1 /* 2 * linux/mm/swap.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file contains the default values for the operation of the 9 * Linux VM subsystem. Fine-tuning documentation can be found in 10 * Documentation/sysctl/vm.txt. 11 * Started 18.12.91 12 * Swap aging added 23.2.95, Stephen Tweedie. 13 * Buffermem limits added 12.3.98, Rik van Riel. 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/swap.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/pagevec.h> 23 #include <linux/init.h> 24 #include <linux/export.h> 25 #include <linux/mm_inline.h> 26 #include <linux/percpu_counter.h> 27 #include <linux/percpu.h> 28 #include <linux/cpu.h> 29 #include <linux/notifier.h> 30 #include <linux/backing-dev.h> 31 #include <linux/memcontrol.h> 32 #include <linux/gfp.h> 33 #include <linux/uio.h> 34 35 #include "internal.h" 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/pagemap.h> 39 40 /* How many pages do we try to swap or page in/out together? */ 41 int page_cluster; 42 43 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec); 44 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); 45 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs); 46 47 /* 48 * This path almost never happens for VM activity - pages are normally 49 * freed via pagevecs. But it gets used by networking. 50 */ 51 static void __page_cache_release(struct page *page) 52 { 53 if (PageLRU(page)) { 54 struct zone *zone = page_zone(page); 55 struct lruvec *lruvec; 56 unsigned long flags; 57 58 spin_lock_irqsave(&zone->lru_lock, flags); 59 lruvec = mem_cgroup_page_lruvec(page, zone); 60 VM_BUG_ON_PAGE(!PageLRU(page), page); 61 __ClearPageLRU(page); 62 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 63 spin_unlock_irqrestore(&zone->lru_lock, flags); 64 } 65 } 66 67 static void __put_single_page(struct page *page) 68 { 69 __page_cache_release(page); 70 free_hot_cold_page(page, 0); 71 } 72 73 static void __put_compound_page(struct page *page) 74 { 75 compound_page_dtor *dtor; 76 77 __page_cache_release(page); 78 dtor = get_compound_page_dtor(page); 79 (*dtor)(page); 80 } 81 82 static void put_compound_page(struct page *page) 83 { 84 struct page *page_head; 85 86 if (likely(!PageTail(page))) { 87 if (put_page_testzero(page)) { 88 /* 89 * By the time all refcounts have been released 90 * split_huge_page cannot run anymore from under us. 91 */ 92 if (PageHead(page)) 93 __put_compound_page(page); 94 else 95 __put_single_page(page); 96 } 97 return; 98 } 99 100 /* __split_huge_page_refcount can run under us */ 101 page_head = compound_trans_head(page); 102 103 /* 104 * THP can not break up slab pages so avoid taking 105 * compound_lock() and skip the tail page refcounting (in 106 * _mapcount) too. Slab performs non-atomic bit ops on 107 * page->flags for better performance. In particular 108 * slab_unlock() in slub used to be a hot path. It is still 109 * hot on arches that do not support 110 * this_cpu_cmpxchg_double(). 111 * 112 * If "page" is part of a slab or hugetlbfs page it cannot be 113 * splitted and the head page cannot change from under us. And 114 * if "page" is part of a THP page under splitting, if the 115 * head page pointed by the THP tail isn't a THP head anymore, 116 * we'll find PageTail clear after smp_rmb() and we'll treat 117 * it as a single page. 118 */ 119 if (!__compound_tail_refcounted(page_head)) { 120 /* 121 * If "page" is a THP tail, we must read the tail page 122 * flags after the head page flags. The 123 * split_huge_page side enforces write memory barriers 124 * between clearing PageTail and before the head page 125 * can be freed and reallocated. 