xref: /openbmc/linux/mm/swap.c (revision 70756b49be4ea8bf36a664322df6e7e89895fa60)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/mm/swap.c
4   *
5   *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6   */
7  
8  /*
9   * This file contains the default values for the operation of the
10   * Linux VM subsystem. Fine-tuning documentation can be found in
11   * Documentation/admin-guide/sysctl/vm.rst.
12   * Started 18.12.91
13   * Swap aging added 23.2.95, Stephen Tweedie.
14   * Buffermem limits added 12.3.98, Rik van Riel.
15   */
16  
17  #include <linux/mm.h>
18  #include <linux/sched.h>
19  #include <linux/kernel_stat.h>
20  #include <linux/swap.h>
21  #include <linux/mman.h>
22  #include <linux/pagemap.h>
23  #include <linux/pagevec.h>
24  #include <linux/init.h>
25  #include <linux/export.h>
26  #include <linux/mm_inline.h>
27  #include <linux/percpu_counter.h>
28  #include <linux/memremap.h>
29  #include <linux/percpu.h>
30  #include <linux/cpu.h>
31  #include <linux/notifier.h>
32  #include <linux/backing-dev.h>
33  #include <linux/memcontrol.h>
34  #include <linux/gfp.h>
35  #include <linux/uio.h>
36  #include <linux/hugetlb.h>
37  #include <linux/page_idle.h>
38  #include <linux/local_lock.h>
39  #include <linux/buffer_head.h>
40  
41  #include "internal.h"
42  
43  #define CREATE_TRACE_POINTS
44  #include <trace/events/pagemap.h>
45  
46  /* How many pages do we try to swap or page in/out together? As a power of 2 */
47  int page_cluster;
48  const int page_cluster_max = 31;
49  
50  /* Protecting only lru_rotate.fbatch which requires disabling interrupts */
51  struct lru_rotate {
52  	local_lock_t lock;
53  	struct folio_batch fbatch;
54  };
55  static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
56  	.lock = INIT_LOCAL_LOCK(lock),
57  };
58  
59  /*
60   * The following folio batches are grouped together because they are protected
61   * by disabling preemption (and interrupts remain enabled).
62   */
63  struct cpu_fbatches {
64  	local_lock_t lock;
65  	struct folio_batch lru_add;
66  	struct folio_batch lru_deactivate_file;
67  	struct folio_batch lru_deactivate;
68  	struct folio_batch lru_lazyfree;
69  #ifdef CONFIG_SMP
70  	struct folio_batch activate;
71  #endif
72  };
73  static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
74  	.lock = INIT_LOCAL_LOCK(lock),
75  };
76  
77  /*
78   * This path almost never happens for VM activity - pages are normally freed
79   * via pagevecs.  But it gets used by networking - and for compound pages.
80   */
81  static void __page_cache_release(struct folio *folio)
82  {
83  	if (folio_test_lru(folio)) {
84  		struct lruvec *lruvec;
85  		unsigned long flags;
86  
87  		lruvec = folio_lruvec_lock_irqsave(folio, &flags);
88  		lruvec_del_folio(lruvec, folio);
89  		__folio_clear_lru_flags(folio);
90  		unlock_page_lruvec_irqrestore(lruvec, flags);
91  	}
92  	/* See comment on folio_test_mlocked in release_pages() */
93  	if (unlikely(folio_test_mlocked(folio))) {
94  		long nr_pages = folio_nr_pages(folio);
95  
96  		__folio_clear_mlocked(folio);
97  		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
98  		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
99  	}
100  }
101  
102  static void __folio_put_small(struct folio *folio)
103  {
104  	__page_cache_release(folio);
105  	mem_cgroup_uncharge(folio);
106  	free_unref_page(&folio->page, 0);
107  }
108  
109  static void __folio_put_large(struct folio *folio)
110  {
111  	/*
112  	 * __page_cache_release() is supposed to be called for thp, not for
113  	 * hugetlb. This is because hugetlb page does never have PageLRU set
114  	 * (it's never listed to any LRU lists) and no memcg routines should
115  	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
116  	 */
117  	if (!folio_test_hugetlb(folio))
118  		__page_cache_release(folio);
119  	destroy_large_folio(folio);
120  }
121  
122  void __folio_put(struct folio *folio)
123  {
124  	if (unlikely(folio_is_zone_device(folio)))
125  		free_zone_device_page(&folio->page);
126  	else if (unlikely(folio_test_large(folio)))
127  		__folio_put_large(folio);
128  	else
129  		__folio_put_small(folio);
130  }
131  EXPORT_SYMBOL(__folio_put);
132  
133  /**
134   * put_pages_list() - release a list of pages
135   * @pages: list of pages threaded on page->lru
136   *
137   * Release a list of pages which are strung together on page.lru.
