xref: /openbmc/linux/mm/swap.c (revision 95298d63)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 
40 #include "internal.h"
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/pagemap.h>
44 
45 /* How many pages do we try to swap or page in/out together? */
46 int page_cluster;
47 
48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
49 struct lru_rotate {
50 	local_lock_t lock;
51 	struct pagevec pvec;
52 };
53 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 	.lock = INIT_LOCAL_LOCK(lock),
55 };
56 
57 /*
58  * The following struct pagevec are grouped together because they are protected
59  * by disabling preemption (and interrupts remain enabled).
60  */
61 struct lru_pvecs {
62 	local_lock_t lock;
63 	struct pagevec lru_add;
64 	struct pagevec lru_deactivate_file;
65 	struct pagevec lru_deactivate;
66 	struct pagevec lru_lazyfree;
67 #ifdef CONFIG_SMP
68 	struct pagevec activate_page;
69 #endif
70 };
71 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 	.lock = INIT_LOCAL_LOCK(lock),
73 };
74 
75 /*
76  * This path almost never happens for VM activity - pages are normally
77  * freed via pagevecs.  But it gets used by networking.
78  */
79 static void __page_cache_release(struct page *page)
80 {
81 	if (PageLRU(page)) {
82 		pg_data_t *pgdat = page_pgdat(page);
83 		struct lruvec *lruvec;
84 		unsigned long flags;
85 
86 		spin_lock_irqsave(&pgdat->lru_lock, flags);
87 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
88 		VM_BUG_ON_PAGE(!PageLRU(page), page);
89 		__ClearPageLRU(page);
90 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
91 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
92 	}
93 	__ClearPageWaiters(page);
94 }
95 
96 static void __put_single_page(struct page *page)
97 {
98 	__page_cache_release(page);
99 	mem_cgroup_uncharge(page);
100 	free_unref_page(page);
101 }
102 
103 static void __put_compound_page(struct page *page)
104 {
105 	/*
106 	 * __page_cache_release() is supposed to be called for thp, not for
107 	 * hugetlb. This is because hugetlb page does never have PageLRU set
108 	 * (it's never listed to any LRU lists) and no memcg routines should
109 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
110 	 */
111 	if (!PageHuge(page))
112 		__page_cache_release(page);
113 	destroy_compound_page(page);
114 }
115 
116 void __put_page(struct page *page)
117 {
118 	if (is_zone_device_page(page)) {
119 		put_dev_pagemap(page->pgmap);
120 
121 		/*
122 		 * The page belongs to the device that created pgmap. Do
123 		 * not return it to page allocator.
124 		 */
125 		return;
126 	}
127 
128 	if (unlikely(PageCompound(page)))
129 		__put_compound_page(page);
130 	else
131 		__put_single_page(page);
132 }
133 EXPORT_SYMBOL(__put_page);
134 
135 /**
136  * put_pages_list() - release a list of pages
137  * @pages: list of pages threaded on page->lru
138  *
139  * Release a list of pages which are strung together on page.lru.  Currently
140  * used by read_cache_pages() and related error recovery code.
141  */
142 void put_pages_list(struct list_head *pages)
143 {
144 	while (!list_empty(pages)) {
145 		struct page *victim;
146 
147 		victim = lru_to_page(pages);
148 		list_del(&victim->lru);
149 		put_page(victim);
150 	}
151 }
152 EXPORT_SYMBOL(put_pages_list);
153 
154 /*
155  * get_kernel_pages() - pin kernel pages in memory
156  * @kiov:	An array of struct kvec structures
157  * @nr_segs:	number of segments to pin
158  * @write:	pinning for read/write, currently ignored
159  * @pages:	array that receives pointers to the pages pinned.
160  *		Should be at least nr_segs long.
161  *
162  * Returns number of pages pinned. This may be fewer than the number
163  * requested. If nr_pages is 0 or negative, returns 0. If no pages
164  * were pinned, returns -errno. Each page returned must be released
165  * with a put_page() call when it is finished with.
166  */
167 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
168 		struct page **pages)
169 {
170 	int seg;
171 
172 	for (seg = 0; seg < nr_segs; seg++) {
173 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
174 			return seg;
175 
176 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
177 		get_page(pages[seg]);
178 	}
179 
180 	return seg;
181 }
182 EXPORT_SYMBOL_GPL(get_kernel_pages);
183 
184 /*
185  * get_kernel_page() - pin a kernel page in memory
186  * @start:	starting kernel address
187  * @write:	pinning for read/write, currently ignored
188  * @pages:	array that receives pointer to the page pinned.
