xref: /openbmc/linux/mm/swap.c (revision 94c7b6fc)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 
35 #include "internal.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/pagemap.h>
39 
40 /* How many pages do we try to swap or page in/out together? */
41 int page_cluster;
42 
43 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
44 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
45 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
46 
47 /*
48  * This path almost never happens for VM activity - pages are normally
49  * freed via pagevecs.  But it gets used by networking.
50  */
51 static void __page_cache_release(struct page *page)
52 {
53 	if (PageLRU(page)) {
54 		struct zone *zone = page_zone(page);
55 		struct lruvec *lruvec;
56 		unsigned long flags;
57 
58 		spin_lock_irqsave(&zone->lru_lock, flags);
59 		lruvec = mem_cgroup_page_lruvec(page, zone);
60 		VM_BUG_ON_PAGE(!PageLRU(page), page);
61 		__ClearPageLRU(page);
62 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
63 		spin_unlock_irqrestore(&zone->lru_lock, flags);
64 	}
65 }
66 
67 static void __put_single_page(struct page *page)
68 {
69 	__page_cache_release(page);
70 	free_hot_cold_page(page, false);
71 }
72 
73 static void __put_compound_page(struct page *page)
74 {
75 	compound_page_dtor *dtor;
76 
77 	__page_cache_release(page);
78 	dtor = get_compound_page_dtor(page);
79 	(*dtor)(page);
80 }
81 
82 /**
83  * Two special cases here: we could avoid taking compound_lock_irqsave
84  * and could skip the tail refcounting(in _mapcount).
85  *
86  * 1. Hugetlbfs page:
87  *
88  *    PageHeadHuge will remain true until the compound page
89  *    is released and enters the buddy allocator, and it could
90  *    not be split by __split_huge_page_refcount().
91  *
92  *    So if we see PageHeadHuge set, and we have the tail page pin,
93  *    then we could safely put head page.
94  *
95  * 2. Slab THP page:
96  *
97  *    PG_slab is cleared before the slab frees the head page, and
98  *    tail pin cannot be the last reference left on the head page,
99  *    because the slab code is free to reuse the compound page
100  *    after a kfree/kmem_cache_free without having to check if
101  *    there's any tail pin left.  In turn all tail pinsmust be always
102  *    released while the head is still pinned by the slab code
103  *    and so we know PG_slab will be still set too.
104  *
105  *    So if we see PageSlab set, and we have the tail page pin,
106  *    then we could safely put head page.
107  */
108 static __always_inline
109 void put_unrefcounted_compound_page(struct page *page_head, struct page *page)
110 {
111 	/*
112 	 * If @page is a THP tail, we must read the tail page
113 	 * flags after the head page flags. The
114 	 * __split_huge_page_refcount side enforces write memory barriers
115 	 * between clearing PageTail and before the head page
116 	 * can be freed and reallocated.
117 	 */
118 	smp_rmb();
119 	if (likely(PageTail(page))) {
120 		/*
121 		 * __split_huge_page_refcount cannot race
122 		 * here, see the comment above this function.
123 		 */
124 		VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
125 		VM_BUG_ON_PAGE(page_mapcount(page) != 0, page);
126 		if (put_page_testzero(page_head)) {
127 			/*
128 			 * If this is the tail of a slab THP page,
129 			 * the tail pin must not be the last reference
130 			 * held on the page, because the PG_slab cannot
131 			 * be cleared before all tail pins (which skips
132 			 * the _mapcount tail refcounting) have been
133 			 * released.
134 			 *
135 			 * If this is the tail of a hugetlbfs page,
136 			 * the tail pin may be the last reference on
137 			 * the page instead, because PageHeadHuge will
138 			 * not go away until the compound page enters
139 			 * the buddy allocator.
140 			 */
141 			VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
142 			__put_compound_page(page_head);
143 		}
144 	} else
145 		/*
146 		 * __split_huge_page_refcount run before us,
147 		 * @page was a THP tail. The split @page_head
148 		 * has been freed and reallocated as slab or
149 		 * hugetlbfs page of smaller order (only
150 		 * possible if reallocated as slab on x86).
151 		 */
152 		if (put_page_testzero(page))
153 			__put_single_page(page);
154 }
155 
156 static __always_inline
157 void put_refcounted_compound_page(struct page *page_head, struct page *page)
158 {
159 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
160 		unsigned long flags;
161 
162 		/*
163 		 * @page_head wasn't a dangling pointer but it may not
164 		 * be a head page anymore by the time we obtain the
165 		 * lock. That is ok as long as it can't be freed from
166 		 * under us.
