xref: /openbmc/linux/mm/swap.c (revision 80ecbd24)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 
35 #include "internal.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/pagemap.h>
39 
40 /* How many pages do we try to swap or page in/out together? */
41 int page_cluster;
42 
43 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
44 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
45 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
46 
47 /*
48  * This path almost never happens for VM activity - pages are normally
49  * freed via pagevecs.  But it gets used by networking.
50  */
51 static void __page_cache_release(struct page *page)
52 {
53 	if (PageLRU(page)) {
54 		struct zone *zone = page_zone(page);
55 		struct lruvec *lruvec;
56 		unsigned long flags;
57 
58 		spin_lock_irqsave(&zone->lru_lock, flags);
59 		lruvec = mem_cgroup_page_lruvec(page, zone);
60 		VM_BUG_ON(!PageLRU(page));
61 		__ClearPageLRU(page);
62 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
63 		spin_unlock_irqrestore(&zone->lru_lock, flags);
64 	}
65 }
66 
67 static void __put_single_page(struct page *page)
68 {
69 	__page_cache_release(page);
70 	free_hot_cold_page(page, 0);
71 }
72 
73 static void __put_compound_page(struct page *page)
74 {
75 	compound_page_dtor *dtor;
76 
77 	__page_cache_release(page);
78 	dtor = get_compound_page_dtor(page);
79 	(*dtor)(page);
80 }
81 
82 static void put_compound_page(struct page *page)
83 {
84 	if (unlikely(PageTail(page))) {
85 		/* __split_huge_page_refcount can run under us */
86 		struct page *page_head = compound_trans_head(page);
87 
88 		if (likely(page != page_head &&
89 			   get_page_unless_zero(page_head))) {
90 			unsigned long flags;
91 
92 			/*
93 			 * THP can not break up slab pages so avoid taking
94 			 * compound_lock().  Slab performs non-atomic bit ops
95 			 * on page->flags for better performance.  In particular
96 			 * slab_unlock() in slub used to be a hot path.  It is
97 			 * still hot on arches that do not support
98 			 * this_cpu_cmpxchg_double().
99 			 */
100 			if (PageSlab(page_head)) {
101 				if (PageTail(page)) {
102 					if (put_page_testzero(page_head))
103 						VM_BUG_ON(1);
104 
105 					atomic_dec(&page->_mapcount);
106 					goto skip_lock_tail;
107 				} else
108 					goto skip_lock;
109 			}
110 			/*
111 			 * page_head wasn't a dangling pointer but it
112 			 * may not be a head page anymore by the time
113 			 * we obtain the lock. That is ok as long as it
114 			 * can't be freed from under us.
115 			 */
116 			flags = compound_lock_irqsave(page_head);
117 			if (unlikely(!PageTail(page))) {
118 				/* __split_huge_page_refcount run before us */
119 				compound_unlock_irqrestore(page_head, flags);
120 skip_lock:
121 				if (put_page_testzero(page_head))
122 					__put_single_page(page_head);
123 out_put_single:
124 				if (put_page_testzero(page))
125 					__put_single_page(page);
126 				return;
127 			}
128 			VM_BUG_ON(page_head != page->first_page);
129 			/*
130 			 * We can release the refcount taken by
131 			 * get_page_unless_zero() now that
132 			 * __split_huge_page_refcount() is blocked on
133 			 * the compound_lock.
