xref: /openbmc/linux/mm/swap.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 #include <linux/uio.h>
35 #include <linux/hugetlb.h>
36 #include <linux/page_idle.h>
37 
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/pagemap.h>
42 
43 /* How many pages do we try to swap or page in/out together? */
44 int page_cluster;
45 
46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
50 #ifdef CONFIG_SMP
51 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
52 #endif
53 
54 /*
55  * This path almost never happens for VM activity - pages are normally
56  * freed via pagevecs.  But it gets used by networking.
57  */
58 static void __page_cache_release(struct page *page)
59 {
60 	if (PageLRU(page)) {
61 		pg_data_t *pgdat = page_pgdat(page);
62 		struct lruvec *lruvec;
63 		unsigned long flags;
64 
65 		spin_lock_irqsave(&pgdat->lru_lock, flags);
66 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
67 		VM_BUG_ON_PAGE(!PageLRU(page), page);
68 		__ClearPageLRU(page);
69 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
70 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
71 	}
72 	__ClearPageWaiters(page);
73 	mem_cgroup_uncharge(page);
74 }
75 
76 static void __put_single_page(struct page *page)
77 {
78 	__page_cache_release(page);
79 	free_unref_page(page);
80 }
81 
82 static void __put_compound_page(struct page *page)
83 {
84 	compound_page_dtor *dtor;
85 
86 	/*
87 	 * __page_cache_release() is supposed to be called for thp, not for
88 	 * hugetlb. This is because hugetlb page does never have PageLRU set
89 	 * (it's never listed to any LRU lists) and no memcg routines should
90 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
91 	 */
92 	if (!PageHuge(page))
93 		__page_cache_release(page);
94 	dtor = get_compound_page_dtor(page);
95 	(*dtor)(page);
96 }
97 
98 void __put_page(struct page *page)
99 {
100 	if (is_zone_device_page(page)) {
101 		put_dev_pagemap(page->pgmap);
102 
103 		/*
104 		 * The page belongs to the device that created pgmap. Do
105 		 * not return it to page allocator.
106 		 */
107 		return;
108 	}
109 
110 	if (unlikely(PageCompound(page)))
111 		__put_compound_page(page);
112 	else
113 		__put_single_page(page);
114 }
115 EXPORT_SYMBOL(__put_page);
116 
117 /**
118  * put_pages_list() - release a list of pages
119  * @pages: list of pages threaded on page->lru
120  *
121  * Release a list of pages which are strung together on page.lru.  Currently
122  * used by read_cache_pages() and related error recovery code.
123  */
124 void put_pages_list(struct list_head *pages)
125 {
126 	while (!list_empty(pages)) {
127 		struct page *victim;
128 
129 		victim = lru_to_page(pages);
130 		list_del(&victim->lru);
131 		put_page(victim);
132 	}
133 }
134 EXPORT_SYMBOL(put_pages_list);
135 
136 /*
137  * get_kernel_pages() - pin kernel pages in memory
138  * @kiov:	An array of struct kvec structures
139  * @nr_segs:	number of segments to pin
140  * @write:	pinning for read/write, currently ignored
141  * @pages:	array that receives pointers to the pages pinned.
142  *		Should be at least nr_segs long.
143  *
144  * Returns number of pages pinned. This may be fewer than the number
145  * requested. If nr_pages is 0 or negative, returns 0. If no pages
146  * were pinned, returns -errno. Each page returned must be released
147  * with a put_page() call when it is finished with.
148  */
149 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
150 		struct page **pages)
151 {
152 	int seg;
153 
154 	for (seg = 0; seg < nr_segs; seg++) {
155 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
156 			return seg;
157 
158 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
159 		get_page(pages[seg]);
160 	}
161 
162 	return seg;
163 }
164 EXPORT_SYMBOL_GPL(get_kernel_pages);
165 
166 /*
167  * get_kernel_page() - pin a kernel page in memory
168  * @start:	starting kernel address
169  * @write:	pinning for read/write, currently ignored
170  * @pages:	array that receives pointer to the page pinned.