126 */ 127 smp_rmb(); 128 if (likely(PageTail(page))) { 129 /* 130 * __split_huge_page_refcount cannot race 131 * here. 132 */ 133 VM_BUG_ON_PAGE(!PageHead(page_head), page_head); 134 VM_BUG_ON_PAGE(page_mapcount(page) != 0, page); 135 if (put_page_testzero(page_head)) { 136 /* 137 * If this is the tail of a slab 138 * compound page, the tail pin must 139 * not be the last reference held on 140 * the page, because the PG_slab 141 * cannot be cleared before all tail 142 * pins (which skips the _mapcount 143 * tail refcounting) have been 144 * released. For hugetlbfs the tail 145 * pin may be the last reference on 146 * the page instead, because 147 * PageHeadHuge will not go away until 148 * the compound page enters the buddy 149 * allocator. 150 */ 151 VM_BUG_ON_PAGE(PageSlab(page_head), page_head); 152 __put_compound_page(page_head); 153 } 154 return; 155 } else 156 /* 157 * __split_huge_page_refcount run before us, 158 * "page" was a THP tail. The split page_head 159 * has been freed and reallocated as slab or 160 * hugetlbfs page of smaller order (only 161 * possible if reallocated as slab on x86). 162 */ 163 goto out_put_single; 164 } 165 166 if (likely(page != page_head && get_page_unless_zero(page_head))) { 167 unsigned long flags; 168 169 /* 170 * page_head wasn't a dangling pointer but it may not 171 * be a head page anymore by the time we obtain the 172 * lock. That is ok as long as it can't be freed from 173 * under us. 174 */ 175 flags = compound_lock_irqsave(page_head); 176 if (unlikely(!PageTail(page))) { 177 /* __split_huge_page_refcount run before us */ 178 compound_unlock_irqrestore(page_head, flags); 179 if (put_page_testzero(page_head)) { 180 /* 181 * The head page may have been freed 182 * and reallocated as a compound page 183 * of smaller order and then freed 184 * again. All we know is that it 185 * cannot have become: a THP page, a 186 * compound page of higher order, a 187 * tail page. That is because we 188 * still hold the refcount of the 189 * split THP tail and page_head was 190 * the THP head before the split. 191 */ 192 if (PageHead(page_head)) 193 __put_compound_page(page_head); 194 else 195 __put_single_page(page_head); 196 } 197 out_put_single: 198 if (put_page_testzero(page)) 199 __put_single_page(page); 200 return; 201 } 202 VM_BUG_ON_PAGE(page_head != page->first_page, page); 203 /* 204 * We can release the refcount taken by 205 * get_page_unless_zero() now that 206 * __split_huge_page_refcount() is blocked on the 207 * compound_lock. 208 */ 209 if (put_page_testzero(page_head)) 210 VM_BUG_ON_PAGE(1, page_head); 211 /* __split_huge_page_refcount will wait now */ 212 VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page); 213 atomic_dec(&page->_mapcount); 214 VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head); 215 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); 216 compound_unlock_irqrestore(page_head, flags); 217 218 if (put_page_testzero(page_head)) { 219 if (PageHead(page_head)) 220 __put_compound_page(page_head); 221 else 222 __put_single_page(page_head); 223 } 224 } else { 225 /* page_head is a dangling pointer */ 226 VM_BUG_ON_PAGE(PageTail(page), page); 227 goto out_put_single; 228 } 229 } 230 231 void put_page(struct page *page) 232 { 233 if (unlikely(PageCompound(page))) 234 put_compound_page(page); 235 else if (put_page_testzero(page)) 236 __put_single_page(page); 237 } 238 EXPORT_SYMBOL(put_page); 239 240 /* 241 * This function is exported but must not be called by anything other 242 * than get_page(). It implements the slow path of get_page(). 243 */ 244 bool __get_page_tail(struct page *page) 245 { 246 /* 247 * This takes care of get_page() if run on a tail page 248 * returned by one of the get_user_pages/follow_page variants. 249 * get_user_pages/follow_page itself doesn't need the compound 250 * lock because it runs __get_page_tail_foll() under the 251 * proper PT lock that already serializes against 252 * split_huge_page(). 