xref: /openbmc/linux/mm/swap.c (revision 643d1f7f)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 
33 /* How many pages do we try to swap or page in/out together? */
34 int page_cluster;
35 
36 static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, };
37 static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, };
38 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs) = { 0, };
39 
40 /*
41  * This path almost never happens for VM activity - pages are normally
42  * freed via pagevecs.  But it gets used by networking.
43  */
44 static void fastcall __page_cache_release(struct page *page)
45 {
46 	if (PageLRU(page)) {
47 		unsigned long flags;
48 		struct zone *zone = page_zone(page);
49 
50 		spin_lock_irqsave(&zone->lru_lock, flags);
51 		VM_BUG_ON(!PageLRU(page));
52 		__ClearPageLRU(page);
53 		del_page_from_lru(zone, page);
54 		spin_unlock_irqrestore(&zone->lru_lock, flags);
55 	}
56 	free_hot_page(page);
57 }
58 
59 static void put_compound_page(struct page *page)
60 {
61 	page = compound_head(page);
62 	if (put_page_testzero(page)) {
63 		compound_page_dtor *dtor;
64 
65 		dtor = get_compound_page_dtor(page);
66 		(*dtor)(page);
67 	}
68 }
69 
70 void put_page(struct page *page)
71 {
72 	if (unlikely(PageCompound(page)))
73 		put_compound_page(page);
74 	else if (put_page_testzero(page))
75 		__page_cache_release(page);
76 }
77 EXPORT_SYMBOL(put_page);
78 
79 /**
80  * put_pages_list(): release a list of pages
81  *
82  * Release a list of pages which are strung together on page.lru.  Currently
83  * used by read_cache_pages() and related error recovery code.
84  *
85  * @pages: list of pages threaded on page->lru
86  */
87 void put_pages_list(struct list_head *pages)
88 {
89 	while (!list_empty(pages)) {
90 		struct page *victim;
91 
92 		victim = list_entry(pages->prev, struct page, lru);
93 		list_del(&victim->lru);
94 		page_cache_release(victim);
95 	}
96 }
97 EXPORT_SYMBOL(put_pages_list);
98 
99 /*
100  * pagevec_move_tail() must be called with IRQ disabled.
101  * Otherwise this may cause nasty races.
102  */
103 static void pagevec_move_tail(struct pagevec *pvec)
104 {
105 	int i;
106 	int pgmoved = 0;
107 	struct zone *zone = NULL;
108 
109 	for (i = 0; i < pagevec_count(pvec); i++) {
110 		struct page *page = pvec->pages[i];
111 		struct zone *pagezone = page_zone(page);
112 
113 		if (pagezone != zone) {
114 			if (zone)
115 				spin_unlock(&zone->lru_lock);
116 			zone = pagezone;
117 			spin_lock(&zone->lru_lock);
118 		}
119 		if (PageLRU(page) && !PageActive(page)) {
120 			list_move_tail(&page->lru, &zone->inactive_list);
121 			pgmoved++;
122 		}
123 	}
124 	if (zone)
125 		spin_unlock(&zone->lru_lock);
126 	__count_vm_events(PGROTATED, pgmoved);
127 	release_pages(pvec->pages, pvec->nr, pvec->cold);
128 	pagevec_reinit(pvec);
129 }
130 
131 /*
132  * Writeback is about to end against a page which has been marked for immediate
133  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
134  * inactive list.
135  *
136  * Returns zero if it cleared PG_writeback.
137  */
138 int rotate_reclaimable_page(struct page *page)
139 {
140 	struct pagevec *pvec;
141 	unsigned long flags;
142 
143 	if (PageLocked(page))
144 		return 1;
145 	if (PageDirty(page))
146 		return 1;
147 	if (PageActive(page))
148 		return 1;
149 	if (!PageLRU(page))
150 		return 1;
151 
152 	page_cache_get(page);
153 	local_irq_save(flags);
154 	pvec = &__get_cpu_var(lru_rotate_pvecs);
155 	if (!pagevec_add(pvec, page))
156 		pagevec_move_tail(pvec);
157 	local_irq_restore(flags);
158 
159 	if (!test_clear_page_writeback(page))
160 		BUG();
161 
162 	return 0;
163 }
164 
165 /*
166  * FIXME: speed this up?