171  *		Must be at least nr_segs long.
172  *
173  * Returns 1 if page is pinned. If the page was not pinned, returns
174  * -errno. The page returned must be released with a put_page() call
175  * when it is finished with.
176  */
177 int get_kernel_page(unsigned long start, int write, struct page **pages)
178 {
179 	const struct kvec kiov = {
180 		.iov_base = (void *)start,
181 		.iov_len = PAGE_SIZE
182 	};
183 
184 	return get_kernel_pages(&kiov, 1, write, pages);
185 }
186 EXPORT_SYMBOL_GPL(get_kernel_page);
187 
188 static void pagevec_lru_move_fn(struct pagevec *pvec,
189 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
190 	void *arg)
191 {
192 	int i;
193 	struct pglist_data *pgdat = NULL;
194 	struct lruvec *lruvec;
195 	unsigned long flags = 0;
196 
197 	for (i = 0; i < pagevec_count(pvec); i++) {
198 		struct page *page = pvec->pages[i];
199 		struct pglist_data *pagepgdat = page_pgdat(page);
200 
201 		if (pagepgdat != pgdat) {
202 			if (pgdat)
203 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
204 			pgdat = pagepgdat;
205 			spin_lock_irqsave(&pgdat->lru_lock, flags);
206 		}
207 
208 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
209 		(*move_fn)(page, lruvec, arg);
210 	}
211 	if (pgdat)
212 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
213 	release_pages(pvec->pages, pvec->nr);
214 	pagevec_reinit(pvec);
215 }
216 
217 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
218 				 void *arg)
219 {
220 	int *pgmoved = arg;
221 
222 	if (PageLRU(page) && !PageUnevictable(page)) {
223 		del_page_from_lru_list(page, lruvec, page_lru(page));
224 		ClearPageActive(page);
225 		add_page_to_lru_list_tail(page, lruvec, page_lru(page));
226 		(*pgmoved)++;
227 	}
228 }
229 
230 /*
231  * pagevec_move_tail() must be called with IRQ disabled.
232  * Otherwise this may cause nasty races.
233  */
234 static void pagevec_move_tail(struct pagevec *pvec)
235 {
236 	int pgmoved = 0;
237 
238 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
239 	__count_vm_events(PGROTATED, pgmoved);
240 }
241 
242 /*
243  * Writeback is about to end against a page which has been marked for immediate
244  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
245  * inactive list.
246  */
247 void rotate_reclaimable_page(struct page *page)
248 {
249 	if (!PageLocked(page) && !PageDirty(page) &&
250 	    !PageUnevictable(page) && PageLRU(page)) {
251 		struct pagevec *pvec;
252 		unsigned long flags;
253 
254 		get_page(page);
255 		local_irq_save(flags);
256 		pvec = this_cpu_ptr(&lru_rotate_pvecs);
257 		if (!pagevec_add(pvec, page) || PageCompound(page))
258 			pagevec_move_tail(pvec);
259 		local_irq_restore(flags);
260 	}
261 }
262 
263 static void update_page_reclaim_stat(struct lruvec *lruvec,
264 				     int file, int rotated)
265 {
266 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
267 
268 	reclaim_stat->recent_scanned[file]++;
269 	if (rotated)
270 		reclaim_stat->recent_rotated[file]++;
271 }
272 
273 static void __activate_page(struct page *page, struct lruvec *lruvec,
274 			    void *arg)
275 {
276 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
277 		int file = page_is_file_cache(page);
278 		int lru = page_lru_base_type(page);
279 
280 		del_page_from_lru_list(page, lruvec, lru);
281 		SetPageActive(page);
282 		lru += LRU_ACTIVE;
283 		add_page_to_lru_list(page, lruvec, lru);
284 		trace_mm_lru_activate(page);
285 
286 		__count_vm_event(PGACTIVATE);
287 		update_page_reclaim_stat(lruvec, file, 1);
288 	}
289 }
290 
291 #ifdef CONFIG_SMP
292 static void activate_page_drain(int cpu)
293 {
294 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
295 
296 	if (pagevec_count(pvec))
297 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
298 }
299 
300 static bool need_activate_page_drain(int cpu)