253 */ 254 unsigned long flags; 255 bool got; 256 struct page *page_head = compound_trans_head(page); 257 258 /* Ref to put_compound_page() comment. */ 259 if (!__compound_tail_refcounted(page_head)) { 260 smp_rmb(); 261 if (likely(PageTail(page))) { 262 /* 263 * This is a hugetlbfs page or a slab 264 * page. __split_huge_page_refcount 265 * cannot race here. 266 */ 267 VM_BUG_ON_PAGE(!PageHead(page_head), page_head); 268 __get_page_tail_foll(page, true); 269 return true; 270 } else { 271 /* 272 * __split_huge_page_refcount run 273 * before us, "page" was a THP 274 * tail. The split page_head has been 275 * freed and reallocated as slab or 276 * hugetlbfs page of smaller order 277 * (only possible if reallocated as 278 * slab on x86). 279 */ 280 return false; 281 } 282 } 283 284 got = false; 285 if (likely(page != page_head && get_page_unless_zero(page_head))) { 286 /* 287 * page_head wasn't a dangling pointer but it 288 * may not be a head page anymore by the time 289 * we obtain the lock. That is ok as long as it 290 * can't be freed from under us. 291 */ 292 flags = compound_lock_irqsave(page_head); 293 /* here __split_huge_page_refcount won't run anymore */ 294 if (likely(PageTail(page))) { 295 __get_page_tail_foll(page, false); 296 got = true; 297 } 298 compound_unlock_irqrestore(page_head, flags); 299 if (unlikely(!got)) 300 put_page(page_head); 301 } 302 return got; 303 } 304 EXPORT_SYMBOL(__get_page_tail); 305 306 /** 307 * put_pages_list() - release a list of pages 308 * @pages: list of pages threaded on page->lru 309 * 310 * Release a list of pages which are strung together on page.lru. Currently 311 * used by read_cache_pages() and related error recovery code. 312 */ 313 void put_pages_list(struct list_head *pages) 314 { 315 while (!list_empty(pages)) { 316 struct page *victim; 317 318 victim = list_entry(pages->prev, struct page, lru); 319 list_del(&victim->lru); 320 page_cache_release(victim); 321 } 322 } 323 EXPORT_SYMBOL(put_pages_list); 324 325 /* 326 * get_kernel_pages() - pin kernel pages in memory 327 * @kiov: An array of struct kvec structures 328 * @nr_segs: number of segments to pin 329 * @write: pinning for read/write, currently ignored 330 * @pages: array that receives pointers to the pages pinned. 331 * Should be at least nr_segs long. 332 * 333 * Returns number of pages pinned. This may be fewer than the number 334 * requested. If nr_pages is 0 or negative, returns 0. If no pages 335 * were pinned, returns -errno. Each page returned must be released 336 * with a put_page() call when it is finished with. 337 */ 338 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 339 struct page **pages) 340 { 341 int seg; 342 343 for (seg = 0; seg < nr_segs; seg++) { 344 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 345 return seg; 346 347 pages[seg] = kmap_to_page(kiov[seg].iov_base); 348 page_cache_get(pages[seg]); 349 } 350 351 return seg; 352 } 353 EXPORT_SYMBOL_GPL(get_kernel_pages); 354 355 /* 356 * get_kernel_page() - pin a kernel page in memory 357 * @start: starting kernel address 358 * @write: pinning for read/write, currently ignored 359 * @pages: array that receives pointer to the page pinned. 