1 /* 2 * linux/mm/swap.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file contains the default values for the operation of the 9 * Linux VM subsystem. Fine-tuning documentation can be found in 10 * Documentation/sysctl/vm.txt. 11 * Started 18.12.91 12 * Swap aging added 23.2.95, Stephen Tweedie. 13 * Buffermem limits added 12.3.98, Rik van Riel. 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/swap.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/pagevec.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/mm_inline.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page() */ 27 #include <linux/percpu_counter.h> 28 #include <linux/percpu.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/backing-dev.h> 32 #include <linux/memcontrol.h> 33 #include <linux/gfp.h> 34 35 #include "internal.h" 36 37 /* How many pages do we try to swap or page in/out together? */ 38 int page_cluster; 39 40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs); 41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); 42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs); 43 44 /* 45 * This path almost never happens for VM activity - pages are normally 46 * freed via pagevecs. But it gets used by networking. 47 */ 48 static void __page_cache_release(struct page *page) 49 { 50 if (PageLRU(page)) { 51 unsigned long flags; 52 struct zone *zone = page_zone(page); 53 54 spin_lock_irqsave(&zone->lru_lock, flags); 55 VM_BUG_ON(!PageLRU(page)); 56 __ClearPageLRU(page); 57 del_page_from_lru(zone, page); 58 spin_unlock_irqrestore(&zone->lru_lock, flags); 59 } 60 } 61 62 static void __put_single_page(struct page *page) 63 { 64 __page_cache_release(page); 65 free_hot_cold_page(page, 0); 66 } 67 68 static void __put_compound_page(struct page *page) 69 { 70 compound_page_dtor *dtor; 71 72 __page_cache_release(page); 73 dtor = get_compound_page_dtor(page); 74 (*dtor)(page); 75 } 76 77 static void put_compound_page(struct page *page) 78 { 79 if (unlikely(PageTail(page))) { 80 /* __split_huge_page_refcount can run under us */ 81 struct page *page_head = page->first_page; 82 smp_rmb(); 83 /* 84 * If PageTail is still set after smp_rmb() we can be sure 85 * that the page->first_page we read wasn't a dangling pointer. 86 * See __split_huge_page_refcount() smp_wmb(). 87 */ 88 if (likely(PageTail(page) && get_page_unless_zero(page_head))) { 89 unsigned long flags; 90 /* 91 * Verify that our page_head wasn't converted 92 * to a a regular page before we got a 93 * reference on it. 94 */ 95 if (unlikely(!PageHead(page_head))) { 96 /* PageHead is cleared after PageTail */ 97 smp_rmb(); 98 VM_BUG_ON(PageTail(page)); 99 goto out_put_head; 100 } 101 /* 102 * Only run compound_lock on a valid PageHead, 103 * after having it pinned with 104 * get_page_unless_zero() above. 105 */ 106 smp_mb(); 107 /* page_head wasn't a dangling pointer */ 108 flags = compound_lock_irqsave(page_head); 109 if (unlikely(!PageTail(page))) { 110 /* __split_huge_page_refcount run before us */ 111 compound_unlock_irqrestore(page_head, flags); 112 VM_BUG_ON(PageHead(page_head)); 113 out_put_head: 114 if (put_page_testzero(page_head)) 115 __put_single_page(page_head); 116 out_put_single: 117 if (put_page_testzero(page)) 118 __put_single_page(page); 119 return; 120 } 121 VM_BUG_ON(page_head != page->first_page); 122 /* 123 * We can release the refcount taken by 124 * get_page_unless_zero now that 125 * split_huge_page_refcount is blocked on the 126 * compound_lock. 127 */ 128 if (put_page_testzero(page_head)) 129 VM_BUG_ON(1); 130 /* __split_huge_page_refcount will wait now */ 131 VM_BUG_ON(atomic_read(&page->_count) <= 0); 132 