138   */
139  void put_pages_list(struct list_head *pages)
140  {
141  	struct folio *folio, *next;
142  
143  	list_for_each_entry_safe(folio, next, pages, lru) {
144  		if (!folio_put_testzero(folio)) {
145  			list_del(&folio->lru);
146  			continue;
147  		}
148  		if (folio_test_large(folio)) {
149  			list_del(&folio->lru);
150  			__folio_put_large(folio);
151  			continue;
152  		}
153  		/* LRU flag must be clear because it's passed using the lru */
154  	}
155  
156  	free_unref_page_list(pages);
157  	INIT_LIST_HEAD(pages);
158  }
159  EXPORT_SYMBOL(put_pages_list);
160  
161  typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
162  
163  static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
164  {
165  	int was_unevictable = folio_test_clear_unevictable(folio);
166  	long nr_pages = folio_nr_pages(folio);
167  
168  	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
169  
170  	/*
171  	 * Is an smp_mb__after_atomic() still required here, before
172  	 * folio_evictable() tests the mlocked flag, to rule out the possibility
173  	 * of stranding an evictable folio on an unevictable LRU?  I think
174  	 * not, because __munlock_page() only clears the mlocked flag
175  	 * while the LRU lock is held.
176  	 *
177  	 * (That is not true of __page_cache_release(), and not necessarily
178  	 * true of release_pages(): but those only clear the mlocked flag after
179  	 * folio_put_testzero() has excluded any other users of the folio.)
180  	 */
181  	if (folio_evictable(folio)) {
182  		if (was_unevictable)
183  			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
184  	} else {
185  		folio_clear_active(folio);
186  		folio_set_unevictable(folio);
187  		/*
188  		 * folio->mlock_count = !!folio_test_mlocked(folio)?
189  		 * But that leaves __mlock_page() in doubt whether another
190  		 * actor has already counted the mlock or not.  Err on the
191  		 * safe side, underestimate, let page reclaim fix it, rather
192  		 * than leaving a page on the unevictable LRU indefinitely.
193  		 */
194  		folio->mlock_count = 0;
195  		if (!was_unevictable)
196  			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
197  	}
198  
199  	lruvec_add_folio(lruvec, folio);
200  	trace_mm_lru_insertion(folio);
201  }
202  
203  static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
204  {
205  	int i;
206  	struct lruvec *lruvec = NULL;
207  	unsigned long flags = 0;
208  
209  	for (i = 0; i < folio_batch_count(fbatch); i++) {
210  		struct folio *folio = fbatch->folios[i];
211  
212  		/* block memcg migration while the folio moves between lru */
213  		if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
214  			continue;
215  
216  		lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
217  		move_fn(lruvec, folio);
218  
219  		folio_set_lru(folio);
220  	}
221  
222  	if (lruvec)
223  		unlock_page_lruvec_irqrestore(lruvec, flags);
224  	folios_put(fbatch->folios, folio_batch_count(fbatch));
225  	folio_batch_init(fbatch);
226  }
227  
228  static void folio_batch_add_and_move(struct folio_batch *fbatch,
229  		struct folio *folio, move_fn_t move_fn)
230  {
231  	if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
232  	    !lru_cache_disabled())
233  		return;
234  	folio_batch_move_lru(fbatch, move_fn);
235  }
236  
237  static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
238  {
239  	if (!folio_test_unevictable(folio)) {
240  		lruvec_del_folio(lruvec, folio);
241  		folio_clear_active(folio);
242  		lruvec_add_folio_tail(lruvec, folio);
243  		__count_vm_events(PGROTATED, folio_nr_pages(folio));
244  	}
245  }
246  
247  /*
248   * Writeback is about to end against a folio which has been marked for
249   * immediate reclaim.  If it still appears to be reclaimable, move it
250   * to the tail of the inactive list.
251   *
252   * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
253   */
254  void folio_rotate_reclaimable(struct folio *folio)
255  {
256  	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
257  	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
258  		struct folio_batch *fbatch;
259  		unsigned long flags;
260  
261  		folio_get(folio);
262  		local_lock_irqsave(&lru_rotate.lock, flags);
263  		fbatch = this_cpu_ptr(&lru_rotate.fbatch);
264  		folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
265  		local_unlock_irqrestore(&lru_rotate.lock, flags);
266  	}
267  }
268  
269  void lru_note_cost(struct lruvec *lruvec, bool file,
270  		   unsigned int nr_io, unsigned int nr_rotated)
271  {
272  	unsigned long cost;
273  
274  	/*
275  	 * Reflect the relative cost of incurring IO and spending CPU
276  	 * time on rotations. This doesn't attempt to make a precise
277  	 * comparison, it just says: if reloads are about comparable
278  	 * between the LRU lists, or rotations are overwhelmingly
279  	 * different between them, adjust scan balance for CPU work.
