1 /* 2 * linux/mm/swap.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file contains the default values for the operation of the 9 * Linux VM subsystem. Fine-tuning documentation can be found in 10 * Documentation/sysctl/vm.txt. 11 * Started 18.12.91 12 * Swap aging added 23.2.95, Stephen Tweedie. 13 * Buffermem limits added 12.3.98, Rik van Riel. 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/swap.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/pagevec.h> 23 #include <linux/init.h> 24 #include <linux/export.h> 25 #include <linux/mm_inline.h> 26 #include <linux/percpu_counter.h> 27 #include <linux/percpu.h> 28 #include <linux/cpu.h> 29 #include <linux/notifier.h> 30 #include <linux/backing-dev.h> 31 #include <linux/memcontrol.h> 32 #include <linux/gfp.h> 33 34 #include "internal.h" 35 36 /* How many pages do we try to swap or page in/out together? */ 37 int page_cluster; 38 39 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs); 40 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); 41 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs); 42 43 /* 44 * This path almost never happens for VM activity - pages are normally 45 * freed via pagevecs. But it gets used by networking. 46 */ 47 static void __page_cache_release(struct page *page) 48 { 49 if (PageLRU(page)) { 50 unsigned long flags; 51 struct zone *zone = page_zone(page); 52 53 spin_lock_irqsave(&zone->lru_lock, flags); 54 VM_BUG_ON(!PageLRU(page)); 55 __ClearPageLRU(page); 56 del_page_from_lru_list(zone, page, page_off_lru(page)); 57 spin_unlock_irqrestore(&zone->lru_lock, flags); 58 } 59 } 60 61 static void __put_single_page(struct page *page) 62 { 63 __page_cache_release(page); 64 free_hot_cold_page(page, 0); 65 } 66 67 static void __put_compound_page(struct page *page) 68 { 69 compound_page_dtor *dtor; 70 71 __page_cache_release(page); 72 dtor = get_compound_page_dtor(page); 73 (*dtor)(page); 74 } 75 76 static void put_compound_page(struct page *page) 77 { 78 if (unlikely(PageTail(page))) { 79 /* __split_huge_page_refcount can run under us */ 80 struct page *page_head = compound_trans_head(page); 81 82 if (likely(page != page_head && 83 get_page_unless_zero(page_head))) { 84 unsigned long flags; 85 /* 86 * page_head wasn't a dangling pointer but it 87 * may not be a head page anymore by the time 88 * we obtain the lock. That is ok as long as it 89 * can't be freed from under us. 90 */ 91 flags = compound_lock_irqsave(page_head); 92 if (unlikely(!PageTail(page))) { 93 /* __split_huge_page_refcount run before us */ 94 compound_unlock_irqrestore(page_head, flags); 95 VM_BUG_ON(PageHead(page_head)); 96 if (put_page_testzero(page_head)) 97 __put_single_page(page_head); 98 out_put_single: 99 if (put_page_testzero(page)) 100 __put_single_page(page); 101 return; 102 } 103 VM_BUG_ON(page_head != page->first_page); 104 /* 105 * We can release the refcount taken by 106 * get_page_unless_zero() now that 107 * __split_huge_page_refcount() is blocked on 108 * the compound_lock. 109 */ 110 if (put_page_testzero(page_head)) 111 VM_BUG_ON(1); 112 /* __split_huge_page_refcount will wait now */ 113 VM_BUG_ON(page_mapcount(page) <= 0); 114 atomic_dec(&page->_mapcount); 115 VM_BUG_ON(atomic_read(&page_head->_count) <= 0); 116 VM_BUG_ON(atomic_read(&page->_count) != 0); 117 compound_unlock_irqrestore(page_head, flags); 118 if (put_page_testzero(page_head)) { 119 if (PageHead(page_head)) 120 __put_compound_page(page_head); 121 else 122 __put_single_page(page_head); 123 } 124 } else { 125 /* page_head is a dangling pointer */ 126 VM_BUG_ON(PageTail(page)); 127 goto out_put_single; 128 } 129 } else if (put_page_testzero(page)) { 130 if (PageHead(page)) 131 __put_compound_page(page); 132 else 133 __put_single_page(page); 134 } 135 } 136 137 void put_page(struct page *page) 138 { 139 if (unlikely(PageCompound(page))) 140 put_compound_page(page); 141 else if (put_page_testzero(page)) 142 __put_single_page(page); 143 } 144 EXPORT_SYMBOL(put_page); 145 146 /* 147 * This function is exported but must not be called by anything other 148 * than get_page(). It implements the slow path of get_page(). 