189  *		Must be at least nr_segs long.
190  *
191  * Returns 1 if page is pinned. If the page was not pinned, returns
192  * -errno. The page returned must be released with a put_page() call
193  * when it is finished with.
194  */
195 int get_kernel_page(unsigned long start, int write, struct page **pages)
196 {
197 	const struct kvec kiov = {
198 		.iov_base = (void *)start,
199 		.iov_len = PAGE_SIZE
200 	};
201 
202 	return get_kernel_pages(&kiov, 1, write, pages);
203 }
204 EXPORT_SYMBOL_GPL(get_kernel_page);
205 
206 static void pagevec_lru_move_fn(struct pagevec *pvec,
207 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
208 	void *arg)
209 {
210 	int i;
211 	struct pglist_data *pgdat = NULL;
212 	struct lruvec *lruvec;
213 	unsigned long flags = 0;
214 
215 	for (i = 0; i < pagevec_count(pvec); i++) {
216 		struct page *page = pvec->pages[i];
217 		struct pglist_data *pagepgdat = page_pgdat(page);
218 
219 		if (pagepgdat != pgdat) {
220 			if (pgdat)
221 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
222 			pgdat = pagepgdat;
223 			spin_lock_irqsave(&pgdat->lru_lock, flags);
224 		}
225 
226 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
227 		(*move_fn)(page, lruvec, arg);
228 	}
229 	if (pgdat)
230 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
231 	release_pages(pvec->pages, pvec->nr);
232 	pagevec_reinit(pvec);
233 }
234 
235 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
236 				 void *arg)
237 {
238 	int *pgmoved = arg;
239 
240 	if (PageLRU(page) && !PageUnevictable(page)) {
241 		del_page_from_lru_list(page, lruvec, page_lru(page));
242 		ClearPageActive(page);
243 		add_page_to_lru_list_tail(page, lruvec, page_lru(page));
244 		(*pgmoved) += hpage_nr_pages(page);
245 	}
246 }
247 
248 /*
249  * pagevec_move_tail() must be called with IRQ disabled.
250  * Otherwise this may cause nasty races.
251  */
252 static void pagevec_move_tail(struct pagevec *pvec)
253 {
254 	int pgmoved = 0;
255 
256 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
257 	__count_vm_events(PGROTATED, pgmoved);
258 }
259 
260 /*
261  * Writeback is about to end against a page which has been marked for immediate
262  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
263  * inactive list.
264  */
265 void rotate_reclaimable_page(struct page *page)
266 {
267 	if (!PageLocked(page) && !PageDirty(page) &&
268 	    !PageUnevictable(page) && PageLRU(page)) {
269 		struct pagevec *pvec;
270 		unsigned long flags;
271 
272 		get_page(page);
273 		local_lock_irqsave(&lru_rotate.lock, flags);
274 		pvec = this_cpu_ptr(&lru_rotate.pvec);
275 		if (!pagevec_add(pvec, page) || PageCompound(page))
276 			pagevec_move_tail(pvec);
277 		local_unlock_irqrestore(&lru_rotate.lock, flags);
278 	}
279 }
280 
281 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
282 {
283 	do {
284 		unsigned long lrusize;
285 
286 		/* Record cost event */
287 		if (file)
288 			lruvec->file_cost += nr_pages;
289 		else
290 			lruvec->anon_cost += nr_pages;
291 
292 		/*
293 		 * Decay previous events
294 		 *
295 		 * Because workloads change over time (and to avoid
296 		 * overflow) we keep these statistics as a floating
297 		 * average, which ends up weighing recent refaults
298 		 * more than old ones.