atomic_dec(&page->_count); 133 VM_BUG_ON(atomic_read(&page_head->_count) <= 0); 134 compound_unlock_irqrestore(page_head, flags); 135 if (put_page_testzero(page_head)) { 136 if (PageHead(page_head)) 137 __put_compound_page(page_head); 138 else 139 __put_single_page(page_head); 140 } 141 } else { 142 /* page_head is a dangling pointer */ 143 VM_BUG_ON(PageTail(page)); 144 goto out_put_single; 145 } 146 } else if (put_page_testzero(page)) { 147 if (PageHead(page)) 148 __put_compound_page(page); 149 else 150 __put_single_page(page); 151 } 152 } 153 154 void put_page(struct page *page) 155 { 156 if (unlikely(PageCompound(page))) 157 put_compound_page(page); 158 else if (put_page_testzero(page)) 159 __put_single_page(page); 160 } 161 EXPORT_SYMBOL(put_page); 162 163 /** 164 * put_pages_list() - release a list of pages 165 * @pages: list of pages threaded on page->lru 166 * 167 * Release a list of pages which are strung together on page.lru. Currently 168 * used by read_cache_pages() and related error recovery code. 169 */ 170 void put_pages_list(struct list_head *pages) 171 { 172 while (!list_empty(pages)) { 173 struct page *victim; 174 175 victim = list_entry(pages->prev, struct page, lru); 176 list_del(&victim->lru); 177 page_cache_release(victim); 178 } 179 } 180 EXPORT_SYMBOL(put_pages_list); 181 182 static void pagevec_lru_move_fn(struct pagevec *pvec, 183 void (*move_fn)(struct page *page, void *arg), 184 void *arg) 185 { 186 int i; 187 struct zone *zone = NULL; 188 unsigned long flags = 0; 189 190 for (i = 0; i < pagevec_count(pvec); i++) { 191 struct page *page = pvec->pages[i]; 192 struct zone *pagezone = page_zone(page); 193 194 if (pagezone != zone) { 195 if (zone) 196 spin_unlock_irqrestore(&zone->lru_lock, flags); 197 zone = pagezone; 198 spin_lock_irqsave(&zone->lru_lock, flags); 199 } 200 201 (*move_fn)(page, arg); 202 } 203 if (zone) 204 spin_unlock_irqrestore(&zone->lru_lock, flags); 205 release_pages(pvec->pages, pvec->nr, pvec->cold); 206 pagevec_reinit(pvec); 207 } 208 209 static void pagevec_move_tail_fn(struct page *page, void *arg) 210 { 211 int *pgmoved = arg; 212 struct zone *zone = page_zone(page); 213 214 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 215 enum lru_list lru = page_lru_base_type(page); 216 list_move_tail(&page->lru, &zone->lru[lru].list); 217 mem_cgroup_rotate_reclaimable_page(page); 218 (*pgmoved)++; 219 } 220 } 221 222 /* 223 * pagevec_move_tail() must be called with IRQ disabled. 224 * Otherwise this may cause nasty races. 225 */ 226 static void pagevec_move_tail(struct pagevec *pvec) 227 { 228 int pgmoved = 0; 229 230 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); 231 __count_vm_events(PGROTATED, pgmoved); 232 } 233 234 /* 235 * Writeback is about to end against a page which has been marked for immediate 236 * reclaim. If it still appears to be reclaimable, move it to the tail of the 237 * inactive list. 238 */ 239 void rotate_reclaimable_page(struct page *page) 240 { 241 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && 242 !PageUnevictable(page) && PageLRU(page)) { 243 struct pagevec *pvec; 244 unsigned long flags; 245 246 page_cache_get(page); 247 local_irq_save(flags); 248 pvec = &__get_cpu_var(lru_rotate_pvecs); 249 if (!pagevec_add(pvec, page)) 250 pagevec_move_tail(pvec); 251 local_irq_restore(flags); 252 } 253 } 254 255 static void update_page_reclaim_stat(struct zone *zone, struct page *page, 256 int file, int rotated) 257 { 258 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat; 259 struct zone_reclaim_stat *memcg_reclaim_stat; 260 261 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page); 262 