301 {
302 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
303 }
304 
305 void activate_page(struct page *page)
306 {
307 	page = compound_head(page);
308 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
309 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
310 
311 		get_page(page);
312 		if (!pagevec_add(pvec, page) || PageCompound(page))
313 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
314 		put_cpu_var(activate_page_pvecs);
315 	}
316 }
317 
318 #else
319 static inline void activate_page_drain(int cpu)
320 {
321 }
322 
323 void activate_page(struct page *page)
324 {
325 	pg_data_t *pgdat = page_pgdat(page);
326 
327 	page = compound_head(page);
328 	spin_lock_irq(&pgdat->lru_lock);
329 	__activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
330 	spin_unlock_irq(&pgdat->lru_lock);
331 }
332 #endif
333 
334 static void __lru_cache_activate_page(struct page *page)
335 {
336 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
337 	int i;
338 
339 	/*
340 	 * Search backwards on the optimistic assumption that the page being
341 	 * activated has just been added to this pagevec. Note that only
342 	 * the local pagevec is examined as a !PageLRU page could be in the
343 	 * process of being released, reclaimed, migrated or on a remote
344 	 * pagevec that is currently being drained. Furthermore, marking
345 	 * a remote pagevec's page PageActive potentially hits a race where
346 	 * a page is marked PageActive just after it is added to the inactive
347 	 * list causing accounting errors and BUG_ON checks to trigger.
348 	 */
349 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
350 		struct page *pagevec_page = pvec->pages[i];
351 
352 		if (pagevec_page == page) {
353 			SetPageActive(page);
354 			break;
355 		}
356 	}
357 
358 	put_cpu_var(lru_add_pvec);
359 }
360 
361 /*
362  * Mark a page as having seen activity.
363  *
364  * inactive,unreferenced	->	inactive,referenced
365  * inactive,referenced		->	active,unreferenced
366  * active,unreferenced		->	active,referenced
367  *
368  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
369  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
370  */
371 void mark_page_accessed(struct page *page)
372 {
373 	page = compound_head(page);
374 	if (!PageActive(page) && !PageUnevictable(page) &&
375 			PageReferenced(page)) {
376 
377 		/*
378 		 * If the page is on the LRU, queue it for activation via
379 		 * activate_page_pvecs. Otherwise, assume the page is on a
380 		 * pagevec, mark it active and it'll be moved to the active
381 		 * LRU on the next drain.
382 		 */
383 		if (PageLRU(page))
384 			activate_page(page);
385 		else
386 			__lru_cache_activate_page(page);
387 		ClearPageReferenced(page);
388 		if (page_is_file_cache(page))
389 			workingset_activation(page);
390 	} else if (!PageReferenced(page)) {
391 		SetPageReferenced(page);
392 	}
393 	if (page_is_idle(page))
394 		clear_page_idle(page);
395 }
396 EXPORT_SYMBOL(mark_page_accessed);
397 
398 static void __lru_cache_add(struct page *page)
399 {
400 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
401 
402 	get_page(page);
403 	if (!pagevec_add(pvec, page) || PageCompound(page))
404 		__pagevec_lru_add(pvec);
405 	put_cpu_var(lru_add_pvec);
406 }
407 
408 /**
409  * lru_cache_add_anon - add a page to the page lists
410  * @page: the page to add
411  */
412 void lru_cache_add_anon(struct page *page)
413 {
414 	if (PageActive(page))
415 		ClearPageActive(page);
416 	__lru_cache_add(page);
417 }
418 
419 void lru_cache_add_file(struct page *page)
420 {
421 	if (PageActive(page))
422 		ClearPageActive(page);
423 	__lru_cache_add(page);
424 }
425 EXPORT_SYMBOL(lru_cache_add_file);
426 
427 /**
428  * lru_cache_add - add a page to a page list
429  * @page: the page to be added to the LRU.
