1 /* 2 * linux/mm/swap.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file contains the default values for the operation of the 9 * Linux VM subsystem. Fine-tuning documentation can be found in 10 * Documentation/sysctl/vm.txt. 11 * Started 18.12.91 12 * Swap aging added 23.2.95, Stephen Tweedie. 13 * Buffermem limits added 12.3.98, Rik van Riel. 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/swap.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/pagevec.h> 23 #include <linux/init.h> 24 #include <linux/export.h> 25 #include <linux/mm_inline.h> 26 #include <linux/percpu_counter.h> 27 #include <linux/memremap.h> 28 #include <linux/percpu.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/backing-dev.h> 32 #include <linux/memcontrol.h> 33 #include <linux/gfp.h> 34 #include <linux/uio.h> 35 #include <linux/hugetlb.h> 36 #include <linux/page_idle.h> 37 38 #include "internal.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/pagemap.h> 42 43 /* How many pages do we try to swap or page in/out together? */ 44 int page_cluster; 45 46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec); 47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); 48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs); 49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs); 50 #ifdef CONFIG_SMP 51 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); 52 #endif 53 54 /* 55 * This path almost never happens for VM activity - pages are normally 56 * freed via pagevecs. But it gets used by networking. 57 */ 58 static void __page_cache_release(struct page *page) 59 { 60 if (PageLRU(page)) { 61 struct zone *zone = page_zone(page); 62 struct lruvec *lruvec; 63 unsigned long flags; 64 65 spin_lock_irqsave(&zone->lru_lock, flags); 66 lruvec = mem_cgroup_page_lruvec(page, zone); 67 VM_BUG_ON_PAGE(!PageLRU(page), page); 68 __ClearPageLRU(page); 69 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 70 spin_unlock_irqrestore(&zone->lru_lock, flags); 71 } 72 mem_cgroup_uncharge(page); 73 } 74 75 static void __put_single_page(struct page *page) 76 { 77 __page_cache_release(page); 78 free_hot_cold_page(page, false); 79 } 80 81 static void __put_compound_page(struct page *page) 82 { 83 compound_page_dtor *dtor; 84 85 /* 86 * __page_cache_release() is supposed to be called for thp, not for 87 * hugetlb. This is because hugetlb page does never have PageLRU set 88 * (it's never listed to any LRU lists) and no memcg routines should 89 * be called for hugetlb (it has a separate hugetlb_cgroup.) 90 */ 91 if (!PageHuge(page)) 92 __page_cache_release(page); 93 dtor = get_compound_page_dtor(page); 94 (*dtor)(page); 95 } 96 97 void __put_page(struct page *page) 98 { 99 if (unlikely(PageCompound(page))) 100 __put_compound_page(page); 101 else 102 __put_single_page(page); 103 } 104 EXPORT_SYMBOL(__put_page); 105 106 /** 107 * put_pages_list() - release a list of pages 108 * @pages: list of pages threaded on page->lru 109 * 110 * Release a list of pages which are strung together on page.lru. Currently 111 * used by read_cache_pages() and related error recovery code. 112 */ 113 void put_pages_list(struct list_head *pages) 114 { 115 while (!list_empty(pages)) { 116 struct page *victim; 117 118 victim = list_entry(pages->prev, struct page, lru); 119 list_del(&victim->lru); 120 put_page(victim); 121 } 122 } 123 EXPORT_SYMBOL(put_pages_list); 124 125 /* 126 * get_kernel_pages() - pin kernel pages in memory 127 * @kiov: An array of struct kvec structures 128 * @nr_segs: number of segments to pin 129 * @write: pinning for read/write, currently ignored 130 * @pages: array that receives pointers to the pages pinned. 131 * Should be at least nr_segs long. 132 * 133 * Returns number of pages pinned. This may be fewer than the number 134 * requested. If nr_pages is 0 or negative, returns 0. If no pages 135 * were pinned, returns -errno. Each page returned must be released 136 * with a put_page() call when it is finished with. 137 */ 138 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 139 struct page **pages) 140 { 141 int seg; 142 143 for (seg = 0; seg < nr_segs; seg++) { 144 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 145 return seg; 146 147 pages[seg] = kmap_to_page(kiov[seg].iov_base); 148 get_page(pages[seg]); 149 } 150 151 return seg; 152 } 153 EXPORT_SYMBOL_GPL(get_kernel_pages); 154 155 /* 156 * get_kernel_page() - pin a kernel page in memory 157 * @start: starting kernel address 158 * @write: pinning for read/write, currently ignored 159 * @pages: array that receives pointer to the page pinned. 