134 			 */
135 			if (put_page_testzero(page_head))
136 				VM_BUG_ON(1);
137 			/* __split_huge_page_refcount will wait now */
138 			VM_BUG_ON(page_mapcount(page) <= 0);
139 			atomic_dec(&page->_mapcount);
140 			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
141 			VM_BUG_ON(atomic_read(&page->_count) != 0);
142 			compound_unlock_irqrestore(page_head, flags);
143 
144 skip_lock_tail:
145 			if (put_page_testzero(page_head)) {
146 				if (PageHead(page_head))
147 					__put_compound_page(page_head);
148 				else
149 					__put_single_page(page_head);
150 			}
151 		} else {
152 			/* page_head is a dangling pointer */
153 			VM_BUG_ON(PageTail(page));
154 			goto out_put_single;
155 		}
156 	} else if (put_page_testzero(page)) {
157 		if (PageHead(page))
158 			__put_compound_page(page);
159 		else
160 			__put_single_page(page);
161 	}
162 }
163 
164 void put_page(struct page *page)
165 {
166 	if (unlikely(PageCompound(page)))
167 		put_compound_page(page);
168 	else if (put_page_testzero(page))
169 		__put_single_page(page);
170 }
171 EXPORT_SYMBOL(put_page);
172 
173 /*
174  * This function is exported but must not be called by anything other
175  * than get_page(). It implements the slow path of get_page().
176  */
177 bool __get_page_tail(struct page *page)
178 {
179 	/*
180 	 * This takes care of get_page() if run on a tail page
181 	 * returned by one of the get_user_pages/follow_page variants.
182 	 * get_user_pages/follow_page itself doesn't need the compound
183 	 * lock because it runs __get_page_tail_foll() under the
184 	 * proper PT lock that already serializes against
185 	 * split_huge_page().
186 	 */
187 	unsigned long flags;
188 	bool got = false;
189 	struct page *page_head = compound_trans_head(page);
190 
191 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
192 
193 		/* Ref to put_compound_page() comment. */
194 		if (PageSlab(page_head)) {
195 			if (likely(PageTail(page))) {
196 				__get_page_tail_foll(page, false);
197 				return true;
198 			} else {
199 				put_page(page_head);
200 				return false;
201 			}
202 		}
203 
204 		/*
205 		 * page_head wasn't a dangling pointer but it
206 		 * may not be a head page anymore by the time
207 		 * we obtain the lock. That is ok as long as it
208 		 * can't be freed from under us.
209 		 */
210 		flags = compound_lock_irqsave(page_head);
211 		/* here __split_huge_page_refcount won't run anymore */
212 		if (likely(PageTail(page))) {
213 			__get_page_tail_foll(page, false);
214 			got = true;
215 		}
216 		compound_unlock_irqrestore(page_head, flags);
217 		if (unlikely(!got))
218 			put_page(page_head);
219 	}
220 	return got;
221 }
222 EXPORT_SYMBOL(__get_page_tail);
223 
224 /**
225  * put_pages_list() - release a list of pages
226  * @pages: list of pages threaded on page->lru
227  *
228  * Release a list of pages which are strung together on page.lru.  Currently
229  * used by read_cache_pages() and related error recovery code.
230  */
231 void put_pages_list(struct list_head *pages)
232 {
233 	while (!list_empty(pages)) {
234 		struct page *victim;
235 
236 		victim = list_entry(pages->prev, struct page, lru);
237 		list_del(&victim->lru);
238 		page_cache_release(victim);
239 	}
240 }
241 EXPORT_SYMBOL(put_pages_list);
242 
243 /*
244  * get_kernel_pages() - pin kernel pages in memory
245  * @kiov:	An array of struct kvec structures
246  * @nr_segs:	number of segments to pin
247  * @write:	pinning for read/write, currently ignored
248  * @pages:	array that receives pointers to the pages pinned.
249  *		Should be at least nr_segs long.
250  *
251  * Returns number of pages pinned. This may be fewer than the number
252  * requested. If nr_pages is 0 or negative, returns 0. If no pages
253  * were pinned, returns -errno. Each page returned must be released
254  * with a put_page() call when it is finished with.
255  */
256 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
257 		struct page **pages)
258 {
259 	int seg;
260 
261 	for (seg = 0; seg < nr_segs; seg++) {
262 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
263 			return seg;
264 
265 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
266 		page_cache_get(pages[seg]);
267 	}
268 
269 	return seg;
270 }
271 EXPORT_SYMBOL_GPL(get_kernel_pages);
272 
273 /*
274  * get_kernel_page() - pin a kernel page in memory
275  * @start:	starting kernel address
276  * @write:	pinning for read/write, currently ignored
277  * @pages:	array that receives pointer to the page pinned.
