774  	static unsigned int lru_drain_gen;
775  	static struct cpumask has_work;
776  	static DEFINE_MUTEX(lock);
777  	unsigned cpu, this_gen;
778  
779  	/*
780  	 * Make sure nobody triggers this path before mm_percpu_wq is fully
781  	 * initialized.
782  	 */
783  	if (WARN_ON(!mm_percpu_wq))
784  		return;
785  
786  	/*
787  	 * Guarantee pagevec counter stores visible by this CPU are visible to
788  	 * other CPUs before loading the current drain generation.
789  	 */
790  	smp_mb();
791  
792  	/*
793  	 * (B) Locally cache global LRU draining generation number
794  	 *
795  	 * The read barrier ensures that the counter is loaded before the mutex
796  	 * is taken. It pairs with smp_mb() inside the mutex critical section
797  	 * at (D).
798  	 */
799  	this_gen = smp_load_acquire(&lru_drain_gen);
800  
801  	mutex_lock(&lock);
802  
803  	/*
804  	 * (C) Exit the draining operation if a newer generation, from another
805  	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
806  	 */
807  	if (unlikely(this_gen != lru_drain_gen))
808  		goto done;
809  
810  	/*
811  	 * (D) Increment global generation number
812  	 *
813  	 * Pairs with smp_load_acquire() at (B), outside of the critical
814  	 * section. Use a full memory barrier to guarantee that the new global
815  	 * drain generation number is stored before loading pagevec counters.
816  	 *
817  	 * This pairing must be done here, before the for_each_online_cpu loop
818  	 * below which drains the page vectors.
819  	 *
820  	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
821  	 * Assume CPU #z is is in the middle of the for_each_online_cpu loop
822  	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
823  	 * along, adds some pages to its per-cpu vectors, then calls
824  	 * lru_add_drain_all().
825  	 *
826  	 * If the paired barrier is done at any later step, e.g. after the
827  	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
828  	 * added pages.
829  	 */
830  	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
831  	smp_mb();
832  
833  	cpumask_clear(&has_work);
834  	for_each_online_cpu(cpu) {
835  		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
836  
837  		if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
838  		    data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
839  		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
840  		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
841  		    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
842  		    need_activate_page_drain(cpu)) {
843  			INIT_WORK(work, lru_add_drain_per_cpu);
844  			queue_work_on(cpu, mm_percpu_wq, work);
845  			__cpumask_set_cpu(cpu, &has_work);
846  		}
847  	}
848  
849  	for_each_cpu(cpu, &has_work)
850  		flush_work(&per_cpu(lru_add_drain_work, cpu));
851  
852  done:
853  	mutex_unlock(&lock);
854  }
855  #else
856  void lru_add_drain_all(void)
857  {
858  	lru_add_drain();
859  }
860  #endif /* CONFIG_SMP */
861  
862  /**
863   * release_pages - batched put_page()
864   * @pages: array of pages to release
865   * @nr: number of pages
866   *
867   * Decrement the reference count on all the pages in @pages.  If it
868   * fell to zero, remove the page from the LRU and free it.
869   */
870  void release_pages(struct page **pages, int nr)
871  {
872  	int i;
873  	LIST_HEAD(pages_to_free);
874  	struct pglist_data *locked_pgdat = NULL;
875  	struct lruvec *lruvec;
876  	unsigned long flags;
877  	unsigned int lock_batch;
878  
879  	for (i = 0; i < nr; i++) {
880  		struct page *page = pages[i];
881  
882  		/*
883  		 * Make sure the IRQ-safe lock-holding time does not get
884  		 * excessive with a continuous string of pages from the
885  		 * same pgdat. The lock is held only if pgdat != NULL.
886  		 */
887  		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
888  			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
889  			locked_pgdat = NULL;
890  		}
891  
892  		page = compound_head(page);
893  		if (is_huge_zero_page(page))
894  			continue;
895  
896  		if (is_zone_device_page(page)) {
897  			if (locked_pgdat) {
898  				spin_unlock_irqrestore(&locked_pgdat->lru_lock,
899  						       flags);
900  				locked_pgdat = NULL;
901  			}
902  			/*
903  			 * ZONE_DEVICE pages that return 'false' from
904  			 * page_is_devmap_managed() do not require special
905  			 * processing, and instead, expect a call to
906  			 * put_page_testzero().