263 reclaim_stat->recent_scanned[file]++; 264 if (rotated) 265 reclaim_stat->recent_rotated[file]++; 266 267 if (!memcg_reclaim_stat) 268 return; 269 270 memcg_reclaim_stat->recent_scanned[file]++; 271 if (rotated) 272 memcg_reclaim_stat->recent_rotated[file]++; 273 } 274 275 static void __activate_page(struct page *page, void *arg) 276 { 277 struct zone *zone = page_zone(page); 278 279 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 280 int file = page_is_file_cache(page); 281 int lru = page_lru_base_type(page); 282 del_page_from_lru_list(zone, page, lru); 283 284 SetPageActive(page); 285 lru += LRU_ACTIVE; 286 add_page_to_lru_list(zone, page, lru); 287 __count_vm_event(PGACTIVATE); 288 289 update_page_reclaim_stat(zone, page, file, 1); 290 } 291 } 292 293 #ifdef CONFIG_SMP 294 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); 295 296 static void activate_page_drain(int cpu) 297 { 298 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); 299 300 if (pagevec_count(pvec)) 301 pagevec_lru_move_fn(pvec, __activate_page, NULL); 302 } 303 304 void activate_page(struct page *page) 305 { 306 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 307 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); 308 309 page_cache_get(page); 310 if (!pagevec_add(pvec, page)) 311 pagevec_lru_move_fn(pvec, __activate_page, NULL); 312 put_cpu_var(activate_page_pvecs); 313 } 314 } 315 316 #else 317 static inline void activate_page_drain(int cpu) 318 { 319 } 320 321 void activate_page(struct page *page) 322 { 323 struct zone *zone = page_zone(page); 324 325 spin_lock_irq(&zone->lru_lock); 326 __activate_page(page, NULL); 327 spin_unlock_irq(&zone->lru_lock); 328 } 329 #endif 330 331 /* 332 * Mark a page as having seen activity. 333 * 334 * inactive,unreferenced -> inactive,referenced 335 * inactive,referenced -> active,unreferenced 336 * active,unreferenced -> active,referenced 337 */ 338 void mark_page_accessed(struct page *page) 339 { 340 if (!PageActive(page) && !PageUnevictable(page) && 341 PageReferenced(page) && PageLRU(page)) { 342 activate_page(page); 343 ClearPageReferenced(page); 344 } else if (!PageReferenced(page)) { 345 SetPageReferenced(page); 346 } 347 } 348 349 EXPORT_SYMBOL(mark_page_accessed); 350 351 void __lru_cache_add(struct page *page, enum lru_list lru) 352 { 353 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru]; 354 355 page_cache_get(page); 356 if (!pagevec_add(pvec, page)) 357 ____pagevec_lru_add(pvec, lru); 358 put_cpu_var(lru_add_pvecs); 359 } 360 EXPORT_SYMBOL(__lru_cache_add); 361 362 /** 363 * lru_cache_add_lru - add a page to a page list 364 * @page: the page to be added to the LRU. 365 * @lru: the LRU list to which the page is added. 366 */ 367 void lru_cache_add_lru(struct page *page, enum lru_list lru) 368 { 369 if (PageActive(page)) { 370 VM_BUG_ON(PageUnevictable(page)); 371 ClearPageActive(page); 372 } else if (PageUnevictable(page)) { 373 VM_BUG_ON(PageActive(page)); 374 ClearPageUnevictable(page); 375 } 376 377 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page)); 378 __lru_cache_add(page, lru); 379 } 380 381 /** 382 * add_page_to_unevictable_list - add a page to the unevictable list 383 * @page: the page to be added to the unevictable list 384 * 385 * Add page directly to its zone's unevictable list. To avoid races with 386 * tasks that might be making the page evictable, through eg. munlock, 387 * munmap or exit, while it's not on the lru, we want to add the page 388 * while it's locked or otherwise "invisible" to other tasks. This is 389 * difficult to do when using the pagevec cache, so bypass that. 390 */ 391 void