299 		 */
300 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
301 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
302 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
303 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
304 
305 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
306 			lruvec->file_cost /= 2;
307 			lruvec->anon_cost /= 2;
308 		}
309 	} while ((lruvec = parent_lruvec(lruvec)));
310 }
311 
312 void lru_note_cost_page(struct page *page)
313 {
314 	lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
315 		      page_is_file_lru(page), hpage_nr_pages(page));
316 }
317 
318 static void __activate_page(struct page *page, struct lruvec *lruvec,
319 			    void *arg)
320 {
321 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
322 		int lru = page_lru_base_type(page);
323 		int nr_pages = hpage_nr_pages(page);
324 
325 		del_page_from_lru_list(page, lruvec, lru);
326 		SetPageActive(page);
327 		lru += LRU_ACTIVE;
328 		add_page_to_lru_list(page, lruvec, lru);
329 		trace_mm_lru_activate(page);
330 
331 		__count_vm_events(PGACTIVATE, nr_pages);
332 		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
333 				     nr_pages);
334 	}
335 }
336 
337 #ifdef CONFIG_SMP
338 static void activate_page_drain(int cpu)
339 {
340 	struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
341 
342 	if (pagevec_count(pvec))
343 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
344 }
345 
346 static bool need_activate_page_drain(int cpu)
347 {
348 	return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
349 }
350 
351 void activate_page(struct page *page)
352 {
353 	page = compound_head(page);
354 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
355 		struct pagevec *pvec;
356 
357 		local_lock(&lru_pvecs.lock);
358 		pvec = this_cpu_ptr(&lru_pvecs.activate_page);
359 		get_page(page);
360 		if (!pagevec_add(pvec, page) || PageCompound(page))
361 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
362 		local_unlock(&lru_pvecs.lock);
363 	}
364 }
365 
366 #else
367 static inline void activate_page_drain(int cpu)
368 {
369 }
370 
371 void activate_page(struct page *page)
372 {
373 	pg_data_t *pgdat = page_pgdat(page);
374 
375 	page = compound_head(page);
376 	spin_lock_irq(&pgdat->lru_lock);
377 	__activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
378 	spin_unlock_irq(&pgdat->lru_lock);
379 }
380 #endif
381 
382 static void __lru_cache_activate_page(struct page *page)
383 {
384 	struct pagevec *pvec;
385 	int i;
386 
387 	local_lock(&lru_pvecs.lock);
388 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
389 
390 	/*
391 	 * Search backwards on the optimistic assumption that the page being
392 	 * activated has just been added to this pagevec. Note that only
393 	 * the local pagevec is examined as a !PageLRU page could be in the
394 	 * process of being released, reclaimed, migrated or on a remote
395 	 * pagevec that is currently being drained. Furthermore, marking
396 	 * a remote pagevec's page PageActive potentially hits a race where
397 	 * a page is marked PageActive just after it is added to the inactive
398 	 * list causing accounting errors and BUG_ON checks to trigger.
399 	 */
400 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
401 		struct page *pagevec_page = pvec->pages[i];
402 
403 		if (pagevec_page == page) {
404 			SetPageActive(page);
405 			break;
406 		}
407 	}
408 
409 	local_unlock(&lru_pvecs.lock);
410 }
411 
412 /*
413  * Mark a page as having seen activity.
414  *
415  * inactive,unreferenced	->	inactive,referenced
416  * inactive,referenced		->	active,unreferenced
417  * active,unreferenced		->	active,referenced
418  *
419  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
420  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
421  */
422 void mark_page_accessed(struct page *page)
423 {
424 	page = compound_head(page);
425 
426 	if (!PageReferenced(page)) {
427 		SetPageReferenced(page);
428 	} else if (PageUnevictable(page)) {
429 		/*
430 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
431 		 * this list is never rotated or maintained, so marking an
432 		 * evictable page accessed has no effect.
433 		 */
434 	} else if (!PageActive(page)) {
435 		/*
436 		 * If the page is on the LRU, queue it for activation via
437 		 * lru_pvecs.activate_page. Otherwise, assume the page is on a
438 		 * pagevec, mark it active and it'll be moved to the active
439 		 * LRU on the next drain.
440 		 */
441 		if (PageLRU(page))
442 			activate_page(page);
443 		else
444 			__lru_cache_activate_page(page);
445 		ClearPageReferenced(page);
446 		if (page_is_file_lru(page))
447 			workingset_activation(page);
448 	}
449 	if (page_is_idle(page))
450 		clear_page_idle(page);
451 }
452 EXPORT_SYMBOL(mark_page_accessed);
453 
454 /**
455  * lru_cache_add - add a page to a page list
456  * @page: the page to be added to the LRU.
457  *
458  * Queue the page for addition to the LRU via pagevec. The decision on whether
459  * to add the page to the [in]active [file|anon] list is deferred until the
460  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
461  * have the page added to the active list using mark_page_accessed().