430  *
431  * Queue the page for addition to the LRU via pagevec. The decision on whether
432  * to add the page to the [in]active [file|anon] list is deferred until the
433  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
434  * have the page added to the active list using mark_page_accessed().
435  */
436 void lru_cache_add(struct page *page)
437 {
438 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
439 	VM_BUG_ON_PAGE(PageLRU(page), page);
440 	__lru_cache_add(page);
441 }
442 
443 /**
444  * lru_cache_add_active_or_unevictable
445  * @page:  the page to be added to LRU
446  * @vma:   vma in which page is mapped for determining reclaimability
447  *
448  * Place @page on the active or unevictable LRU list, depending on its
449  * evictability.  Note that if the page is not evictable, it goes
450  * directly back onto it's zone's unevictable list, it does NOT use a
451  * per cpu pagevec.
452  */
453 void lru_cache_add_active_or_unevictable(struct page *page,
454 					 struct vm_area_struct *vma)
455 {
456 	VM_BUG_ON_PAGE(PageLRU(page), page);
457 
458 	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
459 		SetPageActive(page);
460 	else if (!TestSetPageMlocked(page)) {
461 		/*
462 		 * We use the irq-unsafe __mod_zone_page_stat because this
463 		 * counter is not modified from interrupt context, and the pte
464 		 * lock is held(spinlock), which implies preemption disabled.
465 		 */
466 		__mod_zone_page_state(page_zone(page), NR_MLOCK,
467 				    hpage_nr_pages(page));
468 		count_vm_event(UNEVICTABLE_PGMLOCKED);
469 	}
470 	lru_cache_add(page);
471 }
472 
473 /*
474  * If the page can not be invalidated, it is moved to the
475  * inactive list to speed up its reclaim.  It is moved to the
476  * head of the list, rather than the tail, to give the flusher
477  * threads some time to write it out, as this is much more
478  * effective than the single-page writeout from reclaim.
479  *
480  * If the page isn't page_mapped and dirty/writeback, the page
481  * could reclaim asap using PG_reclaim.
482  *
483  * 1. active, mapped page -> none
484  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
485  * 3. inactive, mapped page -> none
486  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
487  * 5. inactive, clean -> inactive, tail
488  * 6. Others -> none
489  *
490  * In 4, why it moves inactive's head, the VM expects the page would
491  * be write it out by flusher threads as this is much more effective
492  * than the single-page writeout from reclaim.
493  */
494 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
495 			      void *arg)
496 {
497 	int lru, file;
498 	bool active;
499 
500 	if (!PageLRU(page))
501 		return;
502 
503 	if (PageUnevictable(page))
504 		return;
505 
506 	/* Some processes are using the page */
507 	if (page_mapped(page))
508 		return;
509 
510 	active = PageActive(page);
511 	file = page_is_file_cache(page);
512 	lru = page_lru_base_type(page);
513 
514 	del_page_from_lru_list(page, lruvec, lru + active);
515 	ClearPageActive(page);
516 	ClearPageReferenced(page);
517 	add_page_to_lru_list(page, lruvec, lru);
518 
519 	if (PageWriteback(page) || PageDirty(page)) {
520 		/*
521 		 * PG_reclaim could be raced with end_page_writeback
522 		 * It can make readahead confusing.  But race window
523 		 * is _really_ small and  it's non-critical problem.
524 		 */
525 		SetPageReclaim(page);
526 	} else {
527 		/*
528 		 * The page's writeback ends up during pagevec
529 		 * We moves tha page into tail of inactive.