360 * Must be at least nr_segs long. 361 * 362 * Returns 1 if page is pinned. If the page was not pinned, returns 363 * -errno. The page returned must be released with a put_page() call 364 * when it is finished with. 365 */ 366 int get_kernel_page(unsigned long start, int write, struct page **pages) 367 { 368 const struct kvec kiov = { 369 .iov_base = (void *)start, 370 .iov_len = PAGE_SIZE 371 }; 372 373 return get_kernel_pages(&kiov, 1, write, pages); 374 } 375 EXPORT_SYMBOL_GPL(get_kernel_page); 376 377 static void pagevec_lru_move_fn(struct pagevec *pvec, 378 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), 379 void *arg) 380 { 381 int i; 382 struct zone *zone = NULL; 383 struct lruvec *lruvec; 384 unsigned long flags = 0; 385 386 for (i = 0; i < pagevec_count(pvec); i++) { 387 struct page *page = pvec->pages[i]; 388 struct zone *pagezone = page_zone(page); 389 390 if (pagezone != zone) { 391 if (zone) 392 spin_unlock_irqrestore(&zone->lru_lock, flags); 393 zone = pagezone; 394 spin_lock_irqsave(&zone->lru_lock, flags); 395 } 396 397 lruvec = mem_cgroup_page_lruvec(page, zone); 398 (*move_fn)(page, lruvec, arg); 399 } 400 if (zone) 401 spin_unlock_irqrestore(&zone->lru_lock, flags); 402 release_pages(pvec->pages, pvec->nr, pvec->cold); 403 pagevec_reinit(pvec); 404 } 405 406 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, 407 void *arg) 408 { 409 int *pgmoved = arg; 410 411 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 412 enum lru_list lru = page_lru_base_type(page); 413 list_move_tail(&page->lru, &lruvec->lists[lru]); 414 (*pgmoved)++; 415 } 416 } 417 418 /* 419 * pagevec_move_tail() must be called with IRQ disabled. 420 * Otherwise this may cause nasty races. 421 */ 422 static void pagevec_move_tail(struct pagevec *pvec) 423 { 424 int pgmoved = 0; 425 426 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); 427 __count_vm_events(PGROTATED, pgmoved); 428 } 429 430 /* 431 * Writeback is about to end against a page which has been marked for immediate 432 * reclaim. If it still appears to be reclaimable, move it to the tail of the 433 * inactive list. 434 */ 435 void rotate_reclaimable_page(struct page *page) 436 { 437 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && 438 !PageUnevictable(page) && PageLRU(page)) { 439 struct pagevec *pvec; 440 unsigned long flags; 441 442 page_cache_get(page); 443 local_irq_save(flags); 444 pvec = &__get_cpu_var(lru_rotate_pvecs); 445 if (!pagevec_add(pvec, page)) 446 pagevec_move_tail(pvec); 447 local_irq_restore(flags); 448 } 449 } 450 451 static void update_page_reclaim_stat(struct lruvec *lruvec, 452 int file, int rotated) 453 { 454 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 455 456 reclaim_stat->recent_scanned[file]++; 457 if (rotated) 458 reclaim_stat->recent_rotated[file]++; 459 } 460 461 static void __activate_page(struct page *page, struct lruvec *lruvec, 462 void *arg) 463 { 464 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 465 int file = page_is_file_cache(page); 466 int lru = page_lru_base_type(page); 467 468 del_page_from_lru_list(page, lruvec, lru); 469 SetPageActive(page); 470 lru += LRU_ACTIVE; 471 add_page_to_lru_list(page, lruvec, lru); 472 trace_mm_lru_activate(page, page_to_pfn(page)); 473 474 __count_vm_event(PGACTIVATE); 475 update_page_reclaim_stat(lruvec, file, 1); 476 } 477 } 478 479 #ifdef CONFIG_SMP 480 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); 481 482 static void activate_page_drain(int cpu) 483 { 484 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); 485 486 if (pagevec_count(pvec)) 487 pagevec_lru_move_fn(pvec, __activate_page, NULL); 488 } 489 490 static bool need_activate_page_drain(int cpu) 491 { 492 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0; 493 } 494 495 void activate_page(struct page *page) 496 { 497 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 498 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); 499 500 page_cache_get(page); 501 if (!pagevec_add(pvec, page)) 502 pagevec_lru_move_fn(pvec, __activate_page, NULL); 503 put_cpu_var(activate_page_pvecs); 504 } 505 } 506 507 #else 508 static inline void activate_page_drain(int cpu) 509 { 510 } 511 512 static bool need_activate_page_drain(int cpu) 513 { 514 return false; 515 } 516 517 void activate_page(struct page *page) 518 { 519 struct zone *zone = page_zone(page); 520 521 spin_lock_irq(&zone->lru_lock); 522 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL); 523 spin_unlock_irq(&zone->lru_lock); 524 } 525 #endif 526 527 static void __lru_cache_activate_page(struct page *page) 528 { 529 struct pagevec *pvec = &get_cpu_var(lru_add_pvec); 530 int i; 531 532 /* 533 * Search backwards on the optimistic assumption that the page being 534 * activated has just been added to this pagevec. Note that only 535 * the local pagevec is examined as a !PageLRU page could be in the 536 * process of being released, reclaimed, migrated or on a remote 537 * pagevec that is currently being drained. Furthermore, marking 538 * a remote pagevec's page PageActive potentially hits a race where 539 * a page is marked PageActive just after it is added to the inactive 540 * list causing accounting errors and BUG_ON checks to trigger. 541 */ 542 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 543 struct page *pagevec_page = pvec->pages[i]; 544 545 if (pagevec_page == page) { 546 SetPageActive(page); 547 break; 548 } 549 } 550 551 put_cpu_var(lru_add_pvec); 552 } 553 554 /* 555 * Mark a page as having seen activity. 556 * 557 * inactive,unreferenced -> inactive,referenced 558 * inactive,referenced -> active,unreferenced 559 * active,unreferenced -> active,referenced 560 */ 561 void mark_page_accessed(struct page *page) 562 { 563 if (!PageActive(page) && !PageUnevictable(page) && 564 PageReferenced(page)) { 565 566 /* 567 * If the page is on the LRU, queue it for activation via 568 * activate_page_pvecs. Otherwise, assume the page is on a 569 * pagevec, mark it active and it'll be moved to the active 570 * LRU on the next drain. 571 */ 572 if (PageLRU(page)) 573 activate_page(page); 574 else 575 __lru_cache_activate_page(page); 576 ClearPageReferenced(page); 577 } else if (!PageReferenced(page)) { 578 SetPageReferenced(page); 579 } 580 } 581 EXPORT_SYMBOL(mark_page_accessed); 582 583 /* 584 * Queue the page for addition to the LRU via pagevec. The decision on whether 585 * to add the page to the [in]active [file|anon] list is deferred until the 586 * pagevec is drained. This gives a chance for the caller of __lru_cache_add() 587 * have the page added to the active list using mark_page_accessed(). 588 */ 589 void __lru_cache_add(struct page *page) 590 { 591 struct pagevec *pvec = &get_cpu_var(lru_add_pvec); 592 593 page_cache_get(page); 594 if (!pagevec_space(pvec)) 595 __pagevec_lru_add(pvec); 596 pagevec_add(pvec, page); 597 put_cpu_var(lru_add_pvec); 598 } 599 EXPORT_SYMBOL(__lru_cache_add); 600 601 /** 602 * lru_cache_add - add a page to a page list 603 * @page: the page to be added to the LRU. 604 */ 605 void lru_cache_add(struct page *page) 606 { 607 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); 608 VM_BUG_ON_PAGE(PageLRU(page), page); 609 __lru_cache_add(page); 610 } 611 612 /** 613 * add_page_to_unevictable_list - add a page to the unevictable list 614 * @page: the page to be added to the unevictable list 615 * 616 * Add page directly to its zone's unevictable list. To avoid races with 617 * tasks that might be making the page evictable, through eg. munlock, 618 * munmap or exit, while it's not on the lru, we want to add the page 619 * while it's locked or otherwise "invisible" to other tasks. This is 620 * difficult to do when using the pagevec cache, so bypass that. 621 */ 622 void add_page_to_unevictable_list(struct page *page) 623 { 624 struct zone *zone = page_zone(page); 625 struct lruvec *lruvec; 626 627 spin_lock_irq(&zone->lru_lock); 628 lruvec = mem_cgroup_page_lruvec(page, zone); 629 ClearPageActive(page); 630 SetPageUnevictable(page); 631 SetPageLRU(page); 632 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE); 633 spin_unlock_irq(&zone->lru_lock); 634 } 635 636 /* 637 * If the page can not be invalidated, it is moved to the 638 * inactive list to speed up its reclaim. It is moved to the 639 * head of the list, rather than the tail, to give the flusher 640 * threads some time to write it out, as this is much more 641 * effective than the single-page writeout from reclaim. 