1 /* 2 * linux/mm/swap.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file contains the default values for the operation of the 9 * Linux VM subsystem. Fine-tuning documentation can be found in 10 * Documentation/sysctl/vm.txt. 11 * Started 18.12.91 12 * Swap aging added 23.2.95, Stephen Tweedie. 13 * Buffermem limits added 12.3.98, Rik van Riel. 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/swap.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/pagevec.h> 23 #include <linux/init.h> 24 #include <linux/export.h> 25 #include <linux/mm_inline.h> 26 #include <linux/percpu_counter.h> 27 #include <linux/percpu.h> 28 #include <linux/cpu.h> 29 #include <linux/notifier.h> 30 #include <linux/backing-dev.h> 31 #include <linux/memcontrol.h> 32 #include <linux/gfp.h> 33 34 #include "internal.h" 35 36 /* How many pages do we try to swap or page in/out together? */ 37 int page_cluster; 38 39 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs); 40 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); 41 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs); 42 43 /* 44 * This path almost never happens for VM activity - pages are normally 45 * freed via pagevecs. But it gets used by networking. 46 */ 47 static void __page_cache_release(struct page *page) 48 { 49 if (PageLRU(page)) { 50 struct zone *zone = page_zone(page); 51 struct lruvec *lruvec; 52 unsigned long flags; 53 54 spin_lock_irqsave(&zone->lru_lock, flags); 55 lruvec = mem_cgroup_page_lruvec(page, zone); 56 VM_BUG_ON(!PageLRU(page)); 57 __ClearPageLRU(page); 58 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 59 spin_unlock_irqrestore(&zone->lru_lock, flags); 60 } 61 } 62 63 static void __put_single_page(struct page *page) 64 { 65 __page_cache_release(page); 66 free_hot_cold_page(page, 0); 67 } 68 69 static void __put_compound_page(struct page *page) 70 { 71 compound_page_dtor *dtor; 72 73 __page_cache_release(page); 74 dtor = get_compound_page_dtor(page); 75 (*dtor)(page); 76 } 77 78 static void put_compound_page(struct page *page) 79 { 80 if (unlikely(PageTail(page))) { 81 /* __split_huge_page_refcount can run under us */ 82 struct page *page_head = compound_trans_head(page); 83 84 if (likely(page != page_head && 85 get_page_unless_zero(page_head))) { 86 unsigned long flags; 87 88 /* 89 * THP can not break up slab pages so avoid taking 90 * compound_lock(). Slab performs non-atomic bit ops 91 * on page->flags for better performance. In particular 92 * slab_unlock() in slub used to be a hot path. It is 93 * still hot on arches that do not support 94 * this_cpu_cmpxchg_double(). 95 */ 96 if (PageSlab(page_head)) { 97 if (PageTail(page)) { 98 if (put_page_testzero(page_head)) 99 VM_BUG_ON(1); 100 101 atomic_dec(&page->_mapcount); 102 goto skip_lock_tail; 103 } else 104 goto skip_lock; 105 } 106 /* 107 * page_head wasn't a dangling pointer but it 108 * may not be a head page anymore by the time 109 * we obtain the lock. That is ok as long as it 110 * can't be freed from under us. 111 */ 112 flags = compound_lock_irqsave(page_head); 113 if (unlikely(!PageTail(page))) { 114 /* __split_huge_page_refcount run before us */ 115 compound_unlock_irqrestore(page_head, flags); 116 skip_lock: 117 if (put_page_testzero(page_head)) 118 __put_single_page(page_head); 119 out_put_single: 120 if (put_page_testzero(page)) 121 __put_single_page(page); 122 return; 123 } 124 VM_BUG_ON(page_head != page->first_page); 125 /* 126 * We can release the refcount taken by 127 * get_page_unless_zero() now that 128 * __split_huge_page_refcount() is blocked on 129 * the compound_lock. 130 */ 131 if (put_page_testzero(page_head)) 132 VM_BUG_ON(1); 133 /* __split_huge_page_refcount will wait now */ 134 VM_BUG_ON(page_mapcount(page) <= 0); 135 atomic_dec(&page->_mapcount); 136 VM_BUG_ON(atomic_read(&page_head->_count) <= 0); 137 VM_BUG_ON(atomic_read(&page->_count) != 0); 138 compound_unlock_irqrestore(page_head, flags); 139 140 skip_lock_tail: 141 if (put_page_testzero(page_head)) { 142 if (PageHead(page_head)) 143 __put_compound_page(page_head); 144 else 145 __put_single_page(page_head); 146 } 147 } else { 148 /* page_head is a dangling pointer */ 149 VM_BUG_ON(PageTail(page)); 150 goto out_put_single; 151 } 152 } else if (put_page_testzero(page)) { 153 if (PageHead(page)) 154 __put_compound_page(page); 155 else 156 __put_single_page(page); 157 } 158 } 159 160 void put_page(struct page *page) 161 { 162 if (unlikely(PageCompound(page))) 163 put_compound_page(page); 164 else if (put_page_testzero(page)) 165 __put_single_page(page); 166 } 167 EXPORT_SYMBOL(put_page); 168 169 /* 170 * This function is exported but must not be called by anything other 171 * than get_page(). It implements the slow path of get_page(). 