907  			 */
908  			if (page_is_devmap_managed(page)) {
909  				put_devmap_managed_page(page);
910  				continue;
911  			}
912  		}
913  
914  		if (!put_page_testzero(page))
915  			continue;
916  
917  		if (PageCompound(page)) {
918  			if (locked_pgdat) {
919  				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
920  				locked_pgdat = NULL;
921  			}
922  			__put_compound_page(page);
923  			continue;
924  		}
925  
926  		if (PageLRU(page)) {
927  			struct pglist_data *pgdat = page_pgdat(page);
928  
929  			if (pgdat != locked_pgdat) {
930  				if (locked_pgdat)
931  					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
932  									flags);
933  				lock_batch = 0;
934  				locked_pgdat = pgdat;
935  				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
936  			}
937  
938  			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
939  			VM_BUG_ON_PAGE(!PageLRU(page), page);
940  			__ClearPageLRU(page);
941  			del_page_from_lru_list(page, lruvec, page_off_lru(page));
942  		}
943  
944  		__ClearPageWaiters(page);
945  
946  		list_add(&page->lru, &pages_to_free);
947  	}
948  	if (locked_pgdat)
949  		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
950  
951  	mem_cgroup_uncharge_list(&pages_to_free);
952  	free_unref_page_list(&pages_to_free);
953  }
954  EXPORT_SYMBOL(release_pages);
955  
956  /*
957   * The pages which we're about to release may be in the deferred lru-addition
958   * queues.  That would prevent them from really being freed right now.  That's
959   * OK from a correctness point of view but is inefficient - those pages may be
960   * cache-warm and we want to give them back to the page allocator ASAP.
961   *
962   * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
963   * and __pagevec_lru_add_active() call release_pages() directly to avoid
964   * mutual recursion.
965   */
966  void __pagevec_release(struct pagevec *pvec)
967  {
968  	if (!pvec->percpu_pvec_drained) {
969  		lru_add_drain();
970  		pvec->percpu_pvec_drained = true;
971  	}
972  	release_pages(pvec->pages, pagevec_count(pvec));
973  	pagevec_reinit(pvec);
974  }
975  EXPORT_SYMBOL(__pagevec_release);
976  
977  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
978  /* used by __split_huge_page_refcount() */
979  void lru_add_page_tail(struct page *page, struct page *page_tail,
980  		       struct lruvec *lruvec, struct list_head *list)
981  {
982  	VM_BUG_ON_PAGE(!PageHead(page), page);
983  	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
984  	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
985  	lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
986  
987  	if (!list)
988  		SetPageLRU(page_tail);
989  
990  	if (likely(PageLRU(page)))
991  		list_add_tail(&page_tail->lru, &page->lru);
992  	else if (list) {
993  		/* page reclaim is reclaiming a huge page */
994  		get_page(page_tail);
995  		list_add_tail(&page_tail->lru, list);
996  	} else {
997  		/*
998  		 * Head page has not yet been counted, as an hpage,
999  		 * so we must account for each subpage individually.
1000  		 *
1001  		 * Put page_tail on the list at the correct position
1002  		 * so they all end up in order.
1003  		 */
1004  		add_page_to_lru_list_tail(page_tail, lruvec,
1005  					  page_lru(page_tail));
1006  	}
1007  }
1008  #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1009  
1010  static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
1011  				 void *arg)
1012  {
1013  	enum lru_list lru;
1014  	int was_unevictable = TestClearPageUnevictable(page);
1015  	int nr_pages = thp_nr_pages(page);
1016  
1017  	VM_BUG_ON_PAGE(PageLRU(page), page);
1018  
1019  	/*
1020  	 * Page becomes evictable in two ways:
1021  	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
1022  	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1023  	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
1024  	 *   b) do PageLRU check before lock [clear_page_mlock]
1025  	 *
1026  	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1027  	 * following strict ordering:
1028  	 *
1029  	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
1030  	 *
1031  	 * SetPageLRU()				TestClearPageMlocked()
1032  	 * smp_mb() // explicit ordering	// above provides strict
1033  	 *					// ordering
1034  	 * PageMlocked()			PageLRU()
1035  	 *
1036  	 *
1037  	 * if '#1' does not observe setting of PG_lru by '#0' and fails
1038  	 * isolation, the explicit barrier will make sure that page_evictable
1039  	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1040  	 * can be reordered after PageMlocked check and can make '#1' to fail
1041  	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1042  	 * looking at the same page) and the evictable page will be stranded
1043  	 * in an unevictable LRU.
1044  	 */
1045  	SetPageLRU(page);
1046  	smp_mb__after_atomic();
1047  
1048  	if (page_evictable(page)) {
1049  		lru = page_lru(page);
1050  		if (was_unevictable)
1051  			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1052  	} else {
1053  		lru = LRU_UNEVICTABLE;
1054  		ClearPageActive(page);
1055  		SetPageUnevictable(page);
1056  		if (!was_unevictable)
1057  			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1058  	}
1059  
1060  	add_page_to_lru_list(page, lruvec, lru);
1061  	trace_mm_lru_insertion(page, lru);
1062  }
1063  
1064  /*
1065   * Add the passed pages to the LRU, then drop the caller's refcount
1066   * on them.  Reinitialises the caller's pagevec.