642 * 643 * If the page isn't page_mapped and dirty/writeback, the page 644 * could reclaim asap using PG_reclaim. 645 * 646 * 1. active, mapped page -> none 647 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 648 * 3. inactive, mapped page -> none 649 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 650 * 5. inactive, clean -> inactive, tail 651 * 6. Others -> none 652 * 653 * In 4, why it moves inactive's head, the VM expects the page would 654 * be write it out by flusher threads as this is much more effective 655 * than the single-page writeout from reclaim. 656 */ 657 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec, 658 void *arg) 659 { 660 int lru, file; 661 bool active; 662 663 if (!PageLRU(page)) 664 return; 665 666 if (PageUnevictable(page)) 667 return; 668 669 /* Some processes are using the page */ 670 if (page_mapped(page)) 671 return; 672 673 active = PageActive(page); 674 file = page_is_file_cache(page); 675 lru = page_lru_base_type(page); 676 677 del_page_from_lru_list(page, lruvec, lru + active); 678 ClearPageActive(page); 679 ClearPageReferenced(page); 680 add_page_to_lru_list(page, lruvec, lru); 681 682 if (PageWriteback(page) || PageDirty(page)) { 683 /* 684 * PG_reclaim could be raced with end_page_writeback 685 * It can make readahead confusing. But race window 686 * is _really_ small and it's non-critical problem. 687 */ 688 SetPageReclaim(page); 689 } else { 690 /* 691 * The page's writeback ends up during pagevec 692 * We moves tha page into tail of inactive. 693 */ 694 list_move_tail(&page->lru, &lruvec->lists[lru]); 695 __count_vm_event(PGROTATED); 696 } 697 698 if (active) 699 __count_vm_event(PGDEACTIVATE); 700 update_page_reclaim_stat(lruvec, file, 0); 701 } 702 703 /* 704 * Drain pages out of the cpu's pagevecs. 705 * Either "cpu" is the current CPU, and preemption has already been 706 * disabled; or "cpu" is being hot-unplugged, and is already dead. 707 */ 708 void lru_add_drain_cpu(int cpu) 709 { 710 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu); 711 712 if (pagevec_count(pvec)) 713 __pagevec_lru_add(pvec); 714 715 pvec = &per_cpu(lru_rotate_pvecs, cpu); 716 if (pagevec_count(pvec)) { 717 unsigned long flags; 718 719 /* No harm done if a racing interrupt already did this */ 720 local_irq_save(flags); 721 pagevec_move_tail(pvec); 722 local_irq_restore(flags); 723 } 724 725 pvec = &per_cpu(lru_deactivate_pvecs, cpu); 726 if (pagevec_count(pvec)) 727 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 728 729 activate_page_drain(cpu); 730 } 731 732 /** 733 * deactivate_page - forcefully deactivate a page 734 * @page: page to deactivate 735 * 736 * This function hints the VM that @page is a good reclaim candidate, 737 * for example if its invalidation fails due to the page being dirty 738 * or under writeback. 739 */ 740 void deactivate_page(struct page *page) 741 { 742 /* 743 * In a workload with many unevictable page such as mprotect, unevictable 744 * page deactivation for accelerating reclaim is pointless. 