172 */ 173 bool __get_page_tail(struct page *page) 174 { 175 /* 176 * This takes care of get_page() if run on a tail page 177 * returned by one of the get_user_pages/follow_page variants. 178 * get_user_pages/follow_page itself doesn't need the compound 179 * lock because it runs __get_page_tail_foll() under the 180 * proper PT lock that already serializes against 181 * split_huge_page(). 182 */ 183 unsigned long flags; 184 bool got = false; 185 struct page *page_head = compound_trans_head(page); 186 187 if (likely(page != page_head && get_page_unless_zero(page_head))) { 188 189 /* Ref to put_compound_page() comment. */ 190 if (PageSlab(page_head)) { 191 if (likely(PageTail(page))) { 192 __get_page_tail_foll(page, false); 193 return true; 194 } else { 195 put_page(page_head); 196 return false; 197 } 198 } 199 200 /* 201 * page_head wasn't a dangling pointer but it 202 * may not be a head page anymore by the time 203 * we obtain the lock. That is ok as long as it 204 * can't be freed from under us. 205 */ 206 flags = compound_lock_irqsave(page_head); 207 /* here __split_huge_page_refcount won't run anymore */ 208 if (likely(PageTail(page))) { 209 __get_page_tail_foll(page, false); 210 got = true; 211 } 212 compound_unlock_irqrestore(page_head, flags); 213 if (unlikely(!got)) 214 put_page(page_head); 215 } 216 return got; 217 } 218 EXPORT_SYMBOL(__get_page_tail); 219 220 /** 221 * put_pages_list() - release a list of pages 222 * @pages: list of pages threaded on page->lru 223 * 224 * Release a list of pages which are strung together on page.lru. Currently 225 * used by read_cache_pages() and related error recovery code. 226 */ 227 void put_pages_list(struct list_head *pages) 228 { 229 while (!list_empty(pages)) { 230 struct page *victim; 231 232 victim = list_entry(pages->prev, struct page, lru); 233 list_del(&victim->lru); 234 page_cache_release(victim); 235 } 236 } 237 EXPORT_SYMBOL(put_pages_list); 238 239 /* 240 * get_kernel_pages() - pin kernel pages in memory 241 * @kiov: An array of struct kvec structures 242 * @nr_segs: number of segments to pin 243 * @write: pinning for read/write, currently ignored 244 * @pages: array that receives pointers to the pages pinned. 245 * Should be at least nr_segs long. 246 * 247 * Returns number of pages pinned. This may be fewer than the number 248 * requested. If nr_pages is 0 or negative, returns 0. If no pages 249 * were pinned, returns -errno. Each page returned must be released 250 * with a put_page() call when it is finished with. 251 */ 252 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 253 struct page **pages) 254 { 255 int seg; 256 257 for (seg = 0; seg < nr_segs; seg++) { 258 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 259 return seg; 260 261 pages[seg] = kmap_to_page(kiov[seg].iov_base); 262 page_cache_get(pages[seg]); 263 } 264 265 return seg; 266 } 267 EXPORT_SYMBOL_GPL(get_kernel_pages); 268 269 /* 270 * get_kernel_page() - pin a kernel page in memory 271 * @start: starting kernel address 272 * @write: pinning for read/write, currently ignored 273 * @pages: array that receives pointer to the page pinned. 