167 		 */
168 		flags = compound_lock_irqsave(page_head);
169 		if (unlikely(!PageTail(page))) {
170 			/* __split_huge_page_refcount run before us */
171 			compound_unlock_irqrestore(page_head, flags);
172 			if (put_page_testzero(page_head)) {
173 				/*
174 				 * The @page_head may have been freed
175 				 * and reallocated as a compound page
176 				 * of smaller order and then freed
177 				 * again.  All we know is that it
178 				 * cannot have become: a THP page, a
179 				 * compound page of higher order, a
180 				 * tail page.  That is because we
181 				 * still hold the refcount of the
182 				 * split THP tail and page_head was
183 				 * the THP head before the split.
184 				 */
185 				if (PageHead(page_head))
186 					__put_compound_page(page_head);
187 				else
188 					__put_single_page(page_head);
189 			}
190 out_put_single:
191 			if (put_page_testzero(page))
192 				__put_single_page(page);
193 			return;
194 		}
195 		VM_BUG_ON_PAGE(page_head != page->first_page, page);
196 		/*
197 		 * We can release the refcount taken by
198 		 * get_page_unless_zero() now that
199 		 * __split_huge_page_refcount() is blocked on the
200 		 * compound_lock.
201 		 */
202 		if (put_page_testzero(page_head))
203 			VM_BUG_ON_PAGE(1, page_head);
204 		/* __split_huge_page_refcount will wait now */
205 		VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
206 		atomic_dec(&page->_mapcount);
207 		VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
208 		VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
209 		compound_unlock_irqrestore(page_head, flags);
210 
211 		if (put_page_testzero(page_head)) {
212 			if (PageHead(page_head))
213 				__put_compound_page(page_head);
214 			else
215 				__put_single_page(page_head);
216 		}
217 	} else {
218 		/* @page_head is a dangling pointer */
219 		VM_BUG_ON_PAGE(PageTail(page), page);
220 		goto out_put_single;
221 	}
222 }
223 
224 static void put_compound_page(struct page *page)
225 {
226 	struct page *page_head;
227 
228 	/*
229 	 * We see the PageCompound set and PageTail not set, so @page maybe:
230 	 *  1. hugetlbfs head page, or
231 	 *  2. THP head page.
232 	 */
233 	if (likely(!PageTail(page))) {
234 		if (put_page_testzero(page)) {
235 			/*
236 			 * By the time all refcounts have been released
237 			 * split_huge_page cannot run anymore from under us.
238 			 */
239 			if (PageHead(page))
240 				__put_compound_page(page);
241 			else
242 				__put_single_page(page);
243 		}
244 		return;
245 	}
246 
247 	/*
248 	 * We see the PageCompound set and PageTail set, so @page maybe:
249 	 *  1. a tail hugetlbfs page, or
250 	 *  2. a tail THP page, or
251 	 *  3. a split THP page.
252 	 *
253 	 *  Case 3 is possible, as we may race with
254 	 *  __split_huge_page_refcount tearing down a THP page.
255 	 */
256 	page_head = compound_head_by_tail(page);
257 	if (!__compound_tail_refcounted(page_head))
258 		put_unrefcounted_compound_page(page_head, page);
259 	else
260 		put_refcounted_compound_page(page_head, page);
261 }
262 
263 void put_page(struct page *page)
264 {
265 	if (unlikely(PageCompound(page)))
266 		put_compound_page(page);
267 	else if (put_page_testzero(page))
268 		__put_single_page(page);
269 }
270 EXPORT_SYMBOL(put_page);
271 
272 /*
273  * This function is exported but must not be called by anything other
274  * than get_page(). It implements the slow path of get_page().
275  */
276 bool __get_page_tail(struct page *page)
277 {
278 	/*
279 	 * This takes care of get_page() if run on a tail page
280 	 * returned by one of the get_user_pages/follow_page variants.
281 	 * get_user_pages/follow_page itself doesn't need the compound
282 	 * lock because it runs __get_page_tail_foll() under the
283 	 * proper PT lock that already serializes against
284 	 * split_huge_page().
285 	 */
286 	unsigned long flags;
287 	bool got;
288 	struct page *page_head = compound_head(page);
289 
290 	/* Ref to put_compound_page() comment. */
291 	if (!__compound_tail_refcounted(page_head)) {
292 		smp_rmb();
293 		if (likely(PageTail(page))) {
294 			/*
295 			 * This is a hugetlbfs page or a slab
296 			 * page. __split_huge_page_refcount
297 			 * cannot race here.