149 */ 150 bool __get_page_tail(struct page *page) 151 { 152 /* 153 * This takes care of get_page() if run on a tail page 154 * returned by one of the get_user_pages/follow_page variants. 155 * get_user_pages/follow_page itself doesn't need the compound 156 * lock because it runs __get_page_tail_foll() under the 157 * proper PT lock that already serializes against 158 * split_huge_page(). 159 */ 160 unsigned long flags; 161 bool got = false; 162 struct page *page_head = compound_trans_head(page); 163 164 if (likely(page != page_head && get_page_unless_zero(page_head))) { 165 /* 166 * page_head wasn't a dangling pointer but it 167 * may not be a head page anymore by the time 168 * we obtain the lock. That is ok as long as it 169 * can't be freed from under us. 170 */ 171 flags = compound_lock_irqsave(page_head); 172 /* here __split_huge_page_refcount won't run anymore */ 173 if (likely(PageTail(page))) { 174 __get_page_tail_foll(page, false); 175 got = true; 176 } 177 compound_unlock_irqrestore(page_head, flags); 178 if (unlikely(!got)) 179 put_page(page_head); 180 } 181 return got; 182 } 183 EXPORT_SYMBOL(__get_page_tail); 184 185 /** 186 * put_pages_list() - release a list of pages 187 * @pages: list of pages threaded on page->lru 188 * 189 * Release a list of pages which are strung together on page.lru. Currently 190 * used by read_cache_pages() and related error recovery code. 191 */ 192 void put_pages_list(struct list_head *pages) 193 { 194 while (!list_empty(pages)) { 195 struct page *victim; 196 197 victim = list_entry(pages->prev, struct page, lru); 198 list_del(&victim->lru); 199 page_cache_release(victim); 200 } 201 } 202 EXPORT_SYMBOL(put_pages_list); 203 204 static void pagevec_lru_move_fn(struct pagevec *pvec, 205 void (*move_fn)(struct page *page, void *arg), 206 void *arg) 207 { 208 int i; 209 struct zone *zone = NULL; 210 unsigned long flags = 0; 211 212 for (i = 0; i < pagevec_count(pvec); i++) { 213 struct page *page = pvec->pages[i]; 214 struct zone *pagezone = page_zone(page); 215 216 if (pagezone != zone) { 217 if (zone) 218 spin_unlock_irqrestore(&zone->lru_lock, flags); 219 zone = pagezone; 220 spin_lock_irqsave(&zone->lru_lock, flags); 221 } 222 223 (*move_fn)(page, arg); 224 } 225 if (zone) 226 spin_unlock_irqrestore(&zone->lru_lock, flags); 227 release_pages(pvec->pages, pvec->nr, pvec->cold); 228 pagevec_reinit(pvec); 229 } 230 231 static void pagevec_move_tail_fn(struct page *page, void *arg) 232 { 233 int *pgmoved = arg; 234 235 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 236 enum lru_list lru = page_lru_base_type(page); 237 struct lruvec *lruvec; 238 239 lruvec = mem_cgroup_lru_move_lists(page_zone(page), 240 page, lru, lru); 241 list_move_tail(&page->lru, &lruvec->lists[lru]); 242 (*pgmoved)++; 243 } 244 } 245 246 /* 247 * pagevec_move_tail() must be called with IRQ disabled. 248 * Otherwise this may cause nasty races. 