280  	 */
281  	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
282  
283  	do {
284  		unsigned long lrusize;
285  
286  		/*
287  		 * Hold lruvec->lru_lock is safe here, since
288  		 * 1) The pinned lruvec in reclaim, or
289  		 * 2) From a pre-LRU page during refault (which also holds the
290  		 *    rcu lock, so would be safe even if the page was on the LRU
291  		 *    and could move simultaneously to a new lruvec).
292  		 */
293  		spin_lock_irq(&lruvec->lru_lock);
294  		/* Record cost event */
295  		if (file)
296  			lruvec->file_cost += cost;
297  		else
298  			lruvec->anon_cost += cost;
299  
300  		/*
301  		 * Decay previous events
302  		 *
303  		 * Because workloads change over time (and to avoid
304  		 * overflow) we keep these statistics as a floating
305  		 * average, which ends up weighing recent refaults
306  		 * more than old ones.
307  		 */
308  		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
309  			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
310  			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
311  			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
312  
313  		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
314  			lruvec->file_cost /= 2;
315  			lruvec->anon_cost /= 2;
316  		}
317  		spin_unlock_irq(&lruvec->lru_lock);
318  	} while ((lruvec = parent_lruvec(lruvec)));
319  }
320  
321  void lru_note_cost_refault(struct folio *folio)
322  {
323  	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
324  		      folio_nr_pages(folio), 0);
325  }
326  
327  static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
328  {
329  	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
330  		long nr_pages = folio_nr_pages(folio);
331  
332  		lruvec_del_folio(lruvec, folio);
333  		folio_set_active(folio);
334  		lruvec_add_folio(lruvec, folio);
335  		trace_mm_lru_activate(folio);
336  
337  		__count_vm_events(PGACTIVATE, nr_pages);
338  		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
339  				     nr_pages);
340  	}
341  }
342  
343  #ifdef CONFIG_SMP
344  static void folio_activate_drain(int cpu)
345  {
346  	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
347  
348  	if (folio_batch_count(fbatch))
349  		folio_batch_move_lru(fbatch, folio_activate_fn);
350  }
351  
352  void folio_activate(struct folio *folio)
353  {
354  	if (folio_test_lru(folio) && !folio_test_active(folio) &&
355  	    !folio_test_unevictable(folio)) {
356  		struct folio_batch *fbatch;
357  
358  		folio_get(folio);
359  		local_lock(&cpu_fbatches.lock);
360  		fbatch = this_cpu_ptr(&cpu_fbatches.activate);
361  		folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
362  		local_unlock(&cpu_fbatches.lock);
363  	}
364  }
365  
366  #else
367  static inline void folio_activate_drain(int cpu)
368  {
369  }
370  
371  void folio_activate(struct folio *folio)
372  {
373  	struct lruvec *lruvec;
374  
375  	if (folio_test_clear_lru(folio)) {
376  		lruvec = folio_lruvec_lock_irq(folio);
377  		folio_activate_fn(lruvec, folio);
378  		unlock_page_lruvec_irq(lruvec);
379  		folio_set_lru(folio);
380  	}
381  }
382  #endif
383  
384  static void __lru_cache_activate_folio(struct folio *folio)
385  {
386  	struct folio_batch *fbatch;
387  	int i;
388  
389  	local_lock(&cpu_fbatches.lock);
390  	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
391  
392  	/*
393  	 * Search backwards on the optimistic assumption that the folio being
394  	 * activated has just been added to this batch. Note that only
395  	 * the local batch is examined as a !LRU folio could be in the
396  	 * process of being released, reclaimed, migrated or on a remote
397  	 * batch that is currently being drained. Furthermore, marking
398  	 * a remote batch's folio active potentially hits a race where
399  	 * a folio is marked active just after it is added to the inactive
400  	 * list causing accounting errors and BUG_ON checks to trigger.