530 		 */
531 		list_move_tail(&page->lru, &lruvec->lists[lru]);
532 		__count_vm_event(PGROTATED);
533 	}
534 
535 	if (active)
536 		__count_vm_event(PGDEACTIVATE);
537 	update_page_reclaim_stat(lruvec, file, 0);
538 }
539 
540 
541 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
542 			    void *arg)
543 {
544 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
545 	    !PageSwapCache(page) && !PageUnevictable(page)) {
546 		bool active = PageActive(page);
547 
548 		del_page_from_lru_list(page, lruvec,
549 				       LRU_INACTIVE_ANON + active);
550 		ClearPageActive(page);
551 		ClearPageReferenced(page);
552 		/*
553 		 * lazyfree pages are clean anonymous pages. They have
554 		 * SwapBacked flag cleared to distinguish normal anonymous
555 		 * pages
556 		 */
557 		ClearPageSwapBacked(page);
558 		add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
559 
560 		__count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
561 		count_memcg_page_event(page, PGLAZYFREE);
562 		update_page_reclaim_stat(lruvec, 1, 0);
563 	}
564 }
565 
566 /*
567  * Drain pages out of the cpu's pagevecs.
568  * Either "cpu" is the current CPU, and preemption has already been
569  * disabled; or "cpu" is being hot-unplugged, and is already dead.
570  */
571 void lru_add_drain_cpu(int cpu)
572 {
573 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
574 
575 	if (pagevec_count(pvec))
576 		__pagevec_lru_add(pvec);
577 
578 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
579 	if (pagevec_count(pvec)) {
580 		unsigned long flags;
581 
582 		/* No harm done if a racing interrupt already did this */
583 		local_irq_save(flags);
584 		pagevec_move_tail(pvec);
585 		local_irq_restore(flags);
586 	}
587 
588 	pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
589 	if (pagevec_count(pvec))
590 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
591 
592 	pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
593 	if (pagevec_count(pvec))
594 		pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
595 
596 	activate_page_drain(cpu);
597 }
598 
599 /**
600  * deactivate_file_page - forcefully deactivate a file page
601  * @page: page to deactivate
602  *
603  * This function hints the VM that @page is a good reclaim candidate,
604  * for example if its invalidation fails due to the page being dirty
605  * or under writeback.
606  */
607 void deactivate_file_page(struct page *page)
608 {
609 	/*
610 	 * In a workload with many unevictable page such as mprotect,
611 	 * unevictable page deactivation for accelerating reclaim is pointless.
612 	 */
613 	if (PageUnevictable(page))
614 		return;
615 
616 	if (likely(get_page_unless_zero(page))) {
617 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
618 
619 		if (!pagevec_add(pvec, page) || PageCompound(page))
620 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
621 		put_cpu_var(lru_deactivate_file_pvecs);
622 	}
623 }
624 
625 /**
626  * mark_page_lazyfree - make an anon page lazyfree
627  * @page: page to deactivate
628  *
629  * mark_page_lazyfree() moves @page to the inactive file list.
630  * This is done to accelerate the reclaim of @page.
631  */
632 void mark_page_lazyfree(struct page *page)
633 {
634 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
635 	    !PageSwapCache(page) && !PageUnevictable(page)) {
636 		struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
637 
638 		get_page(page);
639 		if (!pagevec_add(pvec, page) || PageCompound(page))
640 			pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
641 		put_cpu_var(lru_lazyfree_pvecs);
642 	}
643 }
644 
645 void lru_add_drain(void)
646 {
647 	lru_add_drain_cpu(get_cpu());
648 	put_cpu();
649 }
650 
651 #ifdef CONFIG_SMP
652 
653 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
654 
655 static void lru_add_drain_per_cpu(struct work_struct *dummy)
656 {
657 	lru_add_drain();
658 }
659 
660 /*
661  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
662  * kworkers being shut down before our page_alloc_cpu_dead callback is
663  * executed on the offlined cpu.
664  * Calling this function with cpu hotplug locks held can actually lead
665  * to obscure indirect dependencies via WQ context.
666  */
667 void lru_add_drain_all(void)
668 {
669 	static DEFINE_MUTEX(lock);
670 	static struct cpumask has_work;
671 	int cpu;
672 
673 	/*
674 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
675 	 * initialized.