274 * Must be at least nr_segs long. 275 * 276 * Returns 1 if page is pinned. If the page was not pinned, returns 277 * -errno. The page returned must be released with a put_page() call 278 * when it is finished with. 279 */ 280 int get_kernel_page(unsigned long start, int write, struct page **pages) 281 { 282 const struct kvec kiov = { 283 .iov_base = (void *)start, 284 .iov_len = PAGE_SIZE 285 }; 286 287 return get_kernel_pages(&kiov, 1, write, pages); 288 } 289 EXPORT_SYMBOL_GPL(get_kernel_page); 290 291 static void pagevec_lru_move_fn(struct pagevec *pvec, 292 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), 293 void *arg) 294 { 295 int i; 296 struct zone *zone = NULL; 297 struct lruvec *lruvec; 298 unsigned long flags = 0; 299 300 for (i = 0; i < pagevec_count(pvec); i++) { 301 struct page *page = pvec->pages[i]; 302 struct zone *pagezone = page_zone(page); 303 304 if (pagezone != zone) { 305 if (zone) 306 spin_unlock_irqrestore(&zone->lru_lock, flags); 307 zone = pagezone; 308 spin_lock_irqsave(&zone->lru_lock, flags); 309 } 310 311 lruvec = mem_cgroup_page_lruvec(page, zone); 312 (*move_fn)(page, lruvec, arg); 313 } 314 if (zone) 315 spin_unlock_irqrestore(&zone->lru_lock, flags); 316 release_pages(pvec->pages, pvec->nr, pvec->cold); 317 pagevec_reinit(pvec); 318 } 319 320 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, 321 void *arg) 322 { 323 int *pgmoved = arg; 324 325 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 326 enum lru_list lru = page_lru_base_type(page); 327 list_move_tail(&page->lru, &lruvec->lists[lru]); 328 (*pgmoved)++; 329 } 330 } 331 332 /* 333 * pagevec_move_tail() must be called with IRQ disabled. 334 * Otherwise this may cause nasty races. 335 */ 336 static void pagevec_move_tail(struct pagevec *pvec) 337 { 338 int pgmoved = 0; 339 340 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); 341 __count_vm_events(PGROTATED, pgmoved); 342 } 343 344 /* 345 * Writeback is about to end against a page which has been marked for immediate 346 * reclaim. If it still appears to be reclaimable, move it to the tail of the 347 * inactive list. 348 */ 349 void rotate_reclaimable_page(struct page *page) 350 { 351 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && 352 !PageUnevictable(page) && PageLRU(page)) { 353 struct pagevec *pvec; 354 unsigned long flags; 355 356 page_cache_get(page); 357 local_irq_save(flags); 358 pvec = &__get_cpu_var(lru_rotate_pvecs); 359 if (!pagevec_add(pvec, page)) 360 pagevec_move_tail(pvec); 361 local_irq_restore(flags); 362 } 363 } 364 365 static void update_page_reclaim_stat(struct lruvec *lruvec, 366 int file, int rotated) 367 { 368 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 369 370 reclaim_stat->recent_scanned[file]++; 371 if (rotated) 372 reclaim_stat->recent_rotated[file]++; 373 } 374 375 static void __activate_page(struct page *page, struct lruvec *lruvec, 376 void *arg) 377 { 378 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 379 int file = page_is_file_cache(page); 380 int lru = page_lru_base_type(page); 381 382 del_page_from_lru_list(page, lruvec, lru); 383 SetPageActive(page); 384 lru += LRU_ACTIVE; 385 add_page_to_lru_list(page, lruvec, lru); 386 387 __count_vm_event(PGACTIVATE); 388 update_page_reclaim_stat(lruvec, file, 1); 389 } 390 } 391 392 #ifdef CONFIG_SMP 393 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); 394 395 static void activate_page_drain(int cpu) 396 { 397 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); 398 399 if (pagevec_count(pvec)) 400 pagevec_lru_move_fn(pvec, __activate_page, NULL); 401 } 402 403 void activate_page(struct page *page) 404 { 405 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 406 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); 407 408 page_cache_get(page); 409 if (!pagevec_add(pvec, page)) 410 pagevec_lru_move_fn(pvec, __activate_page, NULL); 411 put_cpu_var(activate_page_pvecs); 412 } 413 } 414 415 #else 416 static inline void activate_page_drain(int cpu) 417 { 418 } 419 420 void activate_page(struct page *page) 421 { 422 struct zone *zone = page_zone(page); 423 424 spin_lock_irq(&zone->lru_lock); 425 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL); 426 spin_unlock_irq(&zone->lru_lock); 427 } 428 #endif 429 430 /* 431 * Mark a page as having seen activity. 