401  	 */
402  	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
403  		struct folio *batch_folio = fbatch->folios[i];
404  
405  		if (batch_folio == folio) {
406  			folio_set_active(folio);
407  			break;
408  		}
409  	}
410  
411  	local_unlock(&cpu_fbatches.lock);
412  }
413  
414  #ifdef CONFIG_LRU_GEN
415  static void folio_inc_refs(struct folio *folio)
416  {
417  	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
418  
419  	if (folio_test_unevictable(folio))
420  		return;
421  
422  	if (!folio_test_referenced(folio)) {
423  		folio_set_referenced(folio);
424  		return;
425  	}
426  
427  	if (!folio_test_workingset(folio)) {
428  		folio_set_workingset(folio);
429  		return;
430  	}
431  
432  	/* see the comment on MAX_NR_TIERS */
433  	do {
434  		new_flags = old_flags & LRU_REFS_MASK;
435  		if (new_flags == LRU_REFS_MASK)
436  			break;
437  
438  		new_flags += BIT(LRU_REFS_PGOFF);
439  		new_flags |= old_flags & ~LRU_REFS_MASK;
440  	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
441  }
442  #else
443  static void folio_inc_refs(struct folio *folio)
444  {
445  }
446  #endif /* CONFIG_LRU_GEN */
447  
448  /*
449   * Mark a page as having seen activity.
450   *
451   * inactive,unreferenced	->	inactive,referenced
452   * inactive,referenced		->	active,unreferenced
453   * active,unreferenced		->	active,referenced
454   *
455   * When a newly allocated page is not yet visible, so safe for non-atomic ops,
456   * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
457   */
458  void folio_mark_accessed(struct folio *folio)
459  {
460  	if (lru_gen_enabled()) {
461  		folio_inc_refs(folio);
462  		return;
463  	}
464  
465  	if (!folio_test_referenced(folio)) {
466  		folio_set_referenced(folio);
467  	} else if (folio_test_unevictable(folio)) {
468  		/*
469  		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
470  		 * this list is never rotated or maintained, so marking an
471  		 * unevictable page accessed has no effect.
472  		 */
473  	} else if (!folio_test_active(folio)) {
474  		/*
475  		 * If the folio is on the LRU, queue it for activation via
476  		 * cpu_fbatches.activate. Otherwise, assume the folio is in a
477  		 * folio_batch, mark it active and it'll be moved to the active
478  		 * LRU on the next drain.
479  		 */
480  		if (folio_test_lru(folio))
481  			folio_activate(folio);
482  		else
483  			__lru_cache_activate_folio(folio);
484  		folio_clear_referenced(folio);
485  		workingset_activation(folio);
486  	}
487  	if (folio_test_idle(folio))
488  		folio_clear_idle(folio);
489  }
490  EXPORT_SYMBOL(folio_mark_accessed);
491  
492  /**
493   * folio_add_lru - Add a folio to an LRU list.
494   * @folio: The folio to be added to the LRU.
495   *
496   * Queue the folio for addition to the LRU. The decision on whether
497   * to add the page to the [in]active [file|anon] list is deferred until the
498   * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
499   * have the folio added to the active list using folio_mark_accessed().
500   */
501  void folio_add_lru(struct folio *folio)
502  {
503  	struct folio_batch *fbatch;
504  
505  	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
506  			folio_test_unevictable(folio), folio);
507  	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
508  
509  	/* see the comment in lru_gen_add_folio() */
510  	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
511  	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
512  		folio_set_active(folio);
513  
514  	folio_get(folio);
515  	local_lock(&cpu_fbatches.lock);
516  	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
517  	folio_batch_add_and_move(fbatch, folio, lru_add_fn);
518  	local_unlock(&cpu_fbatches.lock);
519  }
520  EXPORT_SYMBOL(folio_add_lru);
521  
522  /**
523   * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
524   * @folio: The folio to be added to the LRU.
525   * @vma: VMA in which the folio is mapped.
526   *
527   * If the VMA is mlocked, @folio is added to the unevictable list.
528   * Otherwise, it is treated the same way as folio_add_lru().
529   */
530  void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
531  {
532  	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
533  
534  	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
535  		mlock_new_page(&folio->page);
536  	else
537  		folio_add_lru(folio);
538  }
539  
540  /*
541   * If the folio cannot be invalidated, it is moved to the
542   * inactive list to speed up its reclaim.  It is moved to the
543   * head of the list, rather than the tail, to give the flusher
544   * threads some time to write it out, as this is much more
545   * effective than the single-page writeout from reclaim.
546   *
547   * If the folio isn't mapped and dirty/writeback, the folio
548   * could be reclaimed asap using the reclaim flag.
549   *
550   * 1. active, mapped folio -> none
551   * 2. active, dirty/writeback folio -> inactive, head, reclaim
552   * 3. inactive, mapped folio -> none
553   * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
554   * 5. inactive, clean -> inactive, tail
555   * 6. Others -> none
556   *
557   * In 4, it moves to the head of the inactive list so the folio is
558   * written out by flusher threads as this is much more efficient
559   * than the single-page writeout from reclaim.