462  */
463 void lru_cache_add(struct page *page)
464 {
465 	struct pagevec *pvec;
466 
467 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
468 	VM_BUG_ON_PAGE(PageLRU(page), page);
469 
470 	get_page(page);
471 	local_lock(&lru_pvecs.lock);
472 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
473 	if (!pagevec_add(pvec, page) || PageCompound(page))
474 		__pagevec_lru_add(pvec);
475 	local_unlock(&lru_pvecs.lock);
476 }
477 EXPORT_SYMBOL(lru_cache_add);
478 
479 /**
480  * lru_cache_add_active_or_unevictable
481  * @page:  the page to be added to LRU
482  * @vma:   vma in which page is mapped for determining reclaimability
483  *
484  * Place @page on the active or unevictable LRU list, depending on its
485  * evictability.  Note that if the page is not evictable, it goes
486  * directly back onto it's zone's unevictable list, it does NOT use a
487  * per cpu pagevec.
488  */
489 void lru_cache_add_active_or_unevictable(struct page *page,
490 					 struct vm_area_struct *vma)
491 {
492 	VM_BUG_ON_PAGE(PageLRU(page), page);
493 
494 	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
495 		SetPageActive(page);
496 	else if (!TestSetPageMlocked(page)) {
497 		/*
498 		 * We use the irq-unsafe __mod_zone_page_stat because this
499 		 * counter is not modified from interrupt context, and the pte
500 		 * lock is held(spinlock), which implies preemption disabled.
501 		 */
502 		__mod_zone_page_state(page_zone(page), NR_MLOCK,
503 				    hpage_nr_pages(page));
504 		count_vm_event(UNEVICTABLE_PGMLOCKED);
505 	}
506 	lru_cache_add(page);
507 }
508 
509 /*
510  * If the page can not be invalidated, it is moved to the
511  * inactive list to speed up its reclaim.  It is moved to the
512  * head of the list, rather than the tail, to give the flusher
513  * threads some time to write it out, as this is much more
514  * effective than the single-page writeout from reclaim.
515  *
516  * If the page isn't page_mapped and dirty/writeback, the page
517  * could reclaim asap using PG_reclaim.
518  *
519  * 1. active, mapped page -> none
520  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
521  * 3. inactive, mapped page -> none
522  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
523  * 5. inactive, clean -> inactive, tail
524  * 6. Others -> none
525  *
526  * In 4, why it moves inactive's head, the VM expects the page would
527  * be write it out by flusher threads as this is much more effective
528  * than the single-page writeout from reclaim.
529  */
530 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
531 			      void *arg)
532 {
533 	int lru;
534 	bool active;
535 	int nr_pages = hpage_nr_pages(page);
536 
537 	if (!PageLRU(page))
538 		return;
539 
540 	if (PageUnevictable(page))
541 		return;
542 
543 	/* Some processes are using the page */
544 	if (page_mapped(page))
545 		return;
546 
547 	active = PageActive(page);
548 	lru = page_lru_base_type(page);
549 
550 	del_page_from_lru_list(page, lruvec, lru + active);
551 	ClearPageActive(page);
552 	ClearPageReferenced(page);
553 
554 	if (PageWriteback(page) || PageDirty(page)) {
555 		/*
556 		 * PG_reclaim could be raced with end_page_writeback
557 		 * It can make readahead confusing.  But race window
558 		 * is _really_ small and  it's non-critical problem.
559 		 */
560 		add_page_to_lru_list(page, lruvec, lru);
561 		SetPageReclaim(page);
562 	} else {
563 		/*
564 		 * The page's writeback ends up during pagevec
565 		 * We moves tha page into tail of inactive.
566 		 */
567 		add_page_to_lru_list_tail(page, lruvec, lru);
568 		__count_vm_events(PGROTATED, nr_pages);
569 	}
570 
571 	if (active) {
572 		__count_vm_events(PGDEACTIVATE, nr_pages);
573 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
574 				     nr_pages);
575 	}
576 }
577 
578 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
579 			    void *arg)
580 {
581 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
582 		int lru = page_lru_base_type(page);
583 		int nr_pages = hpage_nr_pages(page);
584 
585 		del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
586 		ClearPageActive(page);
587 		ClearPageReferenced(page);
588 		add_page_to_lru_list(page, lruvec, lru);
589 
590 		__count_vm_events(PGDEACTIVATE, nr_pages);
591 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
592 				     nr_pages);
593 	}
594 }
595 
596 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
597 			    void *arg)
598 {
599 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
600 	    !PageSwapCache(page) && !PageUnevictable(page)) {
601 		bool active = PageActive(page);
602 		int nr_pages = hpage_nr_pages(page);
603 
604 		del_page_from_lru_list(page, lruvec,
605 				       LRU_INACTIVE_ANON + active);
606 		ClearPageActive(page);
607 		ClearPageReferenced(page);
608 		/*
609 		 * Lazyfree pages are clean anonymous pages.  They have
610 		 * PG_swapbacked flag cleared, to distinguish them from normal
611 		 * anonymous pages
612 		 */
613 		ClearPageSwapBacked(page);
614 		add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
615 
616 		__count_vm_events(PGLAZYFREE, nr_pages);
617 		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
618 				     nr_pages);
619 	}
620 }
621 
622 /*
623  * Drain pages out of the cpu's pagevecs.