432 * 433 * inactive,unreferenced -> inactive,referenced 434 * inactive,referenced -> active,unreferenced 435 * active,unreferenced -> active,referenced 436 */ 437 void mark_page_accessed(struct page *page) 438 { 439 if (!PageActive(page) && !PageUnevictable(page) && 440 PageReferenced(page) && PageLRU(page)) { 441 activate_page(page); 442 ClearPageReferenced(page); 443 } else if (!PageReferenced(page)) { 444 SetPageReferenced(page); 445 } 446 } 447 EXPORT_SYMBOL(mark_page_accessed); 448 449 void __lru_cache_add(struct page *page, enum lru_list lru) 450 { 451 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru]; 452 453 page_cache_get(page); 454 if (!pagevec_add(pvec, page)) 455 __pagevec_lru_add(pvec, lru); 456 put_cpu_var(lru_add_pvecs); 457 } 458 EXPORT_SYMBOL(__lru_cache_add); 459 460 /** 461 * lru_cache_add_lru - add a page to a page list 462 * @page: the page to be added to the LRU. 463 * @lru: the LRU list to which the page is added. 464 */ 465 void lru_cache_add_lru(struct page *page, enum lru_list lru) 466 { 467 if (PageActive(page)) { 468 VM_BUG_ON(PageUnevictable(page)); 469 ClearPageActive(page); 470 } else if (PageUnevictable(page)) { 471 VM_BUG_ON(PageActive(page)); 472 ClearPageUnevictable(page); 473 } 474 475 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page)); 476 __lru_cache_add(page, lru); 477 } 478 479 /** 480 * add_page_to_unevictable_list - add a page to the unevictable list 481 * @page: the page to be added to the unevictable list 482 * 483 * Add page directly to its zone's unevictable list. To avoid races with 484 * tasks that might be making the page evictable, through eg. munlock, 485 * munmap or exit, while it's not on the lru, we want to add the page 486 * while it's locked or otherwise "invisible" to other tasks. This is 487 * difficult to do when using the pagevec cache, so bypass that. 488 */ 489 void add_page_to_unevictable_list(struct page *page) 490 { 491 struct zone *zone = page_zone(page); 492 struct lruvec *lruvec; 493 494 spin_lock_irq(&zone->lru_lock); 495 lruvec = mem_cgroup_page_lruvec(page, zone); 496 SetPageUnevictable(page); 497 SetPageLRU(page); 498 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE); 499 spin_unlock_irq(&zone->lru_lock); 500 } 501 502 /* 503 * If the page can not be invalidated, it is moved to the 504 * inactive list to speed up its reclaim. It is moved to the 505 * head of the list, rather than the tail, to give the flusher 506 * threads some time to write it out, as this is much more 507 * effective than the single-page writeout from reclaim. 508 * 509 * If the page isn't page_mapped and dirty/writeback, the page 510 * could reclaim asap using PG_reclaim. 511 * 512 * 1. active, mapped page -> none 513 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 514 * 3. inactive, mapped page -> none 515 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 516 * 5. inactive, clean -> inactive, tail 517 * 6. Others -> none 518 * 519 * In 4, why it moves inactive's head, the VM expects the page would 520 * be write it out by flusher threads as this is much more effective 521 * than the single-page writeout from reclaim. 522 */ 523 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec, 524 void *arg) 525 { 526 int lru, file; 527 bool active; 528 529 if (!PageLRU(page)) 530 return; 531 532 if (PageUnevictable(page)) 533 return; 534 535 /* Some processes are using the page */ 536 if (page_mapped(page)) 537 return; 538 539 active = PageActive(page); 540 file = page_is_file_cache(page); 541 lru = page_lru_base_type(page); 542 543 del_page_from_lru_list(page, lruvec, lru + active); 544 ClearPageActive(page); 545 ClearPageReferenced(page); 546 add_page_to_lru_list(page, lruvec, lru); 547 548 if (PageWriteback(page) || PageDirty(page)) { 549 /* 550 * PG_reclaim could be raced with end_page_writeback 551 * It can make readahead confusing. But race window 552 * is _really_ small and it's non-critical problem. 553 */ 554 SetPageReclaim(page); 555 } else { 556 /* 557 * The page's writeback ends up during pagevec 558 * We moves tha page into tail of inactive. 559 */ 560 list_move_tail(&page->lru, &lruvec->lists[lru]); 561 __count_vm_event(PGROTATED); 562 } 563 564 if (active) 565 __count_vm_event(PGDEACTIVATE); 566 update_page_reclaim_stat(lruvec, file, 0); 567 } 568 569 /* 570 * Drain pages out of the cpu's pagevecs. 