160 * Must be at least nr_segs long. 161 * 162 * Returns 1 if page is pinned. If the page was not pinned, returns 163 * -errno. The page returned must be released with a put_page() call 164 * when it is finished with. 165 */ 166 int get_kernel_page(unsigned long start, int write, struct page **pages) 167 { 168 const struct kvec kiov = { 169 .iov_base = (void *)start, 170 .iov_len = PAGE_SIZE 171 }; 172 173 return get_kernel_pages(&kiov, 1, write, pages); 174 } 175 EXPORT_SYMBOL_GPL(get_kernel_page); 176 177 static void pagevec_lru_move_fn(struct pagevec *pvec, 178 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), 179 void *arg) 180 { 181 int i; 182 struct zone *zone = NULL; 183 struct lruvec *lruvec; 184 unsigned long flags = 0; 185 186 for (i = 0; i < pagevec_count(pvec); i++) { 187 struct page *page = pvec->pages[i]; 188 struct zone *pagezone = page_zone(page); 189 190 if (pagezone != zone) { 191 if (zone) 192 spin_unlock_irqrestore(&zone->lru_lock, flags); 193 zone = pagezone; 194 spin_lock_irqsave(&zone->lru_lock, flags); 195 } 196 197 lruvec = mem_cgroup_page_lruvec(page, zone); 198 (*move_fn)(page, lruvec, arg); 199 } 200 if (zone) 201 spin_unlock_irqrestore(&zone->lru_lock, flags); 202 release_pages(pvec->pages, pvec->nr, pvec->cold); 203 pagevec_reinit(pvec); 204 } 205 206 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, 207 void *arg) 208 { 209 int *pgmoved = arg; 210 211 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 212 enum lru_list lru = page_lru_base_type(page); 213 list_move_tail(&page->lru, &lruvec->lists[lru]); 214 (*pgmoved)++; 215 } 216 } 217 218 /* 219 * pagevec_move_tail() must be called with IRQ disabled. 220 * Otherwise this may cause nasty races. 221 */ 222 static void pagevec_move_tail(struct pagevec *pvec) 223 { 224 int pgmoved = 0; 225 226 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); 227 __count_vm_events(PGROTATED, pgmoved); 228 } 229 230 /* 231 * Writeback is about to end against a page which has been marked for immediate 232 * reclaim. If it still appears to be reclaimable, move it to the tail of the 233 * inactive list. 234 */ 235 void rotate_reclaimable_page(struct page *page) 236 { 237 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && 238 !PageUnevictable(page) && PageLRU(page)) { 239 struct pagevec *pvec; 240 unsigned long flags; 241 242 get_page(page); 243 local_irq_save(flags); 244 pvec = this_cpu_ptr(&lru_rotate_pvecs); 245 if (!pagevec_add(pvec, page)) 246 pagevec_move_tail(pvec); 247 local_irq_restore(flags); 248 } 249 } 250 251 static void update_page_reclaim_stat(struct lruvec *lruvec, 252 int file, int rotated) 253 { 254 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 255 256 reclaim_stat->recent_scanned[file]++; 257 if (rotated) 258 reclaim_stat->recent_rotated[file]++; 259 } 260 261 static void __activate_page(struct page *page, struct lruvec *lruvec, 262 void *arg) 263 { 264 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 265 int file = page_is_file_cache(page); 266 int lru = page_lru_base_type(page); 267 268 del_page_from_lru_list(page, lruvec, lru); 269 SetPageActive(page); 270 lru += LRU_ACTIVE; 271 add_page_to_lru_list(page, lruvec, lru); 272 trace_mm_lru_activate(page); 273 274 __count_vm_event(PGACTIVATE); 275 update_page_reclaim_stat(lruvec, file, 1); 276 } 277 } 278 279 #ifdef CONFIG_SMP 280 static void activate_page_drain(int cpu) 281 { 282 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); 283 284 if (pagevec_count(pvec)) 285 pagevec_lru_move_fn(pvec, __activate_page, NULL); 286 } 287 288 static bool need_activate_page_drain(int cpu) 289 { 290 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0; 291 } 292 293 void activate_page(struct page *page) 294 { 295 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 296 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); 