249 */ 250 static void pagevec_move_tail(struct pagevec *pvec) 251 { 252 int pgmoved = 0; 253 254 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); 255 __count_vm_events(PGROTATED, pgmoved); 256 } 257 258 /* 259 * Writeback is about to end against a page which has been marked for immediate 260 * reclaim. If it still appears to be reclaimable, move it to the tail of the 261 * inactive list. 262 */ 263 void rotate_reclaimable_page(struct page *page) 264 { 265 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && 266 !PageUnevictable(page) && PageLRU(page)) { 267 struct pagevec *pvec; 268 unsigned long flags; 269 270 page_cache_get(page); 271 local_irq_save(flags); 272 pvec = &__get_cpu_var(lru_rotate_pvecs); 273 if (!pagevec_add(pvec, page)) 274 pagevec_move_tail(pvec); 275 local_irq_restore(flags); 276 } 277 } 278 279 static void update_page_reclaim_stat(struct zone *zone, struct page *page, 280 int file, int rotated) 281 { 282 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat; 283 struct zone_reclaim_stat *memcg_reclaim_stat; 284 285 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page); 286 287 reclaim_stat->recent_scanned[file]++; 288 if (rotated) 289 reclaim_stat->recent_rotated[file]++; 290 291 if (!memcg_reclaim_stat) 292 return; 293 294 memcg_reclaim_stat->recent_scanned[file]++; 295 if (rotated) 296 memcg_reclaim_stat->recent_rotated[file]++; 297 } 298 299 static void __activate_page(struct page *page, void *arg) 300 { 301 struct zone *zone = page_zone(page); 302 303 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 304 int file = page_is_file_cache(page); 305 int lru = page_lru_base_type(page); 306 del_page_from_lru_list(zone, page, lru); 307 308 SetPageActive(page); 309 lru += LRU_ACTIVE; 310 add_page_to_lru_list(zone, page, lru); 311 __count_vm_event(PGACTIVATE); 312 313 update_page_reclaim_stat(zone, page, file, 1); 314 } 315 } 316 317 #ifdef CONFIG_SMP 318 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); 319 320 static void activate_page_drain(int cpu) 321 { 322 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); 323 324 if (pagevec_count(pvec)) 325 pagevec_lru_move_fn(pvec, __activate_page, NULL); 326 } 327 328 void activate_page(struct page *page) 329 { 330 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 331 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); 332 333 page_cache_get(page); 334 if (!pagevec_add(pvec, page)) 335 pagevec_lru_move_fn(pvec, __activate_page, NULL); 336 put_cpu_var(activate_page_pvecs); 337 } 338 } 339 340 #else 341 static inline void activate_page_drain(int cpu) 342 { 343 } 344 345 void activate_page(struct page *page) 346 { 347 struct zone *zone = page_zone(page); 348 349 spin_lock_irq(&zone->lru_lock); 350 __activate_page(page, NULL); 351 spin_unlock_irq(&zone->lru_lock); 352 } 353 #endif 354 355 /* 356 * Mark a page as having seen activity. 357 * 358 * inactive,unreferenced -> inactive,referenced 359 * inactive,referenced -> active,unreferenced 360 * active,unreferenced -> active,referenced 361 */ 362 void mark_page_accessed(struct page *page) 363 { 364 if (!PageActive(page) && !PageUnevictable(page) && 365 PageReferenced(page) && PageLRU(page)) { 366 activate_page(page); 367 ClearPageReferenced(page); 368 } else if (!PageReferenced(page)) { 369 SetPageReferenced(page); 370 } 371 } 372 EXPORT_SYMBOL(mark_page_accessed); 373 374 void __lru_cache_add(struct page *page, enum lru_list lru) 375 { 376 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru]; 377 378 page_cache_get(page); 379 if (!pagevec_add(pvec, page)) 380 __pagevec_lru_add(pvec, lru); 381 put_cpu_var(lru_add_pvecs); 382 } 383 EXPORT_SYMBOL(__lru_cache_add); 384 385 /** 386 * lru_cache_add_lru - add a page to a page list 387 * @page: the page to be added to the LRU. 388 * @lru: the LRU list to which the page is added. 