298 			 */
299 			VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
300 			__get_page_tail_foll(page, true);
301 			return true;
302 		} else {
303 			/*
304 			 * __split_huge_page_refcount run
305 			 * before us, "page" was a THP
306 			 * tail. The split page_head has been
307 			 * freed and reallocated as slab or
308 			 * hugetlbfs page of smaller order
309 			 * (only possible if reallocated as
310 			 * slab on x86).
311 			 */
312 			return false;
313 		}
314 	}
315 
316 	got = false;
317 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
318 		/*
319 		 * page_head wasn't a dangling pointer but it
320 		 * may not be a head page anymore by the time
321 		 * we obtain the lock. That is ok as long as it
322 		 * can't be freed from under us.
323 		 */
324 		flags = compound_lock_irqsave(page_head);
325 		/* here __split_huge_page_refcount won't run anymore */
326 		if (likely(PageTail(page))) {
327 			__get_page_tail_foll(page, false);
328 			got = true;
329 		}
330 		compound_unlock_irqrestore(page_head, flags);
331 		if (unlikely(!got))
332 			put_page(page_head);
333 	}
334 	return got;
335 }
336 EXPORT_SYMBOL(__get_page_tail);
337 
338 /**
339  * put_pages_list() - release a list of pages
340  * @pages: list of pages threaded on page->lru
341  *
342  * Release a list of pages which are strung together on page.lru.  Currently
343  * used by read_cache_pages() and related error recovery code.
344  */
345 void put_pages_list(struct list_head *pages)
346 {
347 	while (!list_empty(pages)) {
348 		struct page *victim;
349 
350 		victim = list_entry(pages->prev, struct page, lru);
351 		list_del(&victim->lru);
352 		page_cache_release(victim);
353 	}
354 }
355 EXPORT_SYMBOL(put_pages_list);
356 
357 /*
358  * get_kernel_pages() - pin kernel pages in memory
359  * @kiov:	An array of struct kvec structures
360  * @nr_segs:	number of segments to pin
361  * @write:	pinning for read/write, currently ignored
362  * @pages:	array that receives pointers to the pages pinned.
363  *		Should be at least nr_segs long.
364  *
365  * Returns number of pages pinned. This may be fewer than the number
366  * requested. If nr_pages is 0 or negative, returns 0. If no pages
367  * were pinned, returns -errno. Each page returned must be released
368  * with a put_page() call when it is finished with.
369  */
370 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
371 		struct page **pages)
372 {
373 	int seg;
374 
375 	for (seg = 0; seg < nr_segs; seg++) {
376 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
377 			return seg;
378 
379 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
380 		page_cache_get(pages[seg]);
381 	}
382 
383 	return seg;
384 }
385 EXPORT_SYMBOL_GPL(get_kernel_pages);
386 
387 /*
388  * get_kernel_page() - pin a kernel page in memory
389  * @start:	starting kernel address
390  * @write:	pinning for read/write, currently ignored
391  * @pages:	array that receives pointer to the page pinned.
392  *		Must be at least nr_segs long.
393  *
394  * Returns 1 if page is pinned. If the page was not pinned, returns
395  * -errno. The page returned must be released with a put_page() call
396  * when it is finished with.
397  */
398 int get_kernel_page(unsigned long start, int write, struct page **pages)
399 {
400 	const struct kvec kiov = {
401 		.iov_base = (void *)start,
402 		.iov_len = PAGE_SIZE
403 	};
404 
405 	return get_kernel_pages(&kiov, 1, write, pages);
406 }
407 EXPORT_SYMBOL_GPL(get_kernel_page);
408 
409 static void pagevec_lru_move_fn(struct pagevec *pvec,
410 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
411 	void *arg)
412 {
413 	int i;
414 	struct zone *zone = NULL;
415 	struct lruvec *lruvec;
416 	unsigned long flags = 0;
417 
418 	for (i = 0; i < pagevec_count(pvec); i++) {
419 		struct page *page = pvec->pages[i];
420 		struct zone *pagezone = page_zone(page);
421 
422 		if (pagezone != zone) {
423 			if (zone)
424 				spin_unlock_irqrestore(&zone->lru_lock, flags);
425 			zone = pagezone;
426 			spin_lock_irqsave(&zone->lru_lock, flags);
427 		}
428 
429 		lruvec = mem_cgroup_page_lruvec(page, zone);
430 		(*move_fn)(page, lruvec, arg);
431 	}
432 	if (zone)
433 		spin_unlock_irqrestore(&zone->lru_lock, flags);
434 	release_pages(pvec->pages, pvec->nr, pvec->cold);
435 	pagevec_reinit(pvec);
436 }
437 
438 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
439 				 void *arg)
440 {
441 	int *pgmoved = arg;
442 
443 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
444 		enum lru_list lru = page_lru_base_type(page);
445 		list_move_tail(&page->lru, &lruvec->lists[lru]);
446 		(*pgmoved)++;
447 	}
448 }
449 
450 /*
451  * pagevec_move_tail() must be called with IRQ disabled.