560   */
561  static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
562  {
563  	bool active = folio_test_active(folio);
564  	long nr_pages = folio_nr_pages(folio);
565  
566  	if (folio_test_unevictable(folio))
567  		return;
568  
569  	/* Some processes are using the folio */
570  	if (folio_mapped(folio))
571  		return;
572  
573  	lruvec_del_folio(lruvec, folio);
574  	folio_clear_active(folio);
575  	folio_clear_referenced(folio);
576  
577  	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
578  		/*
579  		 * Setting the reclaim flag could race with
580  		 * folio_end_writeback() and confuse readahead.  But the
581  		 * race window is _really_ small and  it's not a critical
582  		 * problem.
583  		 */
584  		lruvec_add_folio(lruvec, folio);
585  		folio_set_reclaim(folio);
586  	} else {
587  		/*
588  		 * The folio's writeback ended while it was in the batch.
589  		 * We move that folio to the tail of the inactive list.
590  		 */
591  		lruvec_add_folio_tail(lruvec, folio);
592  		__count_vm_events(PGROTATED, nr_pages);
593  	}
594  
595  	if (active) {
596  		__count_vm_events(PGDEACTIVATE, nr_pages);
597  		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
598  				     nr_pages);
599  	}
600  }
601  
602  static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
603  {
604  	if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
605  		long nr_pages = folio_nr_pages(folio);
606  
607  		lruvec_del_folio(lruvec, folio);
608  		folio_clear_active(folio);
609  		folio_clear_referenced(folio);
610  		lruvec_add_folio(lruvec, folio);
611  
612  		__count_vm_events(PGDEACTIVATE, nr_pages);
613  		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
614  				     nr_pages);
615  	}
616  }
617  
618  static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
619  {
620  	if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
621  	    !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
622  		long nr_pages = folio_nr_pages(folio);
623  
624  		lruvec_del_folio(lruvec, folio);
625  		folio_clear_active(folio);
626  		folio_clear_referenced(folio);
627  		/*
628  		 * Lazyfree folios are clean anonymous folios.  They have
629  		 * the swapbacked flag cleared, to distinguish them from normal
630  		 * anonymous folios
631  		 */
632  		folio_clear_swapbacked(folio);
633  		lruvec_add_folio(lruvec, folio);
634  
635  		__count_vm_events(PGLAZYFREE, nr_pages);
636  		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
637  				     nr_pages);
638  	}
639  }
640  
641  /*
642   * Drain pages out of the cpu's folio_batch.
643   * Either "cpu" is the current CPU, and preemption has already been
644   * disabled; or "cpu" is being hot-unplugged, and is already dead.
645   */
646  void lru_add_drain_cpu(int cpu)
647  {
648  	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
649  	struct folio_batch *fbatch = &fbatches->lru_add;
650  
651  	if (folio_batch_count(fbatch))
652  		folio_batch_move_lru(fbatch, lru_add_fn);
653  
654  	fbatch = &per_cpu(lru_rotate.fbatch, cpu);
655  	/* Disabling interrupts below acts as a compiler barrier. */
656  	if (data_race(folio_batch_count(fbatch))) {
657  		unsigned long flags;
658  
659  		/* No harm done if a racing interrupt already did this */
660  		local_lock_irqsave(&lru_rotate.lock, flags);
661  		folio_batch_move_lru(fbatch, lru_move_tail_fn);
662  		local_unlock_irqrestore(&lru_rotate.lock, flags);
663  	}
664  
665  	fbatch = &fbatches->lru_deactivate_file;
666  	if (folio_batch_count(fbatch))
667  		folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
668  
669  	fbatch = &fbatches->lru_deactivate;
670  	if (folio_batch_count(fbatch))
671  		folio_batch_move_lru(fbatch, lru_deactivate_fn);
672  
673  	fbatch = &fbatches->lru_lazyfree;
674  	if (folio_batch_count(fbatch))
675  		folio_batch_move_lru(fbatch, lru_lazyfree_fn);
676  
677  	folio_activate_drain(cpu);
678  }
679  
680  /**
681   * deactivate_file_folio() - Deactivate a file folio.
682   * @folio: Folio to deactivate.
683   *
684   * This function hints to the VM that @folio is a good reclaim candidate,
685   * for example if its invalidation fails due to the folio being dirty
686   * or under writeback.
687   *
688   * Context: Caller holds a reference on the folio.
689   */
690  void deactivate_file_folio(struct folio *folio)
691  {
692  	struct folio_batch *fbatch;
693  
694  	/* Deactivating an unevictable folio will not accelerate reclaim */
695  	if (folio_test_unevictable(folio))
696  		return;
697  
698  	folio_get(folio);
699  	local_lock(&cpu_fbatches.lock);
700  	fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
701  	folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
702  	local_unlock(&cpu_fbatches.lock);
703  }
704  
705  /*
706   * deactivate_page - deactivate a page
707   * @page: page to deactivate
708   *
709   * deactivate_page() moves @page to the inactive list if @page was on the active
710   * list and was not an unevictable page.  This is done to accelerate the reclaim
711   * of @page.