add_page_to_unevictable_list(struct page *page) 392 { 393 struct zone *zone = page_zone(page); 394 395 spin_lock_irq(&zone->lru_lock); 396 SetPageUnevictable(page); 397 SetPageLRU(page); 398 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE); 399 spin_unlock_irq(&zone->lru_lock); 400 } 401 402 /* 403 * If the page can not be invalidated, it is moved to the 404 * inactive list to speed up its reclaim. It is moved to the 405 * head of the list, rather than the tail, to give the flusher 406 * threads some time to write it out, as this is much more 407 * effective than the single-page writeout from reclaim. 408 * 409 * If the page isn't page_mapped and dirty/writeback, the page 410 * could reclaim asap using PG_reclaim. 411 * 412 * 1. active, mapped page -> none 413 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 414 * 3. inactive, mapped page -> none 415 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 416 * 5. inactive, clean -> inactive, tail 417 * 6. Others -> none 418 * 419 * In 4, why it moves inactive's head, the VM expects the page would 420 * be write it out by flusher threads as this is much more effective 421 * than the single-page writeout from reclaim. 422 */ 423 static void lru_deactivate_fn(struct page *page, void *arg) 424 { 425 int lru, file; 426 bool active; 427 struct zone *zone = page_zone(page); 428 429 if (!PageLRU(page)) 430 return; 431 432 if (PageUnevictable(page)) 433 return; 434 435 /* Some processes are using the page */ 436 if (page_mapped(page)) 437 return; 438 439 active = PageActive(page); 440 441 file = page_is_file_cache(page); 442 lru = page_lru_base_type(page); 443 del_page_from_lru_list(zone, page, lru + active); 444 ClearPageActive(page); 445 ClearPageReferenced(page); 446 add_page_to_lru_list(zone, page, lru); 447 448 if (PageWriteback(page) || PageDirty(page)) { 449 /* 450 * PG_reclaim could be raced with end_page_writeback 451 * It can make readahead confusing. But race window 452 * is _really_ small and it's non-critical problem. 453 */ 454 SetPageReclaim(page); 455 } else { 456 /* 457 * The page's writeback ends up during pagevec 458 * We moves tha page into tail of inactive. 459 */ 460 list_move_tail(&page->lru, &zone->lru[lru].list); 461 mem_cgroup_rotate_reclaimable_page(page); 462 __count_vm_event(PGROTATED); 463 } 464 465 if (active) 466 __count_vm_event(PGDEACTIVATE); 467 update_page_reclaim_stat(zone, page, file, 0); 468 } 469 470 /* 471 * Drain pages out of the cpu's pagevecs. 472 * Either "cpu" is the current CPU, and preemption has already been 473 * disabled; or "cpu" is being hot-unplugged, and is already dead. 474 */ 475 static void drain_cpu_pagevecs(int cpu) 476 { 477 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu); 478 struct pagevec *pvec; 479 int lru; 480 481 for_each_lru(lru) { 482 pvec = &pvecs[lru - LRU_BASE]; 483 if (pagevec_count(pvec)) 484 ____pagevec_lru_add(pvec, lru); 485 } 486 487 pvec = &per_cpu(lru_rotate_pvecs, cpu); 488 if (pagevec_count(pvec)) { 489 unsigned long flags; 490 491 /* No harm done if a racing interrupt already did this */ 492 local_irq_save(flags); 493 pagevec_move_tail(pvec); 494 local_irq_restore(flags); 495 } 496 497 pvec = &per_cpu(lru_deactivate_pvecs, cpu); 498 if (pagevec_count(pvec)) 499 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 500 501 activate_page_drain(cpu); 502 } 503 504 /** 505 * deactivate_page - forcefully deactivate a page 506 * @page: page to deactivate 507 * 508 * This function hints the VM that @page is a good reclaim candidate, 509 * for example if its invalidation fails due to the page being dirty 510 * or under writeback. 