452  * Otherwise this may cause nasty races.
453  */
454 static void pagevec_move_tail(struct pagevec *pvec)
455 {
456 	int pgmoved = 0;
457 
458 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
459 	__count_vm_events(PGROTATED, pgmoved);
460 }
461 
462 /*
463  * Writeback is about to end against a page which has been marked for immediate
464  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
465  * inactive list.
466  */
467 void rotate_reclaimable_page(struct page *page)
468 {
469 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
470 	    !PageUnevictable(page) && PageLRU(page)) {
471 		struct pagevec *pvec;
472 		unsigned long flags;
473 
474 		page_cache_get(page);
475 		local_irq_save(flags);
476 		pvec = this_cpu_ptr(&lru_rotate_pvecs);
477 		if (!pagevec_add(pvec, page))
478 			pagevec_move_tail(pvec);
479 		local_irq_restore(flags);
480 	}
481 }
482 
483 static void update_page_reclaim_stat(struct lruvec *lruvec,
484 				     int file, int rotated)
485 {
486 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
487 
488 	reclaim_stat->recent_scanned[file]++;
489 	if (rotated)
490 		reclaim_stat->recent_rotated[file]++;
491 }
492 
493 static void __activate_page(struct page *page, struct lruvec *lruvec,
494 			    void *arg)
495 {
496 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
497 		int file = page_is_file_cache(page);
498 		int lru = page_lru_base_type(page);
499 
500 		del_page_from_lru_list(page, lruvec, lru);
501 		SetPageActive(page);
502 		lru += LRU_ACTIVE;
503 		add_page_to_lru_list(page, lruvec, lru);
504 		trace_mm_lru_activate(page, page_to_pfn(page));
505 
506 		__count_vm_event(PGACTIVATE);
507 		update_page_reclaim_stat(lruvec, file, 1);
508 	}
509 }
510 
511 #ifdef CONFIG_SMP
512 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
513 
514 static void activate_page_drain(int cpu)
515 {
516 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
517 
518 	if (pagevec_count(pvec))
519 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
520 }
521 
522 static bool need_activate_page_drain(int cpu)
523 {
524 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
525 }
526 
527 void activate_page(struct page *page)
528 {
529 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
530 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
531 
532 		page_cache_get(page);
533 		if (!pagevec_add(pvec, page))
534 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
535 		put_cpu_var(activate_page_pvecs);
536 	}
537 }
538 
539 #else
540 static inline void activate_page_drain(int cpu)
541 {
542 }
543 
544 static bool need_activate_page_drain(int cpu)
545 {
546 	return false;
547 }
548 
549 void activate_page(struct page *page)
550 {
551 	struct zone *zone = page_zone(page);
552 
553 	spin_lock_irq(&zone->lru_lock);
554 	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
555 	spin_unlock_irq(&zone->lru_lock);
556 }
557 #endif
558 
559 static void __lru_cache_activate_page(struct page *page)
560 {
561 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
562 	int i;
563 
564 	/*
565 	 * Search backwards on the optimistic assumption that the page being
566 	 * activated has just been added to this pagevec. Note that only
567 	 * the local pagevec is examined as a !PageLRU page could be in the
568 	 * process of being released, reclaimed, migrated or on a remote
569 	 * pagevec that is currently being drained. Furthermore, marking
570 	 * a remote pagevec's page PageActive potentially hits a race where
571 	 * a page is marked PageActive just after it is added to the inactive
572 	 * list causing accounting errors and BUG_ON checks to trigger.