712   */
713  void deactivate_page(struct page *page)
714  {
715  	struct folio *folio = page_folio(page);
716  
717  	if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
718  	    (folio_test_active(folio) || lru_gen_enabled())) {
719  		struct folio_batch *fbatch;
720  
721  		folio_get(folio);
722  		local_lock(&cpu_fbatches.lock);
723  		fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
724  		folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
725  		local_unlock(&cpu_fbatches.lock);
726  	}
727  }
728  
729  /**
730   * mark_page_lazyfree - make an anon page lazyfree
731   * @page: page to deactivate
732   *
733   * mark_page_lazyfree() moves @page to the inactive file list.
734   * This is done to accelerate the reclaim of @page.
735   */
736  void mark_page_lazyfree(struct page *page)
737  {
738  	struct folio *folio = page_folio(page);
739  
740  	if (folio_test_lru(folio) && folio_test_anon(folio) &&
741  	    folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
742  	    !folio_test_unevictable(folio)) {
743  		struct folio_batch *fbatch;
744  
745  		folio_get(folio);
746  		local_lock(&cpu_fbatches.lock);
747  		fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
748  		folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
749  		local_unlock(&cpu_fbatches.lock);
750  	}
751  }
752  
753  void lru_add_drain(void)
754  {
755  	local_lock(&cpu_fbatches.lock);
756  	lru_add_drain_cpu(smp_processor_id());
757  	local_unlock(&cpu_fbatches.lock);
758  	mlock_page_drain_local();
759  }
760  
761  /*
762   * It's called from per-cpu workqueue context in SMP case so
763   * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
764   * the same cpu. It shouldn't be a problem in !SMP case since
765   * the core is only one and the locks will disable preemption.
766   */
767  static void lru_add_and_bh_lrus_drain(void)
768  {
769  	local_lock(&cpu_fbatches.lock);
770  	lru_add_drain_cpu(smp_processor_id());
771  	local_unlock(&cpu_fbatches.lock);
772  	invalidate_bh_lrus_cpu();
773  	mlock_page_drain_local();
774  }
775  
776  void lru_add_drain_cpu_zone(struct zone *zone)
777  {
778  	local_lock(&cpu_fbatches.lock);
779  	lru_add_drain_cpu(smp_processor_id());
780  	drain_local_pages(zone);
781  	local_unlock(&cpu_fbatches.lock);
782  	mlock_page_drain_local();
783  }
784  
785  #ifdef CONFIG_SMP
786  
787  static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
788  
789  static void lru_add_drain_per_cpu(struct work_struct *dummy)
790  {
791  	lru_add_and_bh_lrus_drain();
792  }
793  
794  static bool cpu_needs_drain(unsigned int cpu)
795  {
796  	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
797  
798  	/* Check these in order of likelihood that they're not zero */
799  	return folio_batch_count(&fbatches->lru_add) ||
800  		data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
801  		folio_batch_count(&fbatches->lru_deactivate_file) ||
802  		folio_batch_count(&fbatches->lru_deactivate) ||
803  		folio_batch_count(&fbatches->lru_lazyfree) ||
804  		folio_batch_count(&fbatches->activate) ||
805  		need_mlock_page_drain(cpu) ||
806  		has_bh_in_lru(cpu, NULL);
807  }
808  
809  /*
810   * Doesn't need any cpu hotplug locking because we do rely on per-cpu
811   * kworkers being shut down before our page_alloc_cpu_dead callback is
812   * executed on the offlined cpu.
813   * Calling this function with cpu hotplug locks held can actually lead
814   * to obscure indirect dependencies via WQ context.
815   */
816  static inline void __lru_add_drain_all(bool force_all_cpus)
817  {
818  	/*
819  	 * lru_drain_gen - Global pages generation number
820  	 *
821  	 * (A) Definition: global lru_drain_gen = x implies that all generations
822  	 *     0 < n <= x are already *scheduled* for draining.
823  	 *
824  	 * This is an optimization for the highly-contended use case where a
825  	 * user space workload keeps constantly generating a flow of pages for
826  	 * each CPU.
827  	 */
828  	static unsigned int lru_drain_gen;
829  	static struct cpumask has_work;
830  	static DEFINE_MUTEX(lock);
831  	unsigned cpu, this_gen;
832  
833  	/*
834  	 * Make sure nobody triggers this path before mm_percpu_wq is fully
835  	 * initialized.