624  * Either "cpu" is the current CPU, and preemption has already been
625  * disabled; or "cpu" is being hot-unplugged, and is already dead.
626  */
627 void lru_add_drain_cpu(int cpu)
628 {
629 	struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
630 
631 	if (pagevec_count(pvec))
632 		__pagevec_lru_add(pvec);
633 
634 	pvec = &per_cpu(lru_rotate.pvec, cpu);
635 	if (pagevec_count(pvec)) {
636 		unsigned long flags;
637 
638 		/* No harm done if a racing interrupt already did this */
639 		local_lock_irqsave(&lru_rotate.lock, flags);
640 		pagevec_move_tail(pvec);
641 		local_unlock_irqrestore(&lru_rotate.lock, flags);
642 	}
643 
644 	pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
645 	if (pagevec_count(pvec))
646 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
647 
648 	pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
649 	if (pagevec_count(pvec))
650 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
651 
652 	pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
653 	if (pagevec_count(pvec))
654 		pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
655 
656 	activate_page_drain(cpu);
657 }
658 
659 /**
660  * deactivate_file_page - forcefully deactivate a file page
661  * @page: page to deactivate
662  *
663  * This function hints the VM that @page is a good reclaim candidate,
664  * for example if its invalidation fails due to the page being dirty
665  * or under writeback.
666  */
667 void deactivate_file_page(struct page *page)
668 {
669 	/*
670 	 * In a workload with many unevictable page such as mprotect,
671 	 * unevictable page deactivation for accelerating reclaim is pointless.
672 	 */
673 	if (PageUnevictable(page))
674 		return;
675 
676 	if (likely(get_page_unless_zero(page))) {
677 		struct pagevec *pvec;
678 
679 		local_lock(&lru_pvecs.lock);
680 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
681 
682 		if (!pagevec_add(pvec, page) || PageCompound(page))
683 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
684 		local_unlock(&lru_pvecs.lock);
685 	}
686 }
687 
688 /*
689  * deactivate_page - deactivate a page
690  * @page: page to deactivate
691  *
692  * deactivate_page() moves @page to the inactive list if @page was on the active
693  * list and was not an unevictable page.  This is done to accelerate the reclaim
694  * of @page.
695  */
696 void deactivate_page(struct page *page)
697 {
698 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
699 		struct pagevec *pvec;
700 
701 		local_lock(&lru_pvecs.lock);
702 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
703 		get_page(page);
704 		if (!pagevec_add(pvec, page) || PageCompound(page))
705 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
706 		local_unlock(&lru_pvecs.lock);
707 	}
708 }
709 
710 /**
711  * mark_page_lazyfree - make an anon page lazyfree
712  * @page: page to deactivate
713  *
714  * mark_page_lazyfree() moves @page to the inactive file list.
715  * This is done to accelerate the reclaim of @page.
716  */
717 void mark_page_lazyfree(struct page *page)
718 {
719 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
720 	    !PageSwapCache(page) && !PageUnevictable(page)) {
721 		struct pagevec *pvec;
722 
723 		local_lock(&lru_pvecs.lock);
724 		pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
725 		get_page(page);
726 		if (!pagevec_add(pvec, page) || PageCompound(page))
727 			pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
728 		local_unlock(&lru_pvecs.lock);
729 	}
730 }
731 
732 void lru_add_drain(void)
733 {
734 	local_lock(&lru_pvecs.lock);
735 	lru_add_drain_cpu(smp_processor_id());
736 	local_unlock(&lru_pvecs.lock);
737 }
738 
739 void lru_add_drain_cpu_zone(struct zone *zone)
740 {
741 	local_lock(&lru_pvecs.lock);
742 	lru_add_drain_cpu(smp_processor_id());
743 	drain_local_pages(zone);
744 	local_unlock(&lru_pvecs.lock);
745 }
746 
747 #ifdef CONFIG_SMP
748 
749 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
750 
751 static void lru_add_drain_per_cpu(struct work_struct *dummy)
752 {
753 	lru_add_drain();
754 }
755 
756 /*
757  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
758  * kworkers being shut down before our page_alloc_cpu_dead callback is
759  * executed on the offlined cpu.