389 */ 390 void lru_cache_add_lru(struct page *page, enum lru_list lru) 391 { 392 if (PageActive(page)) { 393 VM_BUG_ON(PageUnevictable(page)); 394 ClearPageActive(page); 395 } else if (PageUnevictable(page)) { 396 VM_BUG_ON(PageActive(page)); 397 ClearPageUnevictable(page); 398 } 399 400 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page)); 401 __lru_cache_add(page, lru); 402 } 403 404 /** 405 * add_page_to_unevictable_list - add a page to the unevictable list 406 * @page: the page to be added to the unevictable list 407 * 408 * Add page directly to its zone's unevictable list. To avoid races with 409 * tasks that might be making the page evictable, through eg. munlock, 410 * munmap or exit, while it's not on the lru, we want to add the page 411 * while it's locked or otherwise "invisible" to other tasks. This is 412 * difficult to do when using the pagevec cache, so bypass that. 413 */ 414 void add_page_to_unevictable_list(struct page *page) 415 { 416 struct zone *zone = page_zone(page); 417 418 spin_lock_irq(&zone->lru_lock); 419 SetPageUnevictable(page); 420 SetPageLRU(page); 421 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE); 422 spin_unlock_irq(&zone->lru_lock); 423 } 424 425 /* 426 * If the page can not be invalidated, it is moved to the 427 * inactive list to speed up its reclaim. It is moved to the 428 * head of the list, rather than the tail, to give the flusher 429 * threads some time to write it out, as this is much more 430 * effective than the single-page writeout from reclaim. 431 * 432 * If the page isn't page_mapped and dirty/writeback, the page 433 * could reclaim asap using PG_reclaim. 434 * 435 * 1. active, mapped page -> none 436 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 437 * 3. inactive, mapped page -> none 438 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 439 * 5. inactive, clean -> inactive, tail 440 * 6. Others -> none 441 * 442 * In 4, why it moves inactive's head, the VM expects the page would 443 * be write it out by flusher threads as this is much more effective 444 * than the single-page writeout from reclaim. 445 */ 446 static void lru_deactivate_fn(struct page *page, void *arg) 447 { 448 int lru, file; 449 bool active; 450 struct zone *zone = page_zone(page); 451 452 if (!PageLRU(page)) 453 return; 454 455 if (PageUnevictable(page)) 456 return; 457 458 /* Some processes are using the page */ 459 if (page_mapped(page)) 460 return; 461 462 active = PageActive(page); 463 464 file = page_is_file_cache(page); 465 lru = page_lru_base_type(page); 466 del_page_from_lru_list(zone, page, lru + active); 467 ClearPageActive(page); 468 ClearPageReferenced(page); 469 add_page_to_lru_list(zone, page, lru); 470 471 if (PageWriteback(page) || PageDirty(page)) { 472 /* 473 * PG_reclaim could be raced with end_page_writeback 474 * It can make readahead confusing. But race window 475 * is _really_ small and it's non-critical problem. 476 */ 477 SetPageReclaim(page); 478 } else { 479 struct lruvec *lruvec; 480 /* 481 * The page's writeback ends up during pagevec 482 * We moves tha page into tail of inactive. 483 */ 484 lruvec = mem_cgroup_lru_move_lists(zone, page, lru, lru); 485 list_move_tail(&page->lru, &lruvec->lists[lru]); 486 __count_vm_event(PGROTATED); 487 } 488 489 if (active) 490 __count_vm_event(PGDEACTIVATE); 491 update_page_reclaim_stat(zone, page, file, 0); 492 } 493 494 /* 495 * Drain pages out of the cpu's pagevecs. 496 * Either "cpu" is the current CPU, and preemption has already been 497 * disabled; or "cpu" is being hot-unplugged, and is already dead. 498 */ 499 void lru_add_drain_cpu(int cpu) 500 { 501 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu); 502 struct pagevec *pvec; 503 int lru; 504 505 for_each_lru(lru) { 506 pvec = &pvecs[lru - LRU_BASE]; 507 if (pagevec_count(pvec)) 508 __pagevec_lru_add(pvec, lru); 509 } 510 511 pvec = &per_cpu(lru_rotate_pvecs, cpu); 512 if (pagevec_count(pvec)) { 513 unsigned long flags; 514 515 /* No harm done if a racing interrupt already did this */ 516 local_irq_save(flags); 517 pagevec_move_tail(pvec); 518 local_irq_restore(flags); 519 } 520 521 pvec = &per_cpu(lru_deactivate_pvecs, cpu); 522 if (pagevec_count(pvec)) 523 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 524 525 activate_page_drain(cpu); 526 } 527 528 /** 529 * deactivate_page - forcefully deactivate a page 530 * @page: page to deactivate 531 * 532 * This function hints the VM that @page is a good reclaim candidate, 533 * for example if its invalidation fails due to the page being dirty 534 * or under writeback. 