676 	 */
677 	if (WARN_ON(!mm_percpu_wq))
678 		return;
679 
680 	mutex_lock(&lock);
681 	cpumask_clear(&has_work);
682 
683 	for_each_online_cpu(cpu) {
684 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
685 
686 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
687 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
688 		    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
689 		    pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
690 		    need_activate_page_drain(cpu)) {
691 			INIT_WORK(work, lru_add_drain_per_cpu);
692 			queue_work_on(cpu, mm_percpu_wq, work);
693 			cpumask_set_cpu(cpu, &has_work);
694 		}
695 	}
696 
697 	for_each_cpu(cpu, &has_work)
698 		flush_work(&per_cpu(lru_add_drain_work, cpu));
699 
700 	mutex_unlock(&lock);
701 }
702 #else
703 void lru_add_drain_all(void)
704 {
705 	lru_add_drain();
706 }
707 #endif
708 
709 /**
710  * release_pages - batched put_page()
711  * @pages: array of pages to release
712  * @nr: number of pages
713  *
714  * Decrement the reference count on all the pages in @pages.  If it
715  * fell to zero, remove the page from the LRU and free it.
716  */
717 void release_pages(struct page **pages, int nr)
718 {
719 	int i;
720 	LIST_HEAD(pages_to_free);
721 	struct pglist_data *locked_pgdat = NULL;
722 	struct lruvec *lruvec;
723 	unsigned long uninitialized_var(flags);
724 	unsigned int uninitialized_var(lock_batch);
725 
726 	for (i = 0; i < nr; i++) {
727 		struct page *page = pages[i];
728 
729 		/*
730 		 * Make sure the IRQ-safe lock-holding time does not get
731 		 * excessive with a continuous string of pages from the
732 		 * same pgdat. The lock is held only if pgdat != NULL.
733 		 */
734 		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
735 			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
736 			locked_pgdat = NULL;
737 		}
738 
739 		if (is_huge_zero_page(page))
740 			continue;
741 
742 		/* Device public page can not be huge page */
743 		if (is_device_public_page(page)) {
744 			if (locked_pgdat) {
745 				spin_unlock_irqrestore(&locked_pgdat->lru_lock,
746 						       flags);
747 				locked_pgdat = NULL;
748 			}
749 			put_devmap_managed_page(page);
750 			continue;
751 		}
752 
753 		page = compound_head(page);
754 		if (!put_page_testzero(page))
755 			continue;
756 
757 		if (PageCompound(page)) {
758 			if (locked_pgdat) {
759 				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
760 				locked_pgdat = NULL;
761 			}
762 			__put_compound_page(page);
763 			continue;
764 		}
765 
766 		if (PageLRU(page)) {
767 			struct pglist_data *pgdat = page_pgdat(page);
768 
769 			if (pgdat != locked_pgdat) {
770 				if (locked_pgdat)
771 					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
772 									flags);
773 				lock_batch = 0;
774 				locked_pgdat = pgdat;
775 				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
776 			}
777 
778 			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
779 			VM_BUG_ON_PAGE(!PageLRU(page), page);
780 			__ClearPageLRU(page);
781 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
782 		}
783 
784 		/* Clear Active bit in case of parallel mark_page_accessed */
785 		__ClearPageActive(page);
786 		__ClearPageWaiters(page);
787 
788 		list_add(&page->lru, &pages_to_free);
789 	}
790 	if (locked_pgdat)
791 		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
792 
793 	mem_cgroup_uncharge_list(&pages_to_free);
794 	free_unref_page_list(&pages_to_free);
795 }
796 EXPORT_SYMBOL(release_pages);
797 
798 /*
799  * The pages which we're about to release may be in the deferred lru-addition
800  * queues.  That would prevent them from really being freed right now.  That's
801  * OK from a correctness point of view but is inefficient - those pages may be
802  * cache-warm and we want to give them back to the page allocator ASAP.