760  * Calling this function with cpu hotplug locks held can actually lead
761  * to obscure indirect dependencies via WQ context.
762  */
763 void lru_add_drain_all(void)
764 {
765 	static seqcount_t seqcount = SEQCNT_ZERO(seqcount);
766 	static DEFINE_MUTEX(lock);
767 	static struct cpumask has_work;
768 	int cpu, seq;
769 
770 	/*
771 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
772 	 * initialized.
773 	 */
774 	if (WARN_ON(!mm_percpu_wq))
775 		return;
776 
777 	seq = raw_read_seqcount_latch(&seqcount);
778 
779 	mutex_lock(&lock);
780 
781 	/*
782 	 * Piggyback on drain started and finished while we waited for lock:
783 	 * all pages pended at the time of our enter were drained from vectors.
784 	 */
785 	if (__read_seqcount_retry(&seqcount, seq))
786 		goto done;
787 
788 	raw_write_seqcount_latch(&seqcount);
789 
790 	cpumask_clear(&has_work);
791 
792 	for_each_online_cpu(cpu) {
793 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
794 
795 		if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
796 		    pagevec_count(&per_cpu(lru_rotate.pvec, cpu)) ||
797 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
798 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
799 		    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
800 		    need_activate_page_drain(cpu)) {
801 			INIT_WORK(work, lru_add_drain_per_cpu);
802 			queue_work_on(cpu, mm_percpu_wq, work);
803 			cpumask_set_cpu(cpu, &has_work);
804 		}
805 	}
806 
807 	for_each_cpu(cpu, &has_work)
808 		flush_work(&per_cpu(lru_add_drain_work, cpu));
809 
810 done:
811 	mutex_unlock(&lock);
812 }
813 #else
814 void lru_add_drain_all(void)
815 {
816 	lru_add_drain();
817 }
818 #endif
819 
820 /**
821  * release_pages - batched put_page()
822  * @pages: array of pages to release
823  * @nr: number of pages
824  *
825  * Decrement the reference count on all the pages in @pages.  If it
826  * fell to zero, remove the page from the LRU and free it.
827  */
828 void release_pages(struct page **pages, int nr)
829 {
830 	int i;
831 	LIST_HEAD(pages_to_free);
832 	struct pglist_data *locked_pgdat = NULL;
833 	struct lruvec *lruvec;
834 	unsigned long uninitialized_var(flags);
835 	unsigned int uninitialized_var(lock_batch);
836 
837 	for (i = 0; i < nr; i++) {
838 		struct page *page = pages[i];
839 
840 		/*
841 		 * Make sure the IRQ-safe lock-holding time does not get
842 		 * excessive with a continuous string of pages from the
843 		 * same pgdat. The lock is held only if pgdat != NULL.
844 		 */
845 		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
846 			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
847 			locked_pgdat = NULL;
848 		}
849 
850 		if (is_huge_zero_page(page))
851 			continue;
852 
853 		if (is_zone_device_page(page)) {
854 			if (locked_pgdat) {
855 				spin_unlock_irqrestore(&locked_pgdat->lru_lock,
856 						       flags);
857 				locked_pgdat = NULL;
858 			}
859 			/*
860 			 * ZONE_DEVICE pages that return 'false' from
861 			 * put_devmap_managed_page() do not require special
862 			 * processing, and instead, expect a call to
863 			 * put_page_testzero().
864 			 */
865 			if (page_is_devmap_managed(page)) {
866 				put_devmap_managed_page(page);
867 				continue;
868 			}
869 		}
870 
871 		page = compound_head(page);
872 		if (!put_page_testzero(page))
873 			continue;
874 
875 		if (PageCompound(page)) {
876 			if (locked_pgdat) {
877 				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
878 				locked_pgdat = NULL;
879 			}
880 			__put_compound_page(page);
881 			continue;
882 		}
883 
884 		if (PageLRU(page)) {
885 			struct pglist_data *pgdat = page_pgdat(page);
886 
887 			if (pgdat != locked_pgdat) {
888 				if (locked_pgdat)
889 					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
890 									flags);
891 				lock_batch = 0;
892 				locked_pgdat = pgdat;
893 				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
894 			}
895 
896 			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
897 			VM_BUG_ON_PAGE(!PageLRU(page), page);
898 			__ClearPageLRU(page);
899 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
900 		}
901 
902 		/* Clear Active bit in case of parallel mark_page_accessed */
903 		__ClearPageActive(page);
904 		__ClearPageWaiters(page);
905 
906 		list_add(&page->lru, &pages_to_free);
907 	}
908 	if (locked_pgdat)
909 		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
910 
911 	mem_cgroup_uncharge_list(&pages_to_free);
912 	free_unref_page_list(&pages_to_free);
913 }
914 EXPORT_SYMBOL(release_pages);
915 
916 /*
917  * The pages which we're about to release may be in the deferred lru-addition
918  * queues.  That would prevent them from really being freed right now.  That's
919  * OK from a correctness point of view but is inefficient - those pages may be
920  * cache-warm and we want to give them back to the page allocator ASAP.