571 * Either "cpu" is the current CPU, and preemption has already been 572 * disabled; or "cpu" is being hot-unplugged, and is already dead. 573 */ 574 void lru_add_drain_cpu(int cpu) 575 { 576 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu); 577 struct pagevec *pvec; 578 int lru; 579 580 for_each_lru(lru) { 581 pvec = &pvecs[lru - LRU_BASE]; 582 if (pagevec_count(pvec)) 583 __pagevec_lru_add(pvec, lru); 584 } 585 586 pvec = &per_cpu(lru_rotate_pvecs, cpu); 587 if (pagevec_count(pvec)) { 588 unsigned long flags; 589 590 /* No harm done if a racing interrupt already did this */ 591 local_irq_save(flags); 592 pagevec_move_tail(pvec); 593 local_irq_restore(flags); 594 } 595 596 pvec = &per_cpu(lru_deactivate_pvecs, cpu); 597 if (pagevec_count(pvec)) 598 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 599 600 activate_page_drain(cpu); 601 } 602 603 /** 604 * deactivate_page - forcefully deactivate a page 605 * @page: page to deactivate 606 * 607 * This function hints the VM that @page is a good reclaim candidate, 608 * for example if its invalidation fails due to the page being dirty 609 * or under writeback. 610 */ 611 void deactivate_page(struct page *page) 612 { 613 /* 614 * In a workload with many unevictable page such as mprotect, unevictable 615 * page deactivation for accelerating reclaim is pointless. 616 */ 617 if (PageUnevictable(page)) 618 return; 619 620 if (likely(get_page_unless_zero(page))) { 621 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs); 622 623 if (!pagevec_add(pvec, page)) 624 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 625 put_cpu_var(lru_deactivate_pvecs); 626 } 627 } 628 629 void lru_add_drain(void) 630 { 631 lru_add_drain_cpu(get_cpu()); 632 put_cpu(); 633 } 634 635 static void lru_add_drain_per_cpu(struct work_struct *dummy) 636 { 637 lru_add_drain(); 638 } 639 640 /* 641 * Returns 0 for success 642 */ 643 int lru_add_drain_all(void) 644 { 645 return schedule_on_each_cpu(lru_add_drain_per_cpu); 646 } 647 648 /* 649 * Batched page_cache_release(). Decrement the reference count on all the 650 * passed pages. If it fell to zero then remove the page from the LRU and 651 * free it. 652 * 653 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it 654 * for the remainder of the operation. 655 * 656 * The locking in this function is against shrink_inactive_list(): we recheck 657 * the page count inside the lock to see whether shrink_inactive_list() 658 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list() 659 * will free it. 660 */ 661 void release_pages(struct page **pages, int nr, int cold) 662 { 663 int i; 664 LIST_HEAD(pages_to_free); 665 struct zone *zone = NULL; 666 struct lruvec *lruvec; 667 unsigned long uninitialized_var(flags); 668 669 for (i = 0; i < nr; i++) { 670 struct page *page = pages[i]; 671 672 if (unlikely(PageCompound(page))) { 673 if (zone) { 674 spin_unlock_irqrestore(&zone->lru_lock, flags); 675 zone = NULL; 676 } 677 put_compound_page(page); 678 continue; 679 } 680 681 if (!put_page_testzero(page)) 682 continue; 683 684 if (PageLRU(page)) { 685 struct zone *pagezone = page_zone(page); 686 687 if (pagezone != zone) { 688 if (zone) 689 spin_unlock_irqrestore(&zone->lru_lock, 690 flags); 691 zone = pagezone; 692 spin_lock_irqsave(&zone->lru_lock, flags); 693 } 694 695 lruvec = mem_cgroup_page_lruvec(page, zone); 696 VM_BUG_ON(!PageLRU(page)); 697 __ClearPageLRU(page); 698 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 699 } 700 701 list_add(&page->lru, &pages_to_free); 702 } 703 if (zone) 704 spin_unlock_irqrestore(&zone->lru_lock, flags); 705 706 free_hot_cold_page_list(&pages_to_free, cold); 707 } 708 EXPORT_SYMBOL(release_pages); 709 710 /* 711 * The pages which we're about to release may be in the deferred lru-addition 712 * queues. That would prevent them from really being freed right now. That's 713 * OK from a correctness point of view but is inefficient - those pages may be 714 * cache-warm and we want to give them back to the page allocator ASAP. 715 * 716 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 717 * and __pagevec_lru_add_active() call release_pages() directly to avoid 718 * mutual recursion. 