535 */ 536 void deactivate_page(struct page *page) 537 { 538 /* 539 * In a workload with many unevictable page such as mprotect, unevictable 540 * page deactivation for accelerating reclaim is pointless. 541 */ 542 if (PageUnevictable(page)) 543 return; 544 545 if (likely(get_page_unless_zero(page))) { 546 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs); 547 548 if (!pagevec_add(pvec, page)) 549 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 550 put_cpu_var(lru_deactivate_pvecs); 551 } 552 } 553 554 void lru_add_drain(void) 555 { 556 lru_add_drain_cpu(get_cpu()); 557 put_cpu(); 558 } 559 560 static void lru_add_drain_per_cpu(struct work_struct *dummy) 561 { 562 lru_add_drain(); 563 } 564 565 /* 566 * Returns 0 for success 567 */ 568 int lru_add_drain_all(void) 569 { 570 return schedule_on_each_cpu(lru_add_drain_per_cpu); 571 } 572 573 /* 574 * Batched page_cache_release(). Decrement the reference count on all the 575 * passed pages. If it fell to zero then remove the page from the LRU and 576 * free it. 577 * 578 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it 579 * for the remainder of the operation. 580 * 581 * The locking in this function is against shrink_inactive_list(): we recheck 582 * the page count inside the lock to see whether shrink_inactive_list() 583 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list() 584 * will free it. 585 */ 586 void release_pages(struct page **pages, int nr, int cold) 587 { 588 int i; 589 LIST_HEAD(pages_to_free); 590 struct zone *zone = NULL; 591 unsigned long uninitialized_var(flags); 592 593 for (i = 0; i < nr; i++) { 594 struct page *page = pages[i]; 595 596 if (unlikely(PageCompound(page))) { 597 if (zone) { 598 spin_unlock_irqrestore(&zone->lru_lock, flags); 599 zone = NULL; 600 } 601 put_compound_page(page); 602 continue; 603 } 604 605 if (!put_page_testzero(page)) 606 continue; 607 608 if (PageLRU(page)) { 609 struct zone *pagezone = page_zone(page); 610 611 if (pagezone != zone) { 612 if (zone) 613 spin_unlock_irqrestore(&zone->lru_lock, 614 flags); 615 zone = pagezone; 616 spin_lock_irqsave(&zone->lru_lock, flags); 617 } 618 VM_BUG_ON(!PageLRU(page)); 619 __ClearPageLRU(page); 620 del_page_from_lru_list(zone, page, page_off_lru(page)); 621 } 622 623 list_add(&page->lru, &pages_to_free); 624 } 625 if (zone) 626 spin_unlock_irqrestore(&zone->lru_lock, flags); 627 628 free_hot_cold_page_list(&pages_to_free, cold); 629 } 630 EXPORT_SYMBOL(release_pages); 631 632 /* 633 * The pages which we're about to release may be in the deferred lru-addition 634 * queues. That would prevent them from really being freed right now. That's 635 * OK from a correctness point of view but is inefficient - those pages may be 636 * cache-warm and we want to give them back to the page allocator ASAP. 637 * 638 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 639 * and __pagevec_lru_add_active() call release_pages() directly to avoid 640 * mutual recursion. 