745 */ 746 if (PageUnevictable(page)) 747 return; 748 749 if (likely(get_page_unless_zero(page))) { 750 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs); 751 752 if (!pagevec_add(pvec, page)) 753 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 754 put_cpu_var(lru_deactivate_pvecs); 755 } 756 } 757 758 void lru_add_drain(void) 759 { 760 lru_add_drain_cpu(get_cpu()); 761 put_cpu(); 762 } 763 764 static void lru_add_drain_per_cpu(struct work_struct *dummy) 765 { 766 lru_add_drain(); 767 } 768 769 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 770 771 void lru_add_drain_all(void) 772 { 773 static DEFINE_MUTEX(lock); 774 static struct cpumask has_work; 775 int cpu; 776 777 mutex_lock(&lock); 778 get_online_cpus(); 779 cpumask_clear(&has_work); 780 781 for_each_online_cpu(cpu) { 782 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 783 784 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) || 785 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) || 786 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) || 787 need_activate_page_drain(cpu)) { 788 INIT_WORK(work, lru_add_drain_per_cpu); 789 schedule_work_on(cpu, work); 790 cpumask_set_cpu(cpu, &has_work); 791 } 792 } 793 794 for_each_cpu(cpu, &has_work) 795 flush_work(&per_cpu(lru_add_drain_work, cpu)); 796 797 put_online_cpus(); 798 mutex_unlock(&lock); 799 } 800 801 /* 802 * Batched page_cache_release(). Decrement the reference count on all the 803 * passed pages. If it fell to zero then remove the page from the LRU and 804 * free it. 805 * 806 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it 807 * for the remainder of the operation. 808 * 809 * The locking in this function is against shrink_inactive_list(): we recheck 810 * the page count inside the lock to see whether shrink_inactive_list() 811 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list() 812 * will free it. 813 */ 814 void release_pages(struct page **pages, int nr, int cold) 815 { 816 int i; 817 LIST_HEAD(pages_to_free); 818 struct zone *zone = NULL; 819 struct lruvec *lruvec; 820 unsigned long uninitialized_var(flags); 821 822 for (i = 0; i < nr; i++) { 823 struct page *page = pages[i]; 824 825 if (unlikely(PageCompound(page))) { 826 if (zone) { 827 spin_unlock_irqrestore(&zone->lru_lock, flags); 828 zone = NULL; 829 } 830 put_compound_page(page); 831 continue; 832 } 833 834 if (!put_page_testzero(page)) 835 continue; 836 837 if (PageLRU(page)) { 838 struct zone *pagezone = page_zone(page); 839 840 if (pagezone != zone) { 841 if (zone) 842 spin_unlock_irqrestore(&zone->lru_lock, 843 flags); 844 zone = pagezone; 845 spin_lock_irqsave(&zone->lru_lock, flags); 846 } 847 848 lruvec = mem_cgroup_page_lruvec(page, zone); 849 VM_BUG_ON_PAGE(!PageLRU(page), page); 850 __ClearPageLRU(page); 851 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 852 } 853 854 /* Clear Active bit in case of parallel mark_page_accessed */ 855 ClearPageActive(page); 856 857 list_add(&page->lru, &pages_to_free); 858 } 859 if (zone) 860 spin_unlock_irqrestore(&zone->lru_lock, flags); 861 862 free_hot_cold_page_list(&pages_to_free, cold); 863 } 864 EXPORT_SYMBOL(release_pages); 865 866 /* 867 * The pages which we're about to release may be in the deferred lru-addition 868 * queues. That would prevent them from really being freed right now. That's 869 * OK from a correctness point of view but is inefficient - those pages may be 870 * cache-warm and we want to give them back to the page allocator ASAP. 871 * 872 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 873 * and __pagevec_lru_add_active() call release_pages() directly to avoid 874 * mutual recursion. 