921  *
922  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
923  * and __pagevec_lru_add_active() call release_pages() directly to avoid
924  * mutual recursion.
925  */
926 void __pagevec_release(struct pagevec *pvec)
927 {
928 	if (!pvec->percpu_pvec_drained) {
929 		lru_add_drain();
930 		pvec->percpu_pvec_drained = true;
931 	}
932 	release_pages(pvec->pages, pagevec_count(pvec));
933 	pagevec_reinit(pvec);
934 }
935 EXPORT_SYMBOL(__pagevec_release);
936 
937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
938 /* used by __split_huge_page_refcount() */
939 void lru_add_page_tail(struct page *page, struct page *page_tail,
940 		       struct lruvec *lruvec, struct list_head *list)
941 {
942 	VM_BUG_ON_PAGE(!PageHead(page), page);
943 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
944 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
945 	lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
946 
947 	if (!list)
948 		SetPageLRU(page_tail);
949 
950 	if (likely(PageLRU(page)))
951 		list_add_tail(&page_tail->lru, &page->lru);
952 	else if (list) {
953 		/* page reclaim is reclaiming a huge page */
954 		get_page(page_tail);
955 		list_add_tail(&page_tail->lru, list);
956 	} else {
957 		/*
958 		 * Head page has not yet been counted, as an hpage,
959 		 * so we must account for each subpage individually.
960 		 *
961 		 * Put page_tail on the list at the correct position
962 		 * so they all end up in order.
963 		 */
964 		add_page_to_lru_list_tail(page_tail, lruvec,
965 					  page_lru(page_tail));
966 	}
967 }
968 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
969 
970 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
971 				 void *arg)
972 {
973 	enum lru_list lru;
974 	int was_unevictable = TestClearPageUnevictable(page);
975 	int nr_pages = hpage_nr_pages(page);
976 
977 	VM_BUG_ON_PAGE(PageLRU(page), page);
978 
979 	/*
980 	 * Page becomes evictable in two ways:
981 	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
982 	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
983 	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
984 	 *   b) do PageLRU check before lock [clear_page_mlock]
985 	 *
986 	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
987 	 * following strict ordering:
988 	 *
989 	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
990 	 *
991 	 * SetPageLRU()				TestClearPageMlocked()
992 	 * smp_mb() // explicit ordering	// above provides strict
993 	 *					// ordering
994 	 * PageMlocked()			PageLRU()
995 	 *
996 	 *
997 	 * if '#1' does not observe setting of PG_lru by '#0' and fails
998 	 * isolation, the explicit barrier will make sure that page_evictable
999 	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1000 	 * can be reordered after PageMlocked check and can make '#1' to fail
1001 	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1002 	 * looking at the same page) and the evictable page will be stranded
1003 	 * in an unevictable LRU.
1004 	 */
1005 	SetPageLRU(page);
1006 	smp_mb__after_atomic();
1007 
1008 	if (page_evictable(page)) {
1009 		lru = page_lru(page);
1010 		if (was_unevictable)
1011 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1012 	} else {
1013 		lru = LRU_UNEVICTABLE;
1014 		ClearPageActive(page);
1015 		SetPageUnevictable(page);
1016 		if (!was_unevictable)
1017 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1018 	}
1019 
1020 	add_page_to_lru_list(page, lruvec, lru);
1021 	trace_mm_lru_insertion(page, lru);
1022 }
1023 
1024 /*
1025  * Add the passed pages to the LRU, then drop the caller's refcount
1026  * on them.  Reinitialises the caller's pagevec.
1027  */
1028 void __pagevec_lru_add(struct pagevec *pvec)
1029 {
1030 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1031 }
1032 
1033 /**
1034  * pagevec_lookup_entries - gang pagecache lookup
1035  * @pvec:	Where the resulting entries are placed
1036  * @mapping:	The address_space to search
1037  * @start:	The starting entry index
1038  * @nr_entries:	The maximum number of pages
1039  * @indices:	The cache indices corresponding to the entries in @pvec
1040  *
1041  * pagevec_lookup_entries() will search for and return a group of up
1042  * to @nr_pages pages and shadow entries in the mapping.  All
1043  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
1044  * reference against actual pages in @pvec.