803  *
804  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
805  * and __pagevec_lru_add_active() call release_pages() directly to avoid
806  * mutual recursion.
807  */
808 void __pagevec_release(struct pagevec *pvec)
809 {
810 	if (!pvec->percpu_pvec_drained) {
811 		lru_add_drain();
812 		pvec->percpu_pvec_drained = true;
813 	}
814 	release_pages(pvec->pages, pagevec_count(pvec));
815 	pagevec_reinit(pvec);
816 }
817 EXPORT_SYMBOL(__pagevec_release);
818 
819 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
820 /* used by __split_huge_page_refcount() */
821 void lru_add_page_tail(struct page *page, struct page *page_tail,
822 		       struct lruvec *lruvec, struct list_head *list)
823 {
824 	const int file = 0;
825 
826 	VM_BUG_ON_PAGE(!PageHead(page), page);
827 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
828 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
829 	lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
830 
831 	if (!list)
832 		SetPageLRU(page_tail);
833 
834 	if (likely(PageLRU(page)))
835 		list_add_tail(&page_tail->lru, &page->lru);
836 	else if (list) {
837 		/* page reclaim is reclaiming a huge page */
838 		get_page(page_tail);
839 		list_add_tail(&page_tail->lru, list);
840 	} else {
841 		struct list_head *list_head;
842 		/*
843 		 * Head page has not yet been counted, as an hpage,
844 		 * so we must account for each subpage individually.
845 		 *
846 		 * Use the standard add function to put page_tail on the list,
847 		 * but then correct its position so they all end up in order.
848 		 */
849 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
850 		list_head = page_tail->lru.prev;
851 		list_move_tail(&page_tail->lru, list_head);
852 	}
853 
854 	if (!PageUnevictable(page))
855 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
856 }
857 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
858 
859 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
860 				 void *arg)
861 {
862 	enum lru_list lru;
863 	int was_unevictable = TestClearPageUnevictable(page);
864 
865 	VM_BUG_ON_PAGE(PageLRU(page), page);
866 
867 	SetPageLRU(page);
868 	/*
869 	 * Page becomes evictable in two ways:
870 	 * 1) Within LRU lock [munlock_vma_pages() and __munlock_pagevec()].
871 	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
872 	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
873 	 *   b) do PageLRU check before lock [clear_page_mlock]
874 	 *
875 	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
876 	 * following strict ordering:
877 	 *
878 	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
879 	 *
880 	 * SetPageLRU()				TestClearPageMlocked()
881 	 * smp_mb() // explicit ordering	// above provides strict
882 	 *					// ordering
883 	 * PageMlocked()			PageLRU()
884 	 *
885 	 *
886 	 * if '#1' does not observe setting of PG_lru by '#0' and fails
887 	 * isolation, the explicit barrier will make sure that page_evictable
888 	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
889 	 * can be reordered after PageMlocked check and can make '#1' to fail
890 	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
891 	 * looking at the same page) and the evictable page will be stranded
892 	 * in an unevictable LRU.
893 	 */
894 	smp_mb();
895 
896 	if (page_evictable(page)) {
897 		lru = page_lru(page);
898 		update_page_reclaim_stat(lruvec, page_is_file_cache(page),
899 					 PageActive(page));
900 		if (was_unevictable)
901 			count_vm_event(UNEVICTABLE_PGRESCUED);
902 	} else {
903 		lru = LRU_UNEVICTABLE;
904 		ClearPageActive(page);
905 		SetPageUnevictable(page);
906 		if (!was_unevictable)
907 			count_vm_event(UNEVICTABLE_PGCULLED);
908 	}
909 
910 	add_page_to_lru_list(page, lruvec, lru);
911 	trace_mm_lru_insertion(page, lru);
912 }
913 
914 /*
915  * Add the passed pages to the LRU, then drop the caller's refcount
916  * on them.  Reinitialises the caller's pagevec.