297 298 get_page(page); 299 if (!pagevec_add(pvec, page)) 300 pagevec_lru_move_fn(pvec, __activate_page, NULL); 301 put_cpu_var(activate_page_pvecs); 302 } 303 } 304 305 #else 306 static inline void activate_page_drain(int cpu) 307 { 308 } 309 310 static bool need_activate_page_drain(int cpu) 311 { 312 return false; 313 } 314 315 void activate_page(struct page *page) 316 { 317 struct zone *zone = page_zone(page); 318 319 spin_lock_irq(&zone->lru_lock); 320 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL); 321 spin_unlock_irq(&zone->lru_lock); 322 } 323 #endif 324 325 static void __lru_cache_activate_page(struct page *page) 326 { 327 struct pagevec *pvec = &get_cpu_var(lru_add_pvec); 328 int i; 329 330 /* 331 * Search backwards on the optimistic assumption that the page being 332 * activated has just been added to this pagevec. Note that only 333 * the local pagevec is examined as a !PageLRU page could be in the 334 * process of being released, reclaimed, migrated or on a remote 335 * pagevec that is currently being drained. Furthermore, marking 336 * a remote pagevec's page PageActive potentially hits a race where 337 * a page is marked PageActive just after it is added to the inactive 338 * list causing accounting errors and BUG_ON checks to trigger. 339 */ 340 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 341 struct page *pagevec_page = pvec->pages[i]; 342 343 if (pagevec_page == page) { 344 SetPageActive(page); 345 break; 346 } 347 } 348 349 put_cpu_var(lru_add_pvec); 350 } 351 352 /* 353 * Mark a page as having seen activity. 354 * 355 * inactive,unreferenced -> inactive,referenced 356 * inactive,referenced -> active,unreferenced 357 * active,unreferenced -> active,referenced 358 * 359 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 360 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 361 */ 362 void mark_page_accessed(struct page *page) 363 { 364 page = compound_head(page); 365 if (!PageActive(page) && !PageUnevictable(page) && 366 PageReferenced(page)) { 367 368 /* 369 * If the page is on the LRU, queue it for activation via 370 * activate_page_pvecs. Otherwise, assume the page is on a 371 * pagevec, mark it active and it'll be moved to the active 372 * LRU on the next drain. 373 */ 374 if (PageLRU(page)) 375 activate_page(page); 376 else 377 __lru_cache_activate_page(page); 378 ClearPageReferenced(page); 379 if (page_is_file_cache(page)) 380 workingset_activation(page); 381 } else if (!PageReferenced(page)) { 382 SetPageReferenced(page); 383 } 384 if (page_is_idle(page)) 385 clear_page_idle(page); 386 } 387 EXPORT_SYMBOL(mark_page_accessed); 388 389 static void __lru_cache_add(struct page *page) 390 { 391 struct pagevec *pvec = &get_cpu_var(lru_add_pvec); 392 393 get_page(page); 394 if (!pagevec_space(pvec)) 395 __pagevec_lru_add(pvec); 396 pagevec_add(pvec, page); 397 put_cpu_var(lru_add_pvec); 398 } 399 400 /** 401 * lru_cache_add: add a page to the page lists 402 * @page: the page to add 403 */ 404 void lru_cache_add_anon(struct page *page) 405 { 406 if (PageActive(page)) 407 ClearPageActive(page); 408 __lru_cache_add(page); 409 } 410 411 void lru_cache_add_file(struct page *page) 412 { 413 if (PageActive(page)) 414 ClearPageActive(page); 415 __lru_cache_add(page); 416 } 417 EXPORT_SYMBOL(lru_cache_add_file); 418 419 /** 420 * lru_cache_add - add a page to a page list 421 * @page: the page to be added to the LRU. 422 * 423 * Queue the page for addition to the LRU via pagevec. The decision on whether 424 * to add the page to the [in]active [file|anon] list is deferred until the 425 * pagevec is drained. This gives a chance for the caller of lru_cache_add() 426 * have the page added to the active list using mark_page_accessed(). 