573 	 */
574 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
575 		struct page *pagevec_page = pvec->pages[i];
576 
577 		if (pagevec_page == page) {
578 			SetPageActive(page);
579 			break;
580 		}
581 	}
582 
583 	put_cpu_var(lru_add_pvec);
584 }
585 
586 /*
587  * Mark a page as having seen activity.
588  *
589  * inactive,unreferenced	->	inactive,referenced
590  * inactive,referenced		->	active,unreferenced
591  * active,unreferenced		->	active,referenced
592  */
593 void mark_page_accessed(struct page *page)
594 {
595 	if (!PageActive(page) && !PageUnevictable(page) &&
596 			PageReferenced(page)) {
597 
598 		/*
599 		 * If the page is on the LRU, queue it for activation via
600 		 * activate_page_pvecs. Otherwise, assume the page is on a
601 		 * pagevec, mark it active and it'll be moved to the active
602 		 * LRU on the next drain.
603 		 */
604 		if (PageLRU(page))
605 			activate_page(page);
606 		else
607 			__lru_cache_activate_page(page);
608 		ClearPageReferenced(page);
609 		if (page_is_file_cache(page))
610 			workingset_activation(page);
611 	} else if (!PageReferenced(page)) {
612 		SetPageReferenced(page);
613 	}
614 }
615 EXPORT_SYMBOL(mark_page_accessed);
616 
617 /*
618  * Used to mark_page_accessed(page) that is not visible yet and when it is
619  * still safe to use non-atomic ops
620  */
621 void init_page_accessed(struct page *page)
622 {
623 	if (!PageReferenced(page))
624 		__SetPageReferenced(page);
625 }
626 EXPORT_SYMBOL(init_page_accessed);
627 
628 static void __lru_cache_add(struct page *page)
629 {
630 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
631 
632 	page_cache_get(page);
633 	if (!pagevec_space(pvec))
634 		__pagevec_lru_add(pvec);
635 	pagevec_add(pvec, page);
636 	put_cpu_var(lru_add_pvec);
637 }
638 
639 /**
640  * lru_cache_add: add a page to the page lists
641  * @page: the page to add
642  */
643 void lru_cache_add_anon(struct page *page)
644 {
645 	if (PageActive(page))
646 		ClearPageActive(page);
647 	__lru_cache_add(page);
648 }
649 
650 void lru_cache_add_file(struct page *page)
651 {
652 	if (PageActive(page))
653 		ClearPageActive(page);
654 	__lru_cache_add(page);
655 }
656 EXPORT_SYMBOL(lru_cache_add_file);
657 
658 /**
659  * lru_cache_add - add a page to a page list
660  * @page: the page to be added to the LRU.
661  *
662  * Queue the page for addition to the LRU via pagevec. The decision on whether
663  * to add the page to the [in]active [file|anon] list is deferred until the
664  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
665  * have the page added to the active list using mark_page_accessed().
666  */
667 void lru_cache_add(struct page *page)
668 {
669 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
670 	VM_BUG_ON_PAGE(PageLRU(page), page);
671 	__lru_cache_add(page);
672 }
673 
674 /**
675  * add_page_to_unevictable_list - add a page to the unevictable list
676  * @page:  the page to be added to the unevictable list
677  *
678  * Add page directly to its zone's unevictable list.  To avoid races with
679  * tasks that might be making the page evictable, through eg. munlock,
680  * munmap or exit, while it's not on the lru, we want to add the page
681  * while it's locked or otherwise "invisible" to other tasks.  This is
682  * difficult to do when using the pagevec cache, so bypass that.
683  */
684 void add_page_to_unevictable_list(struct page *page)
685 {
686 	struct zone *zone = page_zone(page);
687 	struct lruvec *lruvec;
688 
689 	spin_lock_irq(&zone->lru_lock);
690 	lruvec = mem_cgroup_page_lruvec(page, zone);
691 	ClearPageActive(page);
692 	SetPageUnevictable(page);
693 	SetPageLRU(page);
694 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
695 	spin_unlock_irq(&zone->lru_lock);
696 }
697 
698 /*
699  * If the page can not be invalidated, it is moved to the
700  * inactive list to speed up its reclaim.  It is moved to the
701  * head of the list, rather than the tail, to give the flusher
702  * threads some time to write it out, as this is much more
703  * effective than the single-page writeout from reclaim.
704  *
705  * If the page isn't page_mapped and dirty/writeback, the page
706  * could reclaim asap using PG_reclaim.