278  *		Must be at least nr_segs long.
279  *
280  * Returns 1 if page is pinned. If the page was not pinned, returns
281  * -errno. The page returned must be released with a put_page() call
282  * when it is finished with.
283  */
284 int get_kernel_page(unsigned long start, int write, struct page **pages)
285 {
286 	const struct kvec kiov = {
287 		.iov_base = (void *)start,
288 		.iov_len = PAGE_SIZE
289 	};
290 
291 	return get_kernel_pages(&kiov, 1, write, pages);
292 }
293 EXPORT_SYMBOL_GPL(get_kernel_page);
294 
295 static void pagevec_lru_move_fn(struct pagevec *pvec,
296 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
297 	void *arg)
298 {
299 	int i;
300 	struct zone *zone = NULL;
301 	struct lruvec *lruvec;
302 	unsigned long flags = 0;
303 
304 	for (i = 0; i < pagevec_count(pvec); i++) {
305 		struct page *page = pvec->pages[i];
306 		struct zone *pagezone = page_zone(page);
307 
308 		if (pagezone != zone) {
309 			if (zone)
310 				spin_unlock_irqrestore(&zone->lru_lock, flags);
311 			zone = pagezone;
312 			spin_lock_irqsave(&zone->lru_lock, flags);
313 		}
314 
315 		lruvec = mem_cgroup_page_lruvec(page, zone);
316 		(*move_fn)(page, lruvec, arg);
317 	}
318 	if (zone)
319 		spin_unlock_irqrestore(&zone->lru_lock, flags);
320 	release_pages(pvec->pages, pvec->nr, pvec->cold);
321 	pagevec_reinit(pvec);
322 }
323 
324 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
325 				 void *arg)
326 {
327 	int *pgmoved = arg;
328 
329 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
330 		enum lru_list lru = page_lru_base_type(page);
331 		list_move_tail(&page->lru, &lruvec->lists[lru]);
332 		(*pgmoved)++;
333 	}
334 }
335 
336 /*
337  * pagevec_move_tail() must be called with IRQ disabled.
338  * Otherwise this may cause nasty races.
339  */
340 static void pagevec_move_tail(struct pagevec *pvec)
341 {
342 	int pgmoved = 0;
343 
344 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
345 	__count_vm_events(PGROTATED, pgmoved);
346 }
347 
348 /*
349  * Writeback is about to end against a page which has been marked for immediate
350  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
351  * inactive list.
352  */
353 void rotate_reclaimable_page(struct page *page)
354 {
355 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
356 	    !PageUnevictable(page) && PageLRU(page)) {
357 		struct pagevec *pvec;
358 		unsigned long flags;
359 
360 		page_cache_get(page);
361 		local_irq_save(flags);
362 		pvec = &__get_cpu_var(lru_rotate_pvecs);
363 		if (!pagevec_add(pvec, page))
364 			pagevec_move_tail(pvec);
365 		local_irq_restore(flags);
366 	}
367 }
368 
369 static void update_page_reclaim_stat(struct lruvec *lruvec,
370 				     int file, int rotated)
371 {
372 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
373 
374 	reclaim_stat->recent_scanned[file]++;
375 	if (rotated)
376 		reclaim_stat->recent_rotated[file]++;
377 }
378 
379 static void __activate_page(struct page *page, struct lruvec *lruvec,
380 			    void *arg)
381 {
382 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
383 		int file = page_is_file_cache(page);
384 		int lru = page_lru_base_type(page);
385 
386 		del_page_from_lru_list(page, lruvec, lru);
387 		SetPageActive(page);
388 		lru += LRU_ACTIVE;
389 		add_page_to_lru_list(page, lruvec, lru);
390 		trace_mm_lru_activate(page, page_to_pfn(page));
391 
392 		__count_vm_event(PGACTIVATE);
393 		update_page_reclaim_stat(lruvec, file, 1);
394 	}
395 }
396 
397 #ifdef CONFIG_SMP