1045  *
1046  * The search returns a group of mapping-contiguous entries with
1047  * ascending indexes.  There may be holes in the indices due to
1048  * not-present entries.
1049  *
1050  * Only one subpage of a Transparent Huge Page is returned in one call:
1051  * allowing truncate_inode_pages_range() to evict the whole THP without
1052  * cycling through a pagevec of extra references.
1053  *
1054  * pagevec_lookup_entries() returns the number of entries which were
1055  * found.
1056  */
1057 unsigned pagevec_lookup_entries(struct pagevec *pvec,
1058 				struct address_space *mapping,
1059 				pgoff_t start, unsigned nr_entries,
1060 				pgoff_t *indices)
1061 {
1062 	pvec->nr = find_get_entries(mapping, start, nr_entries,
1063 				    pvec->pages, indices);
1064 	return pagevec_count(pvec);
1065 }
1066 
1067 /**
1068  * pagevec_remove_exceptionals - pagevec exceptionals pruning
1069  * @pvec:	The pagevec to prune
1070  *
1071  * pagevec_lookup_entries() fills both pages and exceptional radix
1072  * tree entries into the pagevec.  This function prunes all
1073  * exceptionals from @pvec without leaving holes, so that it can be
1074  * passed on to page-only pagevec operations.
1075  */
1076 void pagevec_remove_exceptionals(struct pagevec *pvec)
1077 {
1078 	int i, j;
1079 
1080 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1081 		struct page *page = pvec->pages[i];
1082 		if (!xa_is_value(page))
1083 			pvec->pages[j++] = page;
1084 	}
1085 	pvec->nr = j;
1086 }
1087 
1088 /**
1089  * pagevec_lookup_range - gang pagecache lookup
1090  * @pvec:	Where the resulting pages are placed
1091  * @mapping:	The address_space to search
1092  * @start:	The starting page index
1093  * @end:	The final page index
1094  *
1095  * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1096  * pages in the mapping starting from index @start and upto index @end
1097  * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1098  * reference against the pages in @pvec.
1099  *
1100  * The search returns a group of mapping-contiguous pages with ascending
1101  * indexes.  There may be holes in the indices due to not-present pages. We
1102  * also update @start to index the next page for the traversal.
1103  *
1104  * pagevec_lookup_range() returns the number of pages which were found. If this
1105  * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1106  * reached.
1107  */
1108 unsigned pagevec_lookup_range(struct pagevec *pvec,
1109 		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1110 {
1111 	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1112 					pvec->pages);
1113 	return pagevec_count(pvec);
1114 }
1115 EXPORT_SYMBOL(pagevec_lookup_range);
1116 
1117 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1118 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1119 		xa_mark_t tag)
1120 {
1121 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1122 					PAGEVEC_SIZE, pvec->pages);
1123 	return pagevec_count(pvec);
1124 }
1125 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1126 
1127 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1128 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1129 		xa_mark_t tag, unsigned max_pages)
1130 {
1131 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1132 		min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1133 	return pagevec_count(pvec);
1134 }
1135 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1136 /*
1137  * Perform any setup for the swap system
1138  */
1139 void __init swap_setup(void)
1140 {
1141 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1142 
1143 	/* Use a smaller cluster for small-memory machines */
1144 	if (megs < 16)
1145 		page_cluster = 2;
1146 	else
1147 		page_cluster = 3;
1148 	/*
1149 	 * Right now other parts of the system means that we
1150 	 * _really_ don't want to cluster much more
1151 	 */
1152 }
1153 
1154 #ifdef CONFIG_DEV_PAGEMAP_OPS
1155 void put_devmap_managed_page(struct page *page)
1156 {
1157 	int count;
1158 
1159 	if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1160 		return;
1161 
1162 	count = page_ref_dec_return(page);
1163 
1164 	/*
1165 	 * devmap page refcounts are 1-based, rather than 0-based: if
1166 	 * refcount is 1, then the page is free and the refcount is
1167 	 * stable because nobody holds a reference on the page.
1168 	 */
1169 	if (count == 1)
1170 		free_devmap_managed_page(page);
1171 	else if (!count)
1172 		__put_page(page);
1173 }
1174 EXPORT_SYMBOL(put_devmap_managed_page);
1175 #endif
1176