707  *
708  * 1. active, mapped page -> none
709  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
710  * 3. inactive, mapped page -> none
711  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
712  * 5. inactive, clean -> inactive, tail
713  * 6. Others -> none
714  *
715  * In 4, why it moves inactive's head, the VM expects the page would
716  * be write it out by flusher threads as this is much more effective
717  * than the single-page writeout from reclaim.
718  */
719 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
720 			      void *arg)
721 {
722 	int lru, file;
723 	bool active;
724 
725 	if (!PageLRU(page))
726 		return;
727 
728 	if (PageUnevictable(page))
729 		return;
730 
731 	/* Some processes are using the page */
732 	if (page_mapped(page))
733 		return;
734 
735 	active = PageActive(page);
736 	file = page_is_file_cache(page);
737 	lru = page_lru_base_type(page);
738 
739 	del_page_from_lru_list(page, lruvec, lru + active);
740 	ClearPageActive(page);
741 	ClearPageReferenced(page);
742 	add_page_to_lru_list(page, lruvec, lru);
743 
744 	if (PageWriteback(page) || PageDirty(page)) {
745 		/*
746 		 * PG_reclaim could be raced with end_page_writeback
747 		 * It can make readahead confusing.  But race window
748 		 * is _really_ small and  it's non-critical problem.
749 		 */
750 		SetPageReclaim(page);
751 	} else {
752 		/*
753 		 * The page's writeback ends up during pagevec
754 		 * We moves tha page into tail of inactive.
755 		 */
756 		list_move_tail(&page->lru, &lruvec->lists[lru]);
757 		__count_vm_event(PGROTATED);
758 	}
759 
760 	if (active)
761 		__count_vm_event(PGDEACTIVATE);
762 	update_page_reclaim_stat(lruvec, file, 0);
763 }
764 
765 /*
766  * Drain pages out of the cpu's pagevecs.
767  * Either "cpu" is the current CPU, and preemption has already been
768  * disabled; or "cpu" is being hot-unplugged, and is already dead.
769  */
770 void lru_add_drain_cpu(int cpu)
771 {
772 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
773 
774 	if (pagevec_count(pvec))
775 		__pagevec_lru_add(pvec);
776 
777 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
778 	if (pagevec_count(pvec)) {
779 		unsigned long flags;
780 
781 		/* No harm done if a racing interrupt already did this */
782 		local_irq_save(flags);
783 		pagevec_move_tail(pvec);
784 		local_irq_restore(flags);
785 	}
786 
787 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
788 	if (pagevec_count(pvec))
789 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
790 
791 	activate_page_drain(cpu);
792 }
793 
794 /**
795  * deactivate_page - forcefully deactivate a page
796  * @page: page to deactivate
797  *
798  * This function hints the VM that @page is a good reclaim candidate,
799  * for example if its invalidation fails due to the page being dirty
800  * or under writeback.
801  */
802 void deactivate_page(struct page *page)
803 {
804 	/*
805 	 * In a workload with many unevictable page such as mprotect, unevictable
806 	 * page deactivation for accelerating reclaim is pointless.
807 	 */
808 	if (PageUnevictable(page))
809 		return;
810 
811 	if (likely(get_page_unless_zero(page))) {
812 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
813 
814 		if (!pagevec_add(pvec, page))
815 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
816 		put_cpu_var(lru_deactivate_pvecs);
817 	}
818 }
819 
820 void lru_add_drain(void)
821 {
822 	lru_add_drain_cpu(get_cpu());
823 	put_cpu();
824 }
825 
826 static void lru_add_drain_per_cpu(struct work_struct *dummy)
827 {
828 	lru_add_drain();
829 }
830 
831 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
832 
833 void lru_add_drain_all(void)
834 {
835 	static DEFINE_MUTEX(lock);
836 	static struct cpumask has_work;
837 	int cpu;
838 
839 	mutex_lock(&lock);
840 	get_online_cpus();
841 	cpumask_clear(&has_work);
842 
843 	for_each_online_cpu(cpu) {
844 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
845 
846 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
847 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
848 		    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
849 		    need_activate_page_drain(cpu)) {
850 			INIT_WORK(work, lru_add_drain_per_cpu);
851 			schedule_work_on(cpu, work);
852 			cpumask_set_cpu(cpu, &has_work);
853 		}
854 	}
855 
856 	for_each_cpu(cpu, &has_work)
857 		flush_work(&per_cpu(lru_add_drain_work, cpu));
858 
859 	put_online_cpus();
860 	mutex_unlock(&lock);
861 }
862 
863 /*
864  * Batched page_cache_release().  Decrement the reference count on all the
865  * passed pages.  If it fell to zero then remove the page from the LRU and
866  * free it.