398 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
399 
400 static void activate_page_drain(int cpu)
401 {
402 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
403 
404 	if (pagevec_count(pvec))
405 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
406 }
407 
408 void activate_page(struct page *page)
409 {
410 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
411 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
412 
413 		page_cache_get(page);
414 		if (!pagevec_add(pvec, page))
415 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
416 		put_cpu_var(activate_page_pvecs);
417 	}
418 }
419 
420 #else
421 static inline void activate_page_drain(int cpu)
422 {
423 }
424 
425 void activate_page(struct page *page)
426 {
427 	struct zone *zone = page_zone(page);
428 
429 	spin_lock_irq(&zone->lru_lock);
430 	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
431 	spin_unlock_irq(&zone->lru_lock);
432 }
433 #endif
434 
435 static void __lru_cache_activate_page(struct page *page)
436 {
437 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
438 	int i;
439 
440 	/*
441 	 * Search backwards on the optimistic assumption that the page being
442 	 * activated has just been added to this pagevec. Note that only
443 	 * the local pagevec is examined as a !PageLRU page could be in the
444 	 * process of being released, reclaimed, migrated or on a remote
445 	 * pagevec that is currently being drained. Furthermore, marking
446 	 * a remote pagevec's page PageActive potentially hits a race where
447 	 * a page is marked PageActive just after it is added to the inactive
448 	 * list causing accounting errors and BUG_ON checks to trigger.
449 	 */
450 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
451 		struct page *pagevec_page = pvec->pages[i];
452 
453 		if (pagevec_page == page) {
454 			SetPageActive(page);
455 			break;
456 		}
457 	}
458 
459 	put_cpu_var(lru_add_pvec);
460 }
461 
462 /*
463  * Mark a page as having seen activity.
464  *
465  * inactive,unreferenced	->	inactive,referenced
466  * inactive,referenced		->	active,unreferenced
467  * active,unreferenced		->	active,referenced
468  */
469 void mark_page_accessed(struct page *page)
470 {
471 	if (!PageActive(page) && !PageUnevictable(page) &&
472 			PageReferenced(page)) {
473 
474 		/*
475 		 * If the page is on the LRU, queue it for activation via
476 		 * activate_page_pvecs. Otherwise, assume the page is on a
477 		 * pagevec, mark it active and it'll be moved to the active
478 		 * LRU on the next drain.
479 		 */
480 		if (PageLRU(page))
481 			activate_page(page);
482 		else
483 			__lru_cache_activate_page(page);
484 		ClearPageReferenced(page);
485 	} else if (!PageReferenced(page)) {
486 		SetPageReferenced(page);
487 	}
488 }
489 EXPORT_SYMBOL(mark_page_accessed);
490 
491 /*
492  * Queue the page for addition to the LRU via pagevec. The decision on whether
493  * to add the page to the [in]active [file|anon] list is deferred until the
494  * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
495  * have the page added to the active list using mark_page_accessed().
496  */
497 void __lru_cache_add(struct page *page)
498 {
499 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
500 
501 	page_cache_get(page);
502 	if (!pagevec_space(pvec))
503 		__pagevec_lru_add(pvec);
504 	pagevec_add(pvec, page);
505 	put_cpu_var(lru_add_pvec);
506 }
507 EXPORT_SYMBOL(__lru_cache_add);
508 
509 /**
510  * lru_cache_add - add a page to a page list
511  * @page: the page to be added to the LRU.