719 */ 720 void __pagevec_release(struct pagevec *pvec) 721 { 722 lru_add_drain(); 723 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); 724 pagevec_reinit(pvec); 725 } 726 EXPORT_SYMBOL(__pagevec_release); 727 728 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 729 /* used by __split_huge_page_refcount() */ 730 void lru_add_page_tail(struct page *page, struct page *page_tail, 731 struct lruvec *lruvec) 732 { 733 int uninitialized_var(active); 734 enum lru_list lru; 735 const int file = 0; 736 737 VM_BUG_ON(!PageHead(page)); 738 VM_BUG_ON(PageCompound(page_tail)); 739 VM_BUG_ON(PageLRU(page_tail)); 740 VM_BUG_ON(NR_CPUS != 1 && 741 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock)); 742 743 SetPageLRU(page_tail); 744 745 if (page_evictable(page_tail, NULL)) { 746 if (PageActive(page)) { 747 SetPageActive(page_tail); 748 active = 1; 749 lru = LRU_ACTIVE_ANON; 750 } else { 751 active = 0; 752 lru = LRU_INACTIVE_ANON; 753 } 754 } else { 755 SetPageUnevictable(page_tail); 756 lru = LRU_UNEVICTABLE; 757 } 758 759 if (likely(PageLRU(page))) 760 list_add_tail(&page_tail->lru, &page->lru); 761 else { 762 struct list_head *list_head; 763 /* 764 * Head page has not yet been counted, as an hpage, 765 * so we must account for each subpage individually. 766 * 767 * Use the standard add function to put page_tail on the list, 768 * but then correct its position so they all end up in order. 769 */ 770 add_page_to_lru_list(page_tail, lruvec, lru); 771 list_head = page_tail->lru.prev; 772 list_move_tail(&page_tail->lru, list_head); 773 } 774 775 if (!PageUnevictable(page)) 776 update_page_reclaim_stat(lruvec, file, active); 777 } 778 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 779 780 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, 781 void *arg) 782 { 783 enum lru_list lru = (enum lru_list)arg; 784 int file = is_file_lru(lru); 785 int active = is_active_lru(lru); 786 787 VM_BUG_ON(PageActive(page)); 788 VM_BUG_ON(PageUnevictable(page)); 789 VM_BUG_ON(PageLRU(page)); 790 791 SetPageLRU(page); 792 if (active) 793 SetPageActive(page); 794 add_page_to_lru_list(page, lruvec, lru); 795 update_page_reclaim_stat(lruvec, file, active); 796 } 797 798 /* 799 * Add the passed pages to the LRU, then drop the caller's refcount 800 * on them. Reinitialises the caller's pagevec. 801 */ 802 void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru) 803 { 804 VM_BUG_ON(is_unevictable_lru(lru)); 805 806 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru); 807 } 808 EXPORT_SYMBOL(__pagevec_lru_add); 809 810 /** 811 * pagevec_lookup - gang pagecache lookup 812 * @pvec: Where the resulting pages are placed 813 * @mapping: The address_space to search 814 * @start: The starting page index 815 * @nr_pages: The maximum number of pages 816 * 817 * pagevec_lookup() will search for and return a group of up to @nr_pages pages 818 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a 819 * reference against the pages in @pvec. 820 * 821 * The search returns a group of mapping-contiguous pages with ascending 822 * indexes. There may be holes in the indices due to not-present pages. 823 * 824 * pagevec_lookup() returns the number of pages which were found. 825 */ 826 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, 827 pgoff_t start, unsigned nr_pages) 828 { 829 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); 830 return pagevec_count(pvec); 831 } 832 EXPORT_SYMBOL(pagevec_lookup); 833 834 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, 835 pgoff_t *index, int tag, unsigned nr_pages) 836 { 837 pvec->nr = find_get_pages_tag(mapping, index, tag, 838 nr_pages, pvec->pages); 839 return pagevec_count(pvec); 840 } 841 EXPORT_SYMBOL(pagevec_lookup_tag); 842 843 /* 844 * Perform any setup for the swap system 845 */ 846 void __init swap_setup(void) 847 { 848 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); 849 850 #ifdef CONFIG_SWAP 851 bdi_init(swapper_space.backing_dev_info); 852 #endif 853 854 /* Use a smaller cluster for small-memory machines */ 855 if (megs < 16) 856 page_cluster = 2; 857 else 858 page_cluster = 3; 859 /* 860 * Right now other parts of the system means that we 861 * _really_ don't want to cluster much more 862 */ 863 } 864