875 */ 876 void __pagevec_release(struct pagevec *pvec) 877 { 878 lru_add_drain(); 879 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); 880 pagevec_reinit(pvec); 881 } 882 EXPORT_SYMBOL(__pagevec_release); 883 884 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 885 /* used by __split_huge_page_refcount() */ 886 void lru_add_page_tail(struct page *page, struct page *page_tail, 887 struct lruvec *lruvec, struct list_head *list) 888 { 889 const int file = 0; 890 891 VM_BUG_ON_PAGE(!PageHead(page), page); 892 VM_BUG_ON_PAGE(PageCompound(page_tail), page); 893 VM_BUG_ON_PAGE(PageLRU(page_tail), page); 894 VM_BUG_ON(NR_CPUS != 1 && 895 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock)); 896 897 if (!list) 898 SetPageLRU(page_tail); 899 900 if (likely(PageLRU(page))) 901 list_add_tail(&page_tail->lru, &page->lru); 902 else if (list) { 903 /* page reclaim is reclaiming a huge page */ 904 get_page(page_tail); 905 list_add_tail(&page_tail->lru, list); 906 } else { 907 struct list_head *list_head; 908 /* 909 * Head page has not yet been counted, as an hpage, 910 * so we must account for each subpage individually. 911 * 912 * Use the standard add function to put page_tail on the list, 913 * but then correct its position so they all end up in order. 914 */ 915 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail)); 916 list_head = page_tail->lru.prev; 917 list_move_tail(&page_tail->lru, list_head); 918 } 919 920 if (!PageUnevictable(page)) 921 update_page_reclaim_stat(lruvec, file, PageActive(page_tail)); 922 } 923 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 924 925 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, 926 void *arg) 927 { 928 int file = page_is_file_cache(page); 929 int active = PageActive(page); 930 enum lru_list lru = page_lru(page); 931 932 VM_BUG_ON_PAGE(PageLRU(page), page); 933 934 SetPageLRU(page); 935 add_page_to_lru_list(page, lruvec, lru); 936 update_page_reclaim_stat(lruvec, file, active); 937 trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page)); 938 } 939 940 /* 941 * Add the passed pages to the LRU, then drop the caller's refcount 942 * on them. Reinitialises the caller's pagevec. 943 */ 944 void __pagevec_lru_add(struct pagevec *pvec) 945 { 946 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL); 947 } 948 EXPORT_SYMBOL(__pagevec_lru_add); 949 950 /** 951 * pagevec_lookup - gang pagecache lookup 952 * @pvec: Where the resulting pages are placed 953 * @mapping: The address_space to search 954 * @start: The starting page index 955 * @nr_pages: The maximum number of pages 956 * 957 * pagevec_lookup() will search for and return a group of up to @nr_pages pages 958 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a 959 * reference against the pages in @pvec. 960 * 961 * The search returns a group of mapping-contiguous pages with ascending 962 * indexes. There may be holes in the indices due to not-present pages. 963 * 964 * pagevec_lookup() returns the number of pages which were found. 965 */ 966 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, 967 pgoff_t start, unsigned nr_pages) 968 { 969 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); 970 return pagevec_count(pvec); 971 } 972 EXPORT_SYMBOL(pagevec_lookup); 973 974 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, 975 pgoff_t *index, int tag, unsigned nr_pages) 976 { 977 pvec->nr = find_get_pages_tag(mapping, index, tag, 978 nr_pages, pvec->pages); 979 return pagevec_count(pvec); 980 } 981 EXPORT_SYMBOL(pagevec_lookup_tag); 982 983 /* 984 * Perform any setup for the swap system 985 */ 986 void __init swap_setup(void) 987 { 988 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); 989 #ifdef CONFIG_SWAP 990 int i; 991 992 if (bdi_init(swapper_spaces[0].backing_dev_info)) 993 panic("Failed to init swap bdi"); 994 for (i = 0; i < MAX_SWAPFILES; i++) { 995 spin_lock_init(&swapper_spaces[i].tree_lock); 996 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear); 997 } 998 #endif 999 1000 /* Use a smaller cluster for small-memory machines */ 1001 if (megs < 16) 1002 page_cluster = 2; 1003 else 1004 page_cluster = 3; 1005 /* 1006 * Right now other parts of the system means that we 1007 * _really_ don't want to cluster much more 1008 */ 1009 } 1010