512  */
513 void lru_cache_add(struct page *page)
514 {
515 	VM_BUG_ON(PageActive(page) && PageUnevictable(page));
516 	VM_BUG_ON(PageLRU(page));
517 	__lru_cache_add(page);
518 }
519 
520 /**
521  * add_page_to_unevictable_list - add a page to the unevictable list
522  * @page:  the page to be added to the unevictable list
523  *
524  * Add page directly to its zone's unevictable list.  To avoid races with
525  * tasks that might be making the page evictable, through eg. munlock,
526  * munmap or exit, while it's not on the lru, we want to add the page
527  * while it's locked or otherwise "invisible" to other tasks.  This is
528  * difficult to do when using the pagevec cache, so bypass that.
529  */
530 void add_page_to_unevictable_list(struct page *page)
531 {
532 	struct zone *zone = page_zone(page);
533 	struct lruvec *lruvec;
534 
535 	spin_lock_irq(&zone->lru_lock);
536 	lruvec = mem_cgroup_page_lruvec(page, zone);
537 	ClearPageActive(page);
538 	SetPageUnevictable(page);
539 	SetPageLRU(page);
540 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
541 	spin_unlock_irq(&zone->lru_lock);
542 }
543 
544 /*
545  * If the page can not be invalidated, it is moved to the
546  * inactive list to speed up its reclaim.  It is moved to the
547  * head of the list, rather than the tail, to give the flusher
548  * threads some time to write it out, as this is much more
549  * effective than the single-page writeout from reclaim.
550  *
551  * If the page isn't page_mapped and dirty/writeback, the page
552  * could reclaim asap using PG_reclaim.
553  *
554  * 1. active, mapped page -> none
555  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
556  * 3. inactive, mapped page -> none
557  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
558  * 5. inactive, clean -> inactive, tail
559  * 6. Others -> none
560  *
561  * In 4, why it moves inactive's head, the VM expects the page would
562  * be write it out by flusher threads as this is much more effective
563  * than the single-page writeout from reclaim.
564  */
565 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
566 			      void *arg)
567 {
568 	int lru, file;
569 	bool active;
570 
571 	if (!PageLRU(page))
572 		return;
573 
574 	if (PageUnevictable(page))
575 		return;
576 
577 	/* Some processes are using the page */
578 	if (page_mapped(page))
579 		return;
580 
581 	active = PageActive(page);
582 	file = page_is_file_cache(page);
583 	lru = page_lru_base_type(page);
584 
585 	del_page_from_lru_list(page, lruvec, lru + active);
586 	ClearPageActive(page);
587 	ClearPageReferenced(page);
588 	add_page_to_lru_list(page, lruvec, lru);
589 
590 	if (PageWriteback(page) || PageDirty(page)) {
591 		/*
592 		 * PG_reclaim could be raced with end_page_writeback
593 		 * It can make readahead confusing.  But race window
594 		 * is _really_ small and  it's non-critical problem.
595 		 */
596 		SetPageReclaim(page);
597 	} else {
598 		/*
599 		 * The page's writeback ends up during pagevec
600 		 * We moves tha page into tail of inactive.
601 		 */
602 		list_move_tail(&page->lru, &lruvec->lists[lru]);
603 		__count_vm_event(PGROTATED);
604 	}
605 
606 	if (active)
607 		__count_vm_event(PGDEACTIVATE);
608 	update_page_reclaim_stat(lruvec, file, 0);
609 }
610 
611 /*
612  * Drain pages out of the cpu's pagevecs.
613  * Either "cpu" is the current CPU, and preemption has already been
614  * disabled; or "cpu" is being hot-unplugged, and is already dead.
615  */
616 void lru_add_drain_cpu(int cpu)
617 {
618 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
619 
620 	if (pagevec_count(pvec))
621 		__pagevec_lru_add(pvec);
622 
623 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
624 	if (pagevec_count(pvec)) {
625 		unsigned long flags;
626 
627 		/* No harm done if a racing interrupt already did this */
628 		local_irq_save(flags);
629 		pagevec_move_tail(pvec);
630 		local_irq_restore(flags);
631 	}
632 
633 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
634 	if (pagevec_count(pvec))
635 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
636 
637 	activate_page_drain(cpu);
638 }
639 
640 /**
641  * deactivate_page - forcefully deactivate a page
642  * @page: page to deactivate
643  *
644  * This function hints the VM that @page is a good reclaim candidate,
645  * for example if its invalidation fails due to the page being dirty
646  * or under writeback.