511 */ 512 void deactivate_page(struct page *page) 513 { 514 /* 515 * In a workload with many unevictable page such as mprotect, unevictable 516 * page deactivation for accelerating reclaim is pointless. 517 */ 518 if (PageUnevictable(page)) 519 return; 520 521 if (likely(get_page_unless_zero(page))) { 522 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs); 523 524 if (!pagevec_add(pvec, page)) 525 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 526 put_cpu_var(lru_deactivate_pvecs); 527 } 528 } 529 530 void lru_add_drain(void) 531 { 532 drain_cpu_pagevecs(get_cpu()); 533 put_cpu(); 534 } 535 536 static void lru_add_drain_per_cpu(struct work_struct *dummy) 537 { 538 lru_add_drain(); 539 } 540 541 /* 542 * Returns 0 for success 543 */ 544 int lru_add_drain_all(void) 545 { 546 return schedule_on_each_cpu(lru_add_drain_per_cpu); 547 } 548 549 /* 550 * Batched page_cache_release(). Decrement the reference count on all the 551 * passed pages. If it fell to zero then remove the page from the LRU and 552 * free it. 553 * 554 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it 555 * for the remainder of the operation. 556 * 557 * The locking in this function is against shrink_inactive_list(): we recheck 558 * the page count inside the lock to see whether shrink_inactive_list() 559 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list() 560 * will free it. 561 */ 562 void release_pages(struct page **pages, int nr, int cold) 563 { 564 int i; 565 struct pagevec pages_to_free; 566 struct zone *zone = NULL; 567 unsigned long uninitialized_var(flags); 568 569 pagevec_init(&pages_to_free, cold); 570 for (i = 0; i < nr; i++) { 571 struct page *page = pages[i]; 572 573 if (unlikely(PageCompound(page))) { 574 if (zone) { 575 spin_unlock_irqrestore(&zone->lru_lock, flags); 576 zone = NULL; 577 } 578 put_compound_page(page); 579 continue; 580 } 581 582 if (!put_page_testzero(page)) 583 continue; 584 585 if (PageLRU(page)) { 586 struct zone *pagezone = page_zone(page); 587 588 if (pagezone != zone) { 589 if (zone) 590 spin_unlock_irqrestore(&zone->lru_lock, 591 flags); 592 zone = pagezone; 593 spin_lock_irqsave(&zone->lru_lock, flags); 594 } 595 VM_BUG_ON(!PageLRU(page)); 596 __ClearPageLRU(page); 597 del_page_from_lru(zone, page); 598 } 599 600 if (!pagevec_add(&pages_to_free, page)) { 601 if (zone) { 602 spin_unlock_irqrestore(&zone->lru_lock, flags); 603 zone = NULL; 604 } 605 __pagevec_free(&pages_to_free); 606 pagevec_reinit(&pages_to_free); 607 } 608 } 609 if (zone) 610 spin_unlock_irqrestore(&zone->lru_lock, flags); 611 612 pagevec_free(&pages_to_free); 613 } 614 EXPORT_SYMBOL(release_pages); 615 616 /* 617 * The pages which we're about to release may be in the deferred lru-addition 618 * queues. That would prevent them from really being freed right now. That's 619 * OK from a correctness point of view but is inefficient - those pages may be 620 * cache-warm and we want to give them back to the page allocator ASAP. 621 * 622 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 623 * and __pagevec_lru_add_active() call release_pages() directly to avoid 624 * mutual recursion. 