867  *
868  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
869  * for the remainder of the operation.
870  *
871  * The locking in this function is against shrink_inactive_list(): we recheck
872  * the page count inside the lock to see whether shrink_inactive_list()
873  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
874  * will free it.
875  */
876 void release_pages(struct page **pages, int nr, bool cold)
877 {
878 	int i;
879 	LIST_HEAD(pages_to_free);
880 	struct zone *zone = NULL;
881 	struct lruvec *lruvec;
882 	unsigned long uninitialized_var(flags);
883 
884 	for (i = 0; i < nr; i++) {
885 		struct page *page = pages[i];
886 
887 		if (unlikely(PageCompound(page))) {
888 			if (zone) {
889 				spin_unlock_irqrestore(&zone->lru_lock, flags);
890 				zone = NULL;
891 			}
892 			put_compound_page(page);
893 			continue;
894 		}
895 
896 		if (!put_page_testzero(page))
897 			continue;
898 
899 		if (PageLRU(page)) {
900 			struct zone *pagezone = page_zone(page);
901 
902 			if (pagezone != zone) {
903 				if (zone)
904 					spin_unlock_irqrestore(&zone->lru_lock,
905 									flags);
906 				zone = pagezone;
907 				spin_lock_irqsave(&zone->lru_lock, flags);
908 			}
909 
910 			lruvec = mem_cgroup_page_lruvec(page, zone);
911 			VM_BUG_ON_PAGE(!PageLRU(page), page);
912 			__ClearPageLRU(page);
913 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
914 		}
915 
916 		/* Clear Active bit in case of parallel mark_page_accessed */
917 		__ClearPageActive(page);
918 
919 		list_add(&page->lru, &pages_to_free);
920 	}
921 	if (zone)
922 		spin_unlock_irqrestore(&zone->lru_lock, flags);
923 
924 	free_hot_cold_page_list(&pages_to_free, cold);
925 }
926 EXPORT_SYMBOL(release_pages);
927 
928 /*
929  * The pages which we're about to release may be in the deferred lru-addition
930  * queues.  That would prevent them from really being freed right now.  That's
931  * OK from a correctness point of view but is inefficient - those pages may be
932  * cache-warm and we want to give them back to the page allocator ASAP.
933  *
934  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
935  * and __pagevec_lru_add_active() call release_pages() directly to avoid
936  * mutual recursion.
937  */
938 void __pagevec_release(struct pagevec *pvec)
939 {
940 	lru_add_drain();
941 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
942 	pagevec_reinit(pvec);
943 }
944 EXPORT_SYMBOL(__pagevec_release);
945 
946 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
947 /* used by __split_huge_page_refcount() */
948 void lru_add_page_tail(struct page *page, struct page *page_tail,
949 		       struct lruvec *lruvec, struct list_head *list)
950 {
951 	const int file = 0;
952 
953 	VM_BUG_ON_PAGE(!PageHead(page), page);
954 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
955 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
956 	VM_BUG_ON(NR_CPUS != 1 &&
957 		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
958 
959 	if (!list)
960 		SetPageLRU(page_tail);
961 
962 	if (likely(PageLRU(page)))
963 		list_add_tail(&page_tail->lru, &page->lru);
964 	else if (list) {
965 		/* page reclaim is reclaiming a huge page */
966 		get_page(page_tail);
967 		list_add_tail(&page_tail->lru, list);
968 	} else {
969 		struct list_head *list_head;
970 		/*
971 		 * Head page has not yet been counted, as an hpage,
972 		 * so we must account for each subpage individually.
973 		 *
974 		 * Use the standard add function to put page_tail on the list,
975 		 * but then correct its position so they all end up in order.
976 		 */
977 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
978 		list_head = page_tail->lru.prev;
979 		list_move_tail(&page_tail->lru, list_head);
980 	}
981 
982 	if (!PageUnevictable(page))
983 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
984 }
985 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
986 
987 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
988 				 void *arg)
989 {
990 	int file = page_is_file_cache(page);
991 	int active = PageActive(page);
992 	enum lru_list lru = page_lru(page);
993 
994 	VM_BUG_ON_PAGE(PageLRU(page), page);
995 
996 	SetPageLRU(page);
997 	add_page_to_lru_list(page, lruvec, lru);
998 	update_page_reclaim_stat(lruvec, file, active);
999 	trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
1000 }
1001 
1002 /*
1003  * Add the passed pages to the LRU, then drop the caller's refcount
1004  * on them.  Reinitialises the caller's pagevec.