836  	 */
837  	if (WARN_ON(!mm_percpu_wq))
838  		return;
839  
840  	/*
841  	 * Guarantee folio_batch counter stores visible by this CPU
842  	 * are visible to other CPUs before loading the current drain
843  	 * generation.
844  	 */
845  	smp_mb();
846  
847  	/*
848  	 * (B) Locally cache global LRU draining generation number
849  	 *
850  	 * The read barrier ensures that the counter is loaded before the mutex
851  	 * is taken. It pairs with smp_mb() inside the mutex critical section
852  	 * at (D).
853  	 */
854  	this_gen = smp_load_acquire(&lru_drain_gen);
855  
856  	mutex_lock(&lock);
857  
858  	/*
859  	 * (C) Exit the draining operation if a newer generation, from another
860  	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
861  	 */
862  	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
863  		goto done;
864  
865  	/*
866  	 * (D) Increment global generation number
867  	 *
868  	 * Pairs with smp_load_acquire() at (B), outside of the critical
869  	 * section. Use a full memory barrier to guarantee that the
870  	 * new global drain generation number is stored before loading
871  	 * folio_batch counters.
872  	 *
873  	 * This pairing must be done here, before the for_each_online_cpu loop
874  	 * below which drains the page vectors.
875  	 *
876  	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
877  	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
878  	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
879  	 * along, adds some pages to its per-cpu vectors, then calls
880  	 * lru_add_drain_all().
881  	 *
882  	 * If the paired barrier is done at any later step, e.g. after the
883  	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
884  	 * added pages.
885  	 */
886  	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
887  	smp_mb();
888  
889  	cpumask_clear(&has_work);
890  	for_each_online_cpu(cpu) {
891  		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
892  
893  		if (cpu_needs_drain(cpu)) {
894  			INIT_WORK(work, lru_add_drain_per_cpu);
895  			queue_work_on(cpu, mm_percpu_wq, work);
896  			__cpumask_set_cpu(cpu, &has_work);
897  		}
898  	}
899  
900  	for_each_cpu(cpu, &has_work)
901  		flush_work(&per_cpu(lru_add_drain_work, cpu));
902  
903  done:
904  	mutex_unlock(&lock);
905  }
906  
907  void lru_add_drain_all(void)
908  {
909  	__lru_add_drain_all(false);
910  }
911  #else
912  void lru_add_drain_all(void)
913  {
914  	lru_add_drain();
915  }
916  #endif /* CONFIG_SMP */
917  
918  atomic_t lru_disable_count = ATOMIC_INIT(0);
919  
920  /*
921   * lru_cache_disable() needs to be called before we start compiling
922   * a list of pages to be migrated using isolate_lru_page().
923   * It drains pages on LRU cache and then disable on all cpus until
924   * lru_cache_enable is called.
925   *
926   * Must be paired with a call to lru_cache_enable().
927   */
928  void lru_cache_disable(void)
929  {
930  	atomic_inc(&lru_disable_count);
931  	/*
932  	 * Readers of lru_disable_count are protected by either disabling
933  	 * preemption or rcu_read_lock:
934  	 *
935  	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
936  	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
937  	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
938  	 *
939  	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
940  	 * preempt_disable() regions of code. So any CPU which sees
941  	 * lru_disable_count = 0 will have exited the critical
942  	 * section when synchronize_rcu() returns.
943  	 */
944  	synchronize_rcu_expedited();
945  #ifdef CONFIG_SMP
946  	__lru_add_drain_all(true);
947  #else
948  	lru_add_and_bh_lrus_drain();
949  #endif
950  }
951  
952  /**
953   * release_pages - batched put_page()
954   * @arg: array of pages to release
955   * @nr: number of pages
956   *
957   * Decrement the reference count on all the pages in @arg.  If it
958   * fell to zero, remove the page from the LRU and free it.
959   *
960   * Note that the argument can be an array of pages, encoded pages,
961   * or folio pointers. We ignore any encoded bits, and turn any of
962   * them into just a folio that gets free'd.
963   */
964  void release_pages(release_pages_arg arg, int nr)
965  {
966  	int i;
967  	struct encoded_page **encoded = arg.encoded_pages;
968  	LIST_HEAD(pages_to_free);
969  	struct lruvec *lruvec = NULL;
970  	unsigned long flags = 0;
971  	unsigned int lock_batch;
972  
973  	for (i = 0; i < nr; i++) {
974  		struct folio *folio;
975  
976  		/* Turn any of the argument types into a folio */
977  		folio = page_folio(encoded_page_ptr(encoded[i]));
978  
979  		/*
980  		 * Make sure the IRQ-safe lock-holding time does not get
981  		 * excessive with a continuous string of pages from the
982  		 * same lruvec. The lock is held only if lruvec != NULL.