917  */
918 void __pagevec_lru_add(struct pagevec *pvec)
919 {
920 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
921 }
922 EXPORT_SYMBOL(__pagevec_lru_add);
923 
924 /**
925  * pagevec_lookup_entries - gang pagecache lookup
926  * @pvec:	Where the resulting entries are placed
927  * @mapping:	The address_space to search
928  * @start:	The starting entry index
929  * @nr_entries:	The maximum number of pages
930  * @indices:	The cache indices corresponding to the entries in @pvec
931  *
932  * pagevec_lookup_entries() will search for and return a group of up
933  * to @nr_pages pages and shadow entries in the mapping.  All
934  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
935  * reference against actual pages in @pvec.
936  *
937  * The search returns a group of mapping-contiguous entries with
938  * ascending indexes.  There may be holes in the indices due to
939  * not-present entries.
940  *
941  * pagevec_lookup_entries() returns the number of entries which were
942  * found.
943  */
944 unsigned pagevec_lookup_entries(struct pagevec *pvec,
945 				struct address_space *mapping,
946 				pgoff_t start, unsigned nr_entries,
947 				pgoff_t *indices)
948 {
949 	pvec->nr = find_get_entries(mapping, start, nr_entries,
950 				    pvec->pages, indices);
951 	return pagevec_count(pvec);
952 }
953 
954 /**
955  * pagevec_remove_exceptionals - pagevec exceptionals pruning
956  * @pvec:	The pagevec to prune
957  *
958  * pagevec_lookup_entries() fills both pages and exceptional radix
959  * tree entries into the pagevec.  This function prunes all
960  * exceptionals from @pvec without leaving holes, so that it can be
961  * passed on to page-only pagevec operations.
962  */
963 void pagevec_remove_exceptionals(struct pagevec *pvec)
964 {
965 	int i, j;
966 
967 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
968 		struct page *page = pvec->pages[i];
969 		if (!xa_is_value(page))
970 			pvec->pages[j++] = page;
971 	}
972 	pvec->nr = j;
973 }
974 
975 /**
976  * pagevec_lookup_range - gang pagecache lookup
977  * @pvec:	Where the resulting pages are placed
978  * @mapping:	The address_space to search
979  * @start:	The starting page index
980  * @end:	The final page index
981  *
982  * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
983  * pages in the mapping starting from index @start and upto index @end
984  * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
985  * reference against the pages in @pvec.
986  *
987  * The search returns a group of mapping-contiguous pages with ascending
988  * indexes.  There may be holes in the indices due to not-present pages. We
989  * also update @start to index the next page for the traversal.
990  *
991  * pagevec_lookup_range() returns the number of pages which were found. If this
992  * number is smaller than PAGEVEC_SIZE, the end of specified range has been
993  * reached.
994  */
995 unsigned pagevec_lookup_range(struct pagevec *pvec,
996 		struct address_space *mapping, pgoff_t *start, pgoff_t end)
997 {
998 	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
999 					pvec->pages);
1000 	return pagevec_count(pvec);
1001 }
1002 EXPORT_SYMBOL(pagevec_lookup_range);
1003 
1004 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1005 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1006 		xa_mark_t tag)
1007 {
1008 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1009 					PAGEVEC_SIZE, pvec->pages);
1010 	return pagevec_count(pvec);
1011 }
1012 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1013 
1014 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1015 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1016 		xa_mark_t tag, unsigned max_pages)
1017 {
1018 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1019 		min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1020 	return pagevec_count(pvec);
1021 }
1022 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1023 /*
1024  * Perform any setup for the swap system
1025  */
1026 void __init swap_setup(void)
1027 {
1028 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1029 
1030 	/* Use a smaller cluster for small-memory machines */
1031 	if (megs < 16)
1032 		page_cluster = 2;
1033 	else
1034 		page_cluster = 3;
1035 	/*
1036 	 * Right now other parts of the system means that we
1037 	 * _really_ don't want to cluster much more
1038 	 */
1039 }
1040