1005  */
1006 void __pagevec_lru_add(struct pagevec *pvec)
1007 {
1008 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1009 }
1010 EXPORT_SYMBOL(__pagevec_lru_add);
1011 
1012 /**
1013  * pagevec_lookup_entries - gang pagecache lookup
1014  * @pvec:	Where the resulting entries are placed
1015  * @mapping:	The address_space to search
1016  * @start:	The starting entry index
1017  * @nr_entries:	The maximum number of entries
1018  * @indices:	The cache indices corresponding to the entries in @pvec
1019  *
1020  * pagevec_lookup_entries() will search for and return a group of up
1021  * to @nr_entries pages and shadow entries in the mapping.  All
1022  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
1023  * reference against actual pages in @pvec.
1024  *
1025  * The search returns a group of mapping-contiguous entries with
1026  * ascending indexes.  There may be holes in the indices due to
1027  * not-present entries.
1028  *
1029  * pagevec_lookup_entries() returns the number of entries which were
1030  * found.
1031  */
1032 unsigned pagevec_lookup_entries(struct pagevec *pvec,
1033 				struct address_space *mapping,
1034 				pgoff_t start, unsigned nr_pages,
1035 				pgoff_t *indices)
1036 {
1037 	pvec->nr = find_get_entries(mapping, start, nr_pages,
1038 				    pvec->pages, indices);
1039 	return pagevec_count(pvec);
1040 }
1041 
1042 /**
1043  * pagevec_remove_exceptionals - pagevec exceptionals pruning
1044  * @pvec:	The pagevec to prune
1045  *
1046  * pagevec_lookup_entries() fills both pages and exceptional radix
1047  * tree entries into the pagevec.  This function prunes all
1048  * exceptionals from @pvec without leaving holes, so that it can be
1049  * passed on to page-only pagevec operations.
1050  */
1051 void pagevec_remove_exceptionals(struct pagevec *pvec)
1052 {
1053 	int i, j;
1054 
1055 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1056 		struct page *page = pvec->pages[i];
1057 		if (!radix_tree_exceptional_entry(page))
1058 			pvec->pages[j++] = page;
1059 	}
1060 	pvec->nr = j;
1061 }
1062 
1063 /**
1064  * pagevec_lookup - gang pagecache lookup
1065  * @pvec:	Where the resulting pages are placed
1066  * @mapping:	The address_space to search
1067  * @start:	The starting page index
1068  * @nr_pages:	The maximum number of pages
1069  *
1070  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1071  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
1072  * reference against the pages in @pvec.
1073  *
1074  * The search returns a group of mapping-contiguous pages with ascending
1075  * indexes.  There may be holes in the indices due to not-present pages.
1076  *
1077  * pagevec_lookup() returns the number of pages which were found.
1078  */
1079 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
1080 		pgoff_t start, unsigned nr_pages)
1081 {
1082 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
1083 	return pagevec_count(pvec);
1084 }
1085 EXPORT_SYMBOL(pagevec_lookup);
1086 
1087 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
1088 		pgoff_t *index, int tag, unsigned nr_pages)
1089 {
1090 	pvec->nr = find_get_pages_tag(mapping, index, tag,
1091 					nr_pages, pvec->pages);
1092 	return pagevec_count(pvec);
1093 }
1094 EXPORT_SYMBOL(pagevec_lookup_tag);
1095 
1096 /*
1097  * Perform any setup for the swap system
1098  */
1099 void __init swap_setup(void)
1100 {
1101 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1102 #ifdef CONFIG_SWAP
1103 	int i;
1104 
1105 	if (bdi_init(swapper_spaces[0].backing_dev_info))
1106 		panic("Failed to init swap bdi");
1107 	for (i = 0; i < MAX_SWAPFILES; i++) {
1108 		spin_lock_init(&swapper_spaces[i].tree_lock);
1109 		INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
1110 	}
1111 #endif
1112 
1113 	/* Use a smaller cluster for small-memory machines */
1114 	if (megs < 16)
1115 		page_cluster = 2;
1116 	else
1117 		page_cluster = 3;
1118 	/*
1119 	 * Right now other parts of the system means that we
1120 	 * _really_ don't want to cluster much more
1121 	 */
1122 }
1123