427 */ 428 void lru_cache_add(struct page *page) 429 { 430 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); 431 VM_BUG_ON_PAGE(PageLRU(page), page); 432 __lru_cache_add(page); 433 } 434 435 /** 436 * add_page_to_unevictable_list - add a page to the unevictable list 437 * @page: the page to be added to the unevictable list 438 * 439 * Add page directly to its zone's unevictable list. To avoid races with 440 * tasks that might be making the page evictable, through eg. munlock, 441 * munmap or exit, while it's not on the lru, we want to add the page 442 * while it's locked or otherwise "invisible" to other tasks. This is 443 * difficult to do when using the pagevec cache, so bypass that. 444 */ 445 void add_page_to_unevictable_list(struct page *page) 446 { 447 struct zone *zone = page_zone(page); 448 struct lruvec *lruvec; 449 450 spin_lock_irq(&zone->lru_lock); 451 lruvec = mem_cgroup_page_lruvec(page, zone); 452 ClearPageActive(page); 453 SetPageUnevictable(page); 454 SetPageLRU(page); 455 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE); 456 spin_unlock_irq(&zone->lru_lock); 457 } 458 459 /** 460 * lru_cache_add_active_or_unevictable 461 * @page: the page to be added to LRU 462 * @vma: vma in which page is mapped for determining reclaimability 463 * 464 * Place @page on the active or unevictable LRU list, depending on its 465 * evictability. Note that if the page is not evictable, it goes 466 * directly back onto it's zone's unevictable list, it does NOT use a 467 * per cpu pagevec. 468 */ 469 void lru_cache_add_active_or_unevictable(struct page *page, 470 struct vm_area_struct *vma) 471 { 472 VM_BUG_ON_PAGE(PageLRU(page), page); 473 474 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) { 475 SetPageActive(page); 476 lru_cache_add(page); 477 return; 478 } 479 480 if (!TestSetPageMlocked(page)) { 481 /* 482 * We use the irq-unsafe __mod_zone_page_stat because this 483 * counter is not modified from interrupt context, and the pte 484 * lock is held(spinlock), which implies preemption disabled. 485 */ 486 __mod_zone_page_state(page_zone(page), NR_MLOCK, 487 hpage_nr_pages(page)); 488 count_vm_event(UNEVICTABLE_PGMLOCKED); 489 } 490 add_page_to_unevictable_list(page); 491 } 492 493 /* 494 * If the page can not be invalidated, it is moved to the 495 * inactive list to speed up its reclaim. It is moved to the 496 * head of the list, rather than the tail, to give the flusher 497 * threads some time to write it out, as this is much more 498 * effective than the single-page writeout from reclaim. 499 * 500 * If the page isn't page_mapped and dirty/writeback, the page 501 * could reclaim asap using PG_reclaim. 502 * 503 * 1. active, mapped page -> none 504 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 505 * 3. inactive, mapped page -> none 506 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 507 * 5. inactive, clean -> inactive, tail 508 * 6. Others -> none 509 * 510 * In 4, why it moves inactive's head, the VM expects the page would 511 * be write it out by flusher threads as this is much more effective 512 * than the single-page writeout from reclaim. 513 */ 514 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec, 515 void *arg) 516 { 517 int lru, file; 518 bool active; 519 520 if (!PageLRU(page)) 521 return; 522 523 if (PageUnevictable(page)) 524 return; 525 526 /* Some processes are using the page */ 527 if (page_mapped(page)) 528 return; 529 530 active = PageActive(page); 531 file = page_is_file_cache(page); 532 lru = page_lru_base_type(page); 533 534 del_page_from_lru_list(page, lruvec, lru + active); 535 ClearPageActive(page); 536 ClearPageReferenced(page); 537 add_page_to_lru_list(page, lruvec, lru); 538 539 if (PageWriteback(page) || PageDirty(page)) { 540 /* 541 * PG_reclaim could be raced with end_page_writeback 542 * It can make readahead confusing. But race window 543 * is _really_ small and it's non-critical problem. 544 */ 545 SetPageReclaim(page); 546 } else { 547 /* 548 * The page's writeback ends up during pagevec 549 * We moves tha page into tail of inactive. 550 */ 551 list_move_tail(&page->lru, &lruvec->lists[lru]); 552 __count_vm_event(PGROTATED); 553 } 554 555 if (active) 556 __count_vm_event(PGDEACTIVATE); 557 update_page_reclaim_stat(lruvec, file, 0); 558 } 559 560 561 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec, 562 void *arg) 563 { 564 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 565 int file = page_is_file_cache(page); 566 int lru = page_lru_base_type(page); 567 568 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE); 569 ClearPageActive(page); 570 ClearPageReferenced(page); 571 add_page_to_lru_list(page, lruvec, lru); 572 573 __count_vm_event(PGDEACTIVATE); 574 update_page_reclaim_stat(lruvec, file, 0); 575 } 576 } 577 578 /* 579 * Drain pages out of the cpu's pagevecs. 