625 */ 626 void __pagevec_release(struct pagevec *pvec) 627 { 628 lru_add_drain(); 629 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); 630 pagevec_reinit(pvec); 631 } 632 633 EXPORT_SYMBOL(__pagevec_release); 634 635 /* used by __split_huge_page_refcount() */ 636 void lru_add_page_tail(struct zone* zone, 637 struct page *page, struct page *page_tail) 638 { 639 int active; 640 enum lru_list lru; 641 const int file = 0; 642 struct list_head *head; 643 644 VM_BUG_ON(!PageHead(page)); 645 VM_BUG_ON(PageCompound(page_tail)); 646 VM_BUG_ON(PageLRU(page_tail)); 647 VM_BUG_ON(!spin_is_locked(&zone->lru_lock)); 648 649 SetPageLRU(page_tail); 650 651 if (page_evictable(page_tail, NULL)) { 652 if (PageActive(page)) { 653 SetPageActive(page_tail); 654 active = 1; 655 lru = LRU_ACTIVE_ANON; 656 } else { 657 active = 0; 658 lru = LRU_INACTIVE_ANON; 659 } 660 update_page_reclaim_stat(zone, page_tail, file, active); 661 if (likely(PageLRU(page))) 662 head = page->lru.prev; 663 else 664 head = &zone->lru[lru].list; 665 __add_page_to_lru_list(zone, page_tail, lru, head); 666 } else { 667 SetPageUnevictable(page_tail); 668 add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE); 669 } 670 } 671 672 static void ____pagevec_lru_add_fn(struct page *page, void *arg) 673 { 674 enum lru_list lru = (enum lru_list)arg; 675 struct zone *zone = page_zone(page); 676 int file = is_file_lru(lru); 677 int active = is_active_lru(lru); 678 679 VM_BUG_ON(PageActive(page)); 680 VM_BUG_ON(PageUnevictable(page)); 681 VM_BUG_ON(PageLRU(page)); 682 683 SetPageLRU(page); 684 if (active) 685 SetPageActive(page); 686 update_page_reclaim_stat(zone, page, file, active); 687 add_page_to_lru_list(zone, page, lru); 688 } 689 690 /* 691 * Add the passed pages to the LRU, then drop the caller's refcount 692 * on them. Reinitialises the caller's pagevec. 693 */ 694 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru) 695 { 696 VM_BUG_ON(is_unevictable_lru(lru)); 697 698 pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru); 699 } 700 701 EXPORT_SYMBOL(____pagevec_lru_add); 702 703 /* 704 * Try to drop buffers from the pages in a pagevec 705 */ 706 void pagevec_strip(struct pagevec *pvec) 707 { 708 int i; 709 710 for (i = 0; i < pagevec_count(pvec); i++) { 711 struct page *page = pvec->pages[i]; 712 713 if (page_has_private(page) && trylock_page(page)) { 714 if (page_has_private(page)) 715 try_to_release_page(page, 0); 716 unlock_page(page); 717 } 718 } 719 } 720 721 /** 722 * pagevec_lookup - gang pagecache lookup 723 * @pvec: Where the resulting pages are placed 724 * @mapping: The address_space to search 725 * @start: The starting page index 726 * @nr_pages: The maximum number of pages 727 * 728 * pagevec_lookup() will search for and return a group of up to @nr_pages pages 729 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a 730 * reference against the pages in @pvec. 731 * 732 * The search returns a group of mapping-contiguous pages with ascending 733 * indexes. There may be holes in the indices due to not-present pages. 734 * 735 * pagevec_lookup() returns the number of pages which were found. 736 */ 737 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, 738 pgoff_t start, unsigned nr_pages) 739 { 740 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); 741 return pagevec_count(pvec); 742 } 743 744 EXPORT_SYMBOL(pagevec_lookup); 745 746 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, 747 pgoff_t *index, int tag, unsigned nr_pages) 748 { 749 pvec->nr = find_get_pages_tag(mapping, index, tag, 750 nr_pages, pvec->pages); 751 return pagevec_count(pvec); 752 } 753 754 EXPORT_SYMBOL(pagevec_lookup_tag); 755 756 /* 757 * Perform any setup for the swap system 758 */ 759 void __init swap_setup(void) 760 { 761 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); 762 763 #ifdef CONFIG_SWAP 764 bdi_init(swapper_space.backing_dev_info); 765 #endif 766 767 /* Use a smaller cluster for small-memory machines */ 768 if (megs < 16) 769 page_cluster = 2; 770 else 771 page_cluster = 3; 772 /* 773 * Right now other parts of the system means that we 774 * _really_ don't want to cluster much more 775 */ 776 } 777