983  		 */
984  		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
985  			unlock_page_lruvec_irqrestore(lruvec, flags);
986  			lruvec = NULL;
987  		}
988  
989  		if (is_huge_zero_page(&folio->page))
990  			continue;
991  
992  		if (folio_is_zone_device(folio)) {
993  			if (lruvec) {
994  				unlock_page_lruvec_irqrestore(lruvec, flags);
995  				lruvec = NULL;
996  			}
997  			if (put_devmap_managed_page(&folio->page))
998  				continue;
999  			if (folio_put_testzero(folio))
1000  				free_zone_device_page(&folio->page);
1001  			continue;
1002  		}
1003  
1004  		if (!folio_put_testzero(folio))
1005  			continue;
1006  
1007  		if (folio_test_large(folio)) {
1008  			if (lruvec) {
1009  				unlock_page_lruvec_irqrestore(lruvec, flags);
1010  				lruvec = NULL;
1011  			}
1012  			__folio_put_large(folio);
1013  			continue;
1014  		}
1015  
1016  		if (folio_test_lru(folio)) {
1017  			struct lruvec *prev_lruvec = lruvec;
1018  
1019  			lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
1020  									&flags);
1021  			if (prev_lruvec != lruvec)
1022  				lock_batch = 0;
1023  
1024  			lruvec_del_folio(lruvec, folio);
1025  			__folio_clear_lru_flags(folio);
1026  		}
1027  
1028  		/*
1029  		 * In rare cases, when truncation or holepunching raced with
1030  		 * munlock after VM_LOCKED was cleared, Mlocked may still be
1031  		 * found set here.  This does not indicate a problem, unless
1032  		 * "unevictable_pgs_cleared" appears worryingly large.
1033  		 */
1034  		if (unlikely(folio_test_mlocked(folio))) {
1035  			__folio_clear_mlocked(folio);
1036  			zone_stat_sub_folio(folio, NR_MLOCK);
1037  			count_vm_event(UNEVICTABLE_PGCLEARED);
1038  		}
1039  
1040  		list_add(&folio->lru, &pages_to_free);
1041  	}
1042  	if (lruvec)
1043  		unlock_page_lruvec_irqrestore(lruvec, flags);
1044  
1045  	mem_cgroup_uncharge_list(&pages_to_free);
1046  	free_unref_page_list(&pages_to_free);
1047  }
1048  EXPORT_SYMBOL(release_pages);
1049  
1050  /*
1051   * The pages which we're about to release may be in the deferred lru-addition
1052   * queues.  That would prevent them from really being freed right now.  That's
1053   * OK from a correctness point of view but is inefficient - those pages may be
1054   * cache-warm and we want to give them back to the page allocator ASAP.
1055   *
1056   * So __pagevec_release() will drain those queues here.
1057   * folio_batch_move_lru() calls folios_put() directly to avoid
1058   * mutual recursion.
1059   */
1060  void __pagevec_release(struct pagevec *pvec)
1061  {
1062  	if (!pvec->percpu_pvec_drained) {
1063  		lru_add_drain();
1064  		pvec->percpu_pvec_drained = true;
1065  	}
1066  	release_pages(pvec->pages, pagevec_count(pvec));
1067  	pagevec_reinit(pvec);
1068  }
1069  EXPORT_SYMBOL(__pagevec_release);
1070  
1071  /**
1072   * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1073   * @fbatch: The batch to prune
1074   *
1075   * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1076   * entries.  This function prunes all the non-folio entries from @fbatch
1077   * without leaving holes, so that it can be passed on to folio-only batch
1078   * operations.
1079   */
1080  void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1081  {
1082  	unsigned int i, j;
1083  
1084  	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1085  		struct folio *folio = fbatch->folios[i];
1086  		if (!xa_is_value(folio))
1087  			fbatch->folios[j++] = folio;
1088  	}
1089  	fbatch->nr = j;
1090  }
1091  
1092  unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1093  		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1094  		xa_mark_t tag)
1095  {
1096  	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1097  					PAGEVEC_SIZE, pvec->pages);
1098  	return pagevec_count(pvec);
1099  }
1100  EXPORT_SYMBOL(pagevec_lookup_range_tag);
1101  
1102  /*
1103   * Perform any setup for the swap system
1104   */
1105  void __init swap_setup(void)
1106  {
1107  	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1108  
1109  	/* Use a smaller cluster for small-memory machines */
1110  	if (megs < 16)
1111  		page_cluster = 2;
1112  	else
1113  		page_cluster = 3;
1114  	/*
1115  	 * Right now other parts of the system means that we
1116  	 * _really_ don't want to cluster much more
1117  	 */
1118  }
1119