580 * Either "cpu" is the current CPU, and preemption has already been 581 * disabled; or "cpu" is being hot-unplugged, and is already dead. 582 */ 583 void lru_add_drain_cpu(int cpu) 584 { 585 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu); 586 587 if (pagevec_count(pvec)) 588 __pagevec_lru_add(pvec); 589 590 pvec = &per_cpu(lru_rotate_pvecs, cpu); 591 if (pagevec_count(pvec)) { 592 unsigned long flags; 593 594 /* No harm done if a racing interrupt already did this */ 595 local_irq_save(flags); 596 pagevec_move_tail(pvec); 597 local_irq_restore(flags); 598 } 599 600 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu); 601 if (pagevec_count(pvec)) 602 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 603 604 pvec = &per_cpu(lru_deactivate_pvecs, cpu); 605 if (pagevec_count(pvec)) 606 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 607 608 activate_page_drain(cpu); 609 } 610 611 /** 612 * deactivate_file_page - forcefully deactivate a file page 613 * @page: page to deactivate 614 * 615 * This function hints the VM that @page is a good reclaim candidate, 616 * for example if its invalidation fails due to the page being dirty 617 * or under writeback. 618 */ 619 void deactivate_file_page(struct page *page) 620 { 621 /* 622 * In a workload with many unevictable page such as mprotect, 623 * unevictable page deactivation for accelerating reclaim is pointless. 624 */ 625 if (PageUnevictable(page)) 626 return; 627 628 if (likely(get_page_unless_zero(page))) { 629 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs); 630 631 if (!pagevec_add(pvec, page)) 632 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 633 put_cpu_var(lru_deactivate_file_pvecs); 634 } 635 } 636 637 /** 638 * deactivate_page - deactivate a page 639 * @page: page to deactivate 640 * 641 * deactivate_page() moves @page to the inactive list if @page was on the active 642 * list and was not an unevictable page. This is done to accelerate the reclaim 643 * of @page. 644 */ 645 void deactivate_page(struct page *page) 646 { 647 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 648 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs); 649 650 get_page(page); 651 if (!pagevec_add(pvec, page)) 652 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 653 put_cpu_var(lru_deactivate_pvecs); 654 } 655 } 656 657 void lru_add_drain(void) 658 { 659 lru_add_drain_cpu(get_cpu()); 660 put_cpu(); 661 } 662 663 static void lru_add_drain_per_cpu(struct work_struct *dummy) 664 { 665 lru_add_drain(); 666 } 667 668 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 669 670 /* 671 * lru_add_drain_wq is used to do lru_add_drain_all() from a WQ_MEM_RECLAIM 672 * workqueue, aiding in getting memory freed. 673 */ 674 static struct workqueue_struct *lru_add_drain_wq; 675 676 static int __init lru_init(void) 677 { 678 lru_add_drain_wq = alloc_workqueue("lru-add-drain", WQ_MEM_RECLAIM, 0); 679 680 if (WARN(!lru_add_drain_wq, 681 "Failed to create workqueue lru_add_drain_wq")) 682 return -ENOMEM; 683 684 return 0; 685 } 686 early_initcall(lru_init); 687 688 void lru_add_drain_all(void) 689 { 690 static DEFINE_MUTEX(lock); 691 static struct cpumask has_work; 692 int cpu; 693 694 mutex_lock(&lock); 695 get_online_cpus(); 696 cpumask_clear(&has_work); 697 698 for_each_online_cpu(cpu) { 699 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 700 701 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) || 702 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) || 703 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) || 704 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) || 705 need_activate_page_drain(cpu)) { 706 INIT_WORK(work, lru_add_drain_per_cpu); 707 queue_work_on(cpu, lru_add_drain_wq, work); 708 cpumask_set_cpu(cpu, &has_work); 709 } 710 } 711 712 for_each_cpu(cpu, &has_work) 713 flush_work(&per_cpu(lru_add_drain_work, cpu)); 714 715 put_online_cpus(); 716 mutex_unlock(&lock); 717 } 718 719 /** 720 * release_pages - batched put_page() 721 * @pages: array of pages to release 722 * @nr: number of pages 723 * @cold: whether the pages are cache cold 724 * 725 * Decrement the reference count on all the pages in @pages. If it 726 * fell to zero, remove the page from the LRU and free it. 727 */ 728 void release_pages(struct page **pages, int nr, bool cold) 729 { 730 int i; 731 LIST_HEAD(pages_to_free); 732 struct zone *zone = NULL; 733 struct lruvec *lruvec; 734 unsigned long uninitialized_var(flags); 735 unsigned int uninitialized_var(lock_batch); 736 737 for (i = 0; i < nr; i++) { 738 struct page *page = pages[i]; 739 740 /* 741 * Make sure the IRQ-safe lock-holding time does not get 742 * excessive with a continuous string of pages from the 743 * same zone. The lock is held only if zone != NULL. 744 */ 745 if (zone && ++lock_batch == SWAP_CLUSTER_MAX) { 746 spin_unlock_irqrestore(&zone->lru_lock, flags); 747 zone = NULL; 748 } 749 750 if (is_huge_zero_page(page)) { 751 put_huge_zero_page(); 752 continue; 753 } 754 755 page = compound_head(page); 756 if (!put_page_testzero(page)) 757 continue; 758 759 if (PageCompound(page)) { 760 if (zone) { 761 spin_unlock_irqrestore(&zone->lru_lock, flags); 762 zone = NULL; 763 } 764 __put_compound_page(page); 765 continue; 766 } 767 768 if (PageLRU(page)) { 769 struct zone *pagezone = page_zone(page); 770 771 if (pagezone != zone) { 772 if (zone) 773 spin_unlock_irqrestore(&zone->lru_lock, 774 flags); 775 lock_batch = 0; 776 zone = pagezone; 777 spin_lock_irqsave(&zone->lru_lock, flags); 778 } 779 780 lruvec = mem_cgroup_page_lruvec(page, zone); 781 VM_BUG_ON_PAGE(!PageLRU(page), page); 782 __ClearPageLRU(page); 783 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 784 } 785 786 /* Clear Active bit in case of parallel mark_page_accessed */ 787 __ClearPageActive(page); 788 789 list_add(&page->lru, &pages_to_free); 790 } 791 if (zone) 792 spin_unlock_irqrestore(&zone->lru_lock, flags); 793 794 mem_cgroup_uncharge_list(&pages_to_free); 795 free_hot_cold_page_list(&pages_to_free, cold); 796 } 797 EXPORT_SYMBOL(release_pages); 798 799 /* 800 * The pages which we're about to release may be in the deferred lru-addition 801 * queues. That would prevent them from really being freed right now. That's 802 * OK from a correctness point of view but is inefficient - those pages may be 803 * cache-warm and we want to give them back to the page allocator ASAP. 804 * 805 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 806 * and __pagevec_lru_add_active() call release_pages() directly to avoid 807 * mutual recursion. 808 */ 809 void __pagevec_release(struct pagevec *pvec) 810 { 811 lru_add_drain(); 812 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); 813 pagevec_reinit(pvec); 814 } 815 EXPORT_SYMBOL(__pagevec_release); 816 817 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 818 /* used by __split_huge_page_refcount() */ 819 void lru_add_page_tail(struct page *page, struct page *page_tail, 820 struct lruvec *lruvec, struct list_head *list) 821 { 822 const int file = 0; 823 824 VM_BUG_ON_PAGE(!PageHead(page), page); 825 VM_BUG_ON_PAGE(PageCompound(page_tail), page); 826 VM_BUG_ON_PAGE(PageLRU(page_tail), page); 827 VM_BUG_ON(NR_CPUS != 1 && 828 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock)); 829 830 if (!list) 831 SetPageLRU(page_tail); 832 833 if (likely(PageLRU(page))) 834 list_add_tail(&page_tail->lru, &page->lru); 835 else if (list) { 836 /* page reclaim is reclaiming a huge page */ 837 get_page(page_tail); 838 list_add_tail(&page_tail->lru, list); 839 } else { 840 struct list_head *list_head; 841 /* 842 * Head page has not yet been counted, as an hpage, 843 * so we must account for each subpage individually. 844 * 845 * Use the standard add function to put page_tail on the list, 846 * but then correct its position so they all end up in order. 