641 */ 642 void __pagevec_release(struct pagevec *pvec) 643 { 644 lru_add_drain(); 645 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); 646 pagevec_reinit(pvec); 647 } 648 EXPORT_SYMBOL(__pagevec_release); 649 650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 651 /* used by __split_huge_page_refcount() */ 652 void lru_add_page_tail(struct zone* zone, 653 struct page *page, struct page *page_tail) 654 { 655 int uninitialized_var(active); 656 enum lru_list lru; 657 const int file = 0; 658 659 VM_BUG_ON(!PageHead(page)); 660 VM_BUG_ON(PageCompound(page_tail)); 661 VM_BUG_ON(PageLRU(page_tail)); 662 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&zone->lru_lock)); 663 664 SetPageLRU(page_tail); 665 666 if (page_evictable(page_tail, NULL)) { 667 if (PageActive(page)) { 668 SetPageActive(page_tail); 669 active = 1; 670 lru = LRU_ACTIVE_ANON; 671 } else { 672 active = 0; 673 lru = LRU_INACTIVE_ANON; 674 } 675 } else { 676 SetPageUnevictable(page_tail); 677 lru = LRU_UNEVICTABLE; 678 } 679 680 if (likely(PageLRU(page))) 681 list_add_tail(&page_tail->lru, &page->lru); 682 else { 683 struct list_head *list_head; 684 /* 685 * Head page has not yet been counted, as an hpage, 686 * so we must account for each subpage individually. 687 * 688 * Use the standard add function to put page_tail on the list, 689 * but then correct its position so they all end up in order. 690 */ 691 add_page_to_lru_list(zone, page_tail, lru); 692 list_head = page_tail->lru.prev; 693 list_move_tail(&page_tail->lru, list_head); 694 } 695 696 if (!PageUnevictable(page)) 697 update_page_reclaim_stat(zone, page_tail, file, active); 698 } 699 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 700 701 static void __pagevec_lru_add_fn(struct page *page, void *arg) 702 { 703 enum lru_list lru = (enum lru_list)arg; 704 struct zone *zone = page_zone(page); 705 int file = is_file_lru(lru); 706 int active = is_active_lru(lru); 707 708 VM_BUG_ON(PageActive(page)); 709 VM_BUG_ON(PageUnevictable(page)); 710 VM_BUG_ON(PageLRU(page)); 711 712 SetPageLRU(page); 713 if (active) 714 SetPageActive(page); 715 add_page_to_lru_list(zone, page, lru); 716 update_page_reclaim_stat(zone, page, file, active); 717 } 718 719 /* 720 * Add the passed pages to the LRU, then drop the caller's refcount 721 * on them. Reinitialises the caller's pagevec. 722 */ 723 void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru) 724 { 725 VM_BUG_ON(is_unevictable_lru(lru)); 726 727 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru); 728 } 729 EXPORT_SYMBOL(__pagevec_lru_add); 730 731 /** 732 * pagevec_lookup - gang pagecache lookup 733 * @pvec: Where the resulting pages are placed 734 * @mapping: The address_space to search 735 * @start: The starting page index 736 * @nr_pages: The maximum number of pages 737 * 738 * pagevec_lookup() will search for and return a group of up to @nr_pages pages 739 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a 740 * reference against the pages in @pvec. 741 * 742 * The search returns a group of mapping-contiguous pages with ascending 743 * indexes. There may be holes in the indices due to not-present pages. 744 * 745 * pagevec_lookup() returns the number of pages which were found. 746 */ 747 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, 748 pgoff_t start, unsigned nr_pages) 749 { 750 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); 751 return pagevec_count(pvec); 752 } 753 EXPORT_SYMBOL(pagevec_lookup); 754 755 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, 756 pgoff_t *index, int tag, unsigned nr_pages) 757 { 758 pvec->nr = find_get_pages_tag(mapping, index, tag, 759 nr_pages, pvec->pages); 760 return pagevec_count(pvec); 761 } 762 EXPORT_SYMBOL(pagevec_lookup_tag); 763 764 /* 765 * Perform any setup for the swap system 766 */ 767 void __init swap_setup(void) 768 { 769 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); 770 771 #ifdef CONFIG_SWAP 772 bdi_init(swapper_space.backing_dev_info); 773 #endif 774 775 /* Use a smaller cluster for small-memory machines */ 776 if (megs < 16) 777 page_cluster = 2; 778 else 779 page_cluster = 3; 780 /* 781 * Right now other parts of the system means that we 782 * _really_ don't want to cluster much more 783 */ 784 } 785