1067   */
1068  void __pagevec_lru_add(struct pagevec *pvec)
1069  {
1070  	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1071  }
1072  
1073  /**
1074   * pagevec_lookup_entries - gang pagecache lookup
1075   * @pvec:	Where the resulting entries are placed
1076   * @mapping:	The address_space to search
1077   * @start:	The starting entry index
1078   * @nr_entries:	The maximum number of pages
1079   * @indices:	The cache indices corresponding to the entries in @pvec
1080   *
1081   * pagevec_lookup_entries() will search for and return a group of up
1082   * to @nr_pages pages and shadow entries in the mapping.  All
1083   * entries are placed in @pvec.  pagevec_lookup_entries() takes a
1084   * reference against actual pages in @pvec.
1085   *
1086   * The search returns a group of mapping-contiguous entries with
1087   * ascending indexes.  There may be holes in the indices due to
1088   * not-present entries.
1089   *
1090   * Only one subpage of a Transparent Huge Page is returned in one call:
1091   * allowing truncate_inode_pages_range() to evict the whole THP without
1092   * cycling through a pagevec of extra references.
1093   *
1094   * pagevec_lookup_entries() returns the number of entries which were
1095   * found.
1096   */
1097  unsigned pagevec_lookup_entries(struct pagevec *pvec,
1098  				struct address_space *mapping,
1099  				pgoff_t start, unsigned nr_entries,
1100  				pgoff_t *indices)
1101  {
1102  	pvec->nr = find_get_entries(mapping, start, nr_entries,
1103  				    pvec->pages, indices);
1104  	return pagevec_count(pvec);
1105  }
1106  
1107  /**
1108   * pagevec_remove_exceptionals - pagevec exceptionals pruning
1109   * @pvec:	The pagevec to prune
1110   *
1111   * pagevec_lookup_entries() fills both pages and exceptional radix
1112   * tree entries into the pagevec.  This function prunes all
1113   * exceptionals from @pvec without leaving holes, so that it can be
1114   * passed on to page-only pagevec operations.
1115   */
1116  void pagevec_remove_exceptionals(struct pagevec *pvec)
1117  {
1118  	int i, j;
1119  
1120  	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1121  		struct page *page = pvec->pages[i];
1122  		if (!xa_is_value(page))
1123  			pvec->pages[j++] = page;
1124  	}
1125  	pvec->nr = j;
1126  }
1127  
1128  /**
1129   * pagevec_lookup_range - gang pagecache lookup
1130   * @pvec:	Where the resulting pages are placed
1131   * @mapping:	The address_space to search
1132   * @start:	The starting page index
1133   * @end:	The final page index
1134   *
1135   * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1136   * pages in the mapping starting from index @start and upto index @end
1137   * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1138   * reference against the pages in @pvec.
1139   *
1140   * The search returns a group of mapping-contiguous pages with ascending
1141   * indexes.  There may be holes in the indices due to not-present pages. We
1142   * also update @start to index the next page for the traversal.
1143   *
1144   * pagevec_lookup_range() returns the number of pages which were found. If this
1145   * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1146   * reached.
1147   */
1148  unsigned pagevec_lookup_range(struct pagevec *pvec,
1149  		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1150  {
1151  	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1152  					pvec->pages);
1153  	return pagevec_count(pvec);
1154  }
1155  EXPORT_SYMBOL(pagevec_lookup_range);
1156  
1157  unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1158  		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1159  		xa_mark_t tag)
1160  {
1161  	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1162  					PAGEVEC_SIZE, pvec->pages);
1163  	return pagevec_count(pvec);
1164  }
1165  EXPORT_SYMBOL(pagevec_lookup_range_tag);
1166  
1167  unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1168  		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1169  		xa_mark_t tag, unsigned max_pages)
1170  {
1171  	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1172  		min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1173  	return pagevec_count(pvec);
1174  }
1175  EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1176  /*
1177   * Perform any setup for the swap system
1178   */
1179  void __init swap_setup(void)
1180  {
1181  	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1182  
1183  	/* Use a smaller cluster for small-memory machines */
1184  	if (megs < 16)
1185  		page_cluster = 2;
1186  	else
1187  		page_cluster = 3;
1188  	/*
1189  	 * Right now other parts of the system means that we
1190  	 * _really_ don't want to cluster much more
1191  	 */
1192  }
1193  
1194  #ifdef CONFIG_DEV_PAGEMAP_OPS
1195  void put_devmap_managed_page(struct page *page)
1196  {
1197  	int count;
1198  
1199  	if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1200  		return;
1201  
1202  	count = page_ref_dec_return(page);
1203  
1204  	/*
1205  	 * devmap page refcounts are 1-based, rather than 0-based: if
1206  	 * refcount is 1, then the page is free and the refcount is
1207  	 * stable because nobody holds a reference on the page.
1208  	 */
1209  	if (count == 1)
1210  		free_devmap_managed_page(page);
1211  	else if (!count)
1212  		__put_page(page);
1213  }
1214  EXPORT_SYMBOL(put_devmap_managed_page);
1215  #endif
1216