847 */ 848 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail)); 849 list_head = page_tail->lru.prev; 850 list_move_tail(&page_tail->lru, list_head); 851 } 852 853 if (!PageUnevictable(page)) 854 update_page_reclaim_stat(lruvec, file, PageActive(page_tail)); 855 } 856 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 857 858 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, 859 void *arg) 860 { 861 int file = page_is_file_cache(page); 862 int active = PageActive(page); 863 enum lru_list lru = page_lru(page); 864 865 VM_BUG_ON_PAGE(PageLRU(page), page); 866 867 SetPageLRU(page); 868 add_page_to_lru_list(page, lruvec, lru); 869 update_page_reclaim_stat(lruvec, file, active); 870 trace_mm_lru_insertion(page, lru); 871 } 872 873 /* 874 * Add the passed pages to the LRU, then drop the caller's refcount 875 * on them. Reinitialises the caller's pagevec. 876 */ 877 void __pagevec_lru_add(struct pagevec *pvec) 878 { 879 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL); 880 } 881 EXPORT_SYMBOL(__pagevec_lru_add); 882 883 /** 884 * pagevec_lookup_entries - gang pagecache lookup 885 * @pvec: Where the resulting entries are placed 886 * @mapping: The address_space to search 887 * @start: The starting entry index 888 * @nr_entries: The maximum number of entries 889 * @indices: The cache indices corresponding to the entries in @pvec 890 * 891 * pagevec_lookup_entries() will search for and return a group of up 892 * to @nr_entries pages and shadow entries in the mapping. All 893 * entries are placed in @pvec. pagevec_lookup_entries() takes a 894 * reference against actual pages in @pvec. 895 * 896 * The search returns a group of mapping-contiguous entries with 897 * ascending indexes. There may be holes in the indices due to 898 * not-present entries. 899 * 900 * pagevec_lookup_entries() returns the number of entries which were 901 * found. 902 */ 903 unsigned pagevec_lookup_entries(struct pagevec *pvec, 904 struct address_space *mapping, 905 pgoff_t start, unsigned nr_pages, 906 pgoff_t *indices) 907 { 908 pvec->nr = find_get_entries(mapping, start, nr_pages, 909 pvec->pages, indices); 910 return pagevec_count(pvec); 911 } 912 913 /** 914 * pagevec_remove_exceptionals - pagevec exceptionals pruning 915 * @pvec: The pagevec to prune 916 * 917 * pagevec_lookup_entries() fills both pages and exceptional radix 918 * tree entries into the pagevec. This function prunes all 919 * exceptionals from @pvec without leaving holes, so that it can be 920 * passed on to page-only pagevec operations. 921 */ 922 void pagevec_remove_exceptionals(struct pagevec *pvec) 923 { 924 int i, j; 925 926 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 927 struct page *page = pvec->pages[i]; 928 if (!radix_tree_exceptional_entry(page)) 929 pvec->pages[j++] = page; 930 } 931 pvec->nr = j; 932 } 933 934 /** 935 * pagevec_lookup - gang pagecache lookup 936 * @pvec: Where the resulting pages are placed 937 * @mapping: The address_space to search 938 * @start: The starting page index 939 * @nr_pages: The maximum number of pages 940 * 941 * pagevec_lookup() will search for and return a group of up to @nr_pages pages 942 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a 943 * reference against the pages in @pvec. 944 * 945 * The search returns a group of mapping-contiguous pages with ascending 946 * indexes. There may be holes in the indices due to not-present pages. 947 * 948 * pagevec_lookup() returns the number of pages which were found. 949 */ 950 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, 951 pgoff_t start, unsigned nr_pages) 952 { 953 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); 954 return pagevec_count(pvec); 955 } 956 EXPORT_SYMBOL(pagevec_lookup); 957 958 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, 959 pgoff_t *index, int tag, unsigned nr_pages) 960 { 961 pvec->nr = find_get_pages_tag(mapping, index, tag, 962 nr_pages, pvec->pages); 963 return pagevec_count(pvec); 964 } 965 EXPORT_SYMBOL(pagevec_lookup_tag); 966 967 /* 968 * Perform any setup for the swap system 969 */ 970 void __init swap_setup(void) 971 { 972 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); 973 #ifdef CONFIG_SWAP 974 int i; 975 976 for (i = 0; i < MAX_SWAPFILES; i++) 977 spin_lock_init(&swapper_spaces[i].tree_lock); 978 #endif 979 980 /* Use a smaller cluster for small-memory machines */ 981 if (megs < 16) 982 page_cluster = 2; 983 else 984 page_cluster = 3; 985 /* 986 * Right now other parts of the system means that we 987 * _really_ don't want to cluster much more 988 */ 989 } 990