647  */
648 void deactivate_page(struct page *page)
649 {
650 	/*
651 	 * In a workload with many unevictable page such as mprotect, unevictable
652 	 * page deactivation for accelerating reclaim is pointless.
653 	 */
654 	if (PageUnevictable(page))
655 		return;
656 
657 	if (likely(get_page_unless_zero(page))) {
658 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
659 
660 		if (!pagevec_add(pvec, page))
661 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
662 		put_cpu_var(lru_deactivate_pvecs);
663 	}
664 }
665 
666 void lru_add_drain(void)
667 {
668 	lru_add_drain_cpu(get_cpu());
669 	put_cpu();
670 }
671 
672 static void lru_add_drain_per_cpu(struct work_struct *dummy)
673 {
674 	lru_add_drain();
675 }
676 
677 /*
678  * Returns 0 for success
679  */
680 int lru_add_drain_all(void)
681 {
682 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
683 }
684 
685 /*
686  * Batched page_cache_release().  Decrement the reference count on all the
687  * passed pages.  If it fell to zero then remove the page from the LRU and
688  * free it.
689  *
690  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
691  * for the remainder of the operation.
692  *
693  * The locking in this function is against shrink_inactive_list(): we recheck
694  * the page count inside the lock to see whether shrink_inactive_list()
695  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
696  * will free it.
697  */
698 void release_pages(struct page **pages, int nr, int cold)
699 {
700 	int i;
701 	LIST_HEAD(pages_to_free);
702 	struct zone *zone = NULL;
703 	struct lruvec *lruvec;
704 	unsigned long uninitialized_var(flags);
705 
706 	for (i = 0; i < nr; i++) {
707 		struct page *page = pages[i];
708 
709 		if (unlikely(PageCompound(page))) {
710 			if (zone) {
711 				spin_unlock_irqrestore(&zone->lru_lock, flags);
712 				zone = NULL;
713 			}
714 			put_compound_page(page);
715 			continue;
716 		}
717 
718 		if (!put_page_testzero(page))
719 			continue;
720 
721 		if (PageLRU(page)) {
722 			struct zone *pagezone = page_zone(page);
723 
724 			if (pagezone != zone) {
725 				if (zone)
726 					spin_unlock_irqrestore(&zone->lru_lock,
727 									flags);
728 				zone = pagezone;
729 				spin_lock_irqsave(&zone->lru_lock, flags);
730 			}
731 
732 			lruvec = mem_cgroup_page_lruvec(page, zone);
733 			VM_BUG_ON(!PageLRU(page));
734 			__ClearPageLRU(page);
735 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
736 		}
737 
738 		/* Clear Active bit in case of parallel mark_page_accessed */
739 		ClearPageActive(page);
740 
741 		list_add(&page->lru, &pages_to_free);
742 	}
743 	if (zone)
744 		spin_unlock_irqrestore(&zone->lru_lock, flags);
745 
746 	free_hot_cold_page_list(&pages_to_free, cold);
747 }
748 EXPORT_SYMBOL(release_pages);
749 
750 /*
751  * The pages which we're about to release may be in the deferred lru-addition
752  * queues.  That would prevent them from really being freed right now.  That's
753  * OK from a correctness point of view but is inefficient - those pages may be
754  * cache-warm and we want to give them back to the page allocator ASAP.
755  *
756  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
757  * and __pagevec_lru_add_active() call release_pages() directly to avoid
758  * mutual recursion.
759  */
760 void __pagevec_release(struct pagevec *pvec)
761 {
762 	lru_add_drain();
763 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
764 	pagevec_reinit(pvec);
765 }
766 EXPORT_SYMBOL(__pagevec_release);
767 
768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
769 /* used by __split_huge_page_refcount() */
770 void lru_add_page_tail(struct page *page, struct page *page_tail,
771 		       struct lruvec *lruvec, struct list_head *list)
772 {
773 	const int file = 0;
774 
775 	VM_BUG_ON(!PageHead(page));
776 	VM_BUG_ON(PageCompound(page_tail));
777 	VM_BUG_ON(PageLRU(page_tail));
778 	VM_BUG_ON(NR_CPUS != 1 &&
779 		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
780 
781 	if (!list)
782 		SetPageLRU(page_tail);
783 
784 	if (likely(PageLRU(page)))
785 		list_add_tail(&page_tail->lru, &page->lru);
786 	else if (list) {
787 		/* page reclaim is reclaiming a huge page */
788 		get_page(page_tail);
789 		list_add_tail(&page_tail->lru, list);
790 	} else {
791 		struct list_head *list_head;
792 		/*
793 		 * Head page has not yet been counted, as an hpage,
794 		 * so we must account for each subpage individually.
795 		 *
796 		 * Use the standard add function to put page_tail on the list,
797 		 * but then correct its position so they all end up in order.
798 		 */
799 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
800 		list_head = page_tail->lru.prev;
801 		list_move_tail(&page_tail->lru, list_head);
802 	}
803 
804 	if (!PageUnevictable(page))
805 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
806 }
807 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
808 
809 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
810 				 void *arg)
811 {
812 	int file = page_is_file_cache(page);
813 	int active = PageActive(page);
814 	enum lru_list lru = page_lru(page);
815 
816 	VM_BUG_ON(PageLRU(page));
817 
818 	SetPageLRU(page);
819 	add_page_to_lru_list(page, lruvec, lru);
820 	update_page_reclaim_stat(lruvec, file, active);
821 	trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
822 }
823 
824 /*
825  * Add the passed pages to the LRU, then drop the caller's refcount
826  * on them.  Reinitialises the caller's pagevec.
827  */
828 void __pagevec_lru_add(struct pagevec *pvec)
829 {
830 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
831 }
832 EXPORT_SYMBOL(__pagevec_lru_add);
833 
834 /**
835  * pagevec_lookup - gang pagecache lookup
836  * @pvec:	Where the resulting pages are placed
837  * @mapping:	The address_space to search
838  * @start:	The starting page index
839  * @nr_pages:	The maximum number of pages
840  *
841  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
842  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
843  * reference against the pages in @pvec.
844  *
845  * The search returns a group of mapping-contiguous pages with ascending
846  * indexes.  There may be holes in the indices due to not-present pages.
847  *
848  * pagevec_lookup() returns the number of pages which were found.
849  */
850 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
851 		pgoff_t start, unsigned nr_pages)
852 {
853 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
854 	return pagevec_count(pvec);
855 }
856 EXPORT_SYMBOL(pagevec_lookup);
857 
858 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
859 		pgoff_t *index, int tag, unsigned nr_pages)
860 {
861 	pvec->nr = find_get_pages_tag(mapping, index, tag,
862 					nr_pages, pvec->pages);
863 	return pagevec_count(pvec);
864 }
865 EXPORT_SYMBOL(pagevec_lookup_tag);
866 
867 /*
868  * Perform any setup for the swap system
869  */
870 void __init swap_setup(void)
871 {
872 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
873 #ifdef CONFIG_SWAP
874 	int i;
875 
876 	bdi_init(swapper_spaces[0].backing_dev_info);
877 	for (i = 0; i < MAX_SWAPFILES; i++) {
878 		spin_lock_init(&swapper_spaces[i].tree_lock);
879 		INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
880 	}
881 #endif
882 
883 	/* Use a smaller cluster for small-memory machines */
884 	if (megs < 16)
885 		page_cluster = 2;
886 	else
887 		page_cluster = 3;
888 	/*
889 	 * Right now other parts of the system means that we
890 	 * _really_ don't want to cluster much more
891 	 */
892 }
893