167  */
168 void fastcall activate_page(struct page *page)
169 {
170 	struct zone *zone = page_zone(page);
171 
172 	spin_lock_irq(&zone->lru_lock);
173 	if (PageLRU(page) && !PageActive(page)) {
174 		del_page_from_inactive_list(zone, page);
175 		SetPageActive(page);
176 		add_page_to_active_list(zone, page);
177 		__count_vm_event(PGACTIVATE);
178 	}
179 	spin_unlock_irq(&zone->lru_lock);
180 }
181 
182 /*
183  * Mark a page as having seen activity.
184  *
185  * inactive,unreferenced	->	inactive,referenced
186  * inactive,referenced		->	active,unreferenced
187  * active,unreferenced		->	active,referenced
188  */
189 void fastcall mark_page_accessed(struct page *page)
190 {
191 	if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
192 		activate_page(page);
193 		ClearPageReferenced(page);
194 	} else if (!PageReferenced(page)) {
195 		SetPageReferenced(page);
196 	}
197 }
198 
199 EXPORT_SYMBOL(mark_page_accessed);
200 
201 /**
202  * lru_cache_add: add a page to the page lists
203  * @page: the page to add
204  */
205 void fastcall lru_cache_add(struct page *page)
206 {
207 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
208 
209 	page_cache_get(page);
210 	if (!pagevec_add(pvec, page))
211 		__pagevec_lru_add(pvec);
212 	put_cpu_var(lru_add_pvecs);
213 }
214 
215 void fastcall lru_cache_add_active(struct page *page)
216 {
217 	struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs);
218 
219 	page_cache_get(page);
220 	if (!pagevec_add(pvec, page))
221 		__pagevec_lru_add_active(pvec);
222 	put_cpu_var(lru_add_active_pvecs);
223 }
224 
225 /*
226  * Drain pages out of the cpu's pagevecs.
227  * Either "cpu" is the current CPU, and preemption has already been
228  * disabled; or "cpu" is being hot-unplugged, and is already dead.
229  */
230 static void drain_cpu_pagevecs(int cpu)
231 {
232 	struct pagevec *pvec;
233 
234 	pvec = &per_cpu(lru_add_pvecs, cpu);
235 	if (pagevec_count(pvec))
236 		__pagevec_lru_add(pvec);
237 
238 	pvec = &per_cpu(lru_add_active_pvecs, cpu);
239 	if (pagevec_count(pvec))
240 		__pagevec_lru_add_active(pvec);
241 
242 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
243 	if (pagevec_count(pvec)) {
244 		unsigned long flags;
245 
246 		/* No harm done if a racing interrupt already did this */
247 		local_irq_save(flags);
248 		pagevec_move_tail(pvec);
249 		local_irq_restore(flags);
250 	}
251 }
252 
253 void lru_add_drain(void)
254 {
255 	drain_cpu_pagevecs(get_cpu());
256 	put_cpu();
257 }
258 
259 #ifdef CONFIG_NUMA
260 static void lru_add_drain_per_cpu(struct work_struct *dummy)
261 {
262 	lru_add_drain();
263 }
264 
265 /*
266  * Returns 0 for success
267  */
268 int lru_add_drain_all(void)
269 {
270 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
271 }
272 
273 #else
274 
275 /*
276  * Returns 0 for success
277  */
278 int lru_add_drain_all(void)
279 {
280 	lru_add_drain();
281 	return 0;
282 }
283 #endif
284 
285 /*
286  * Batched page_cache_release().  Decrement the reference count on all the
287  * passed pages.  If it fell to zero then remove the page from the LRU and
288  * free it.
289  *
290  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
291  * for the remainder of the operation.
292  *
293  * The locking in this function is against shrink_cache(): we recheck the
294  * page count inside the lock to see whether shrink_cache grabbed the page
295  * via the LRU.  If it did, give up: shrink_cache will free it.
296  */
297 void release_pages(struct page **pages, int nr, int cold)
298 {
299 	int i;
300 	struct pagevec pages_to_free;
301 	struct zone *zone = NULL;
302 	unsigned long uninitialized_var(flags);
303 
304 	pagevec_init(&pages_to_free, cold);
305 	for (i = 0; i < nr; i++) {
306 		struct page *page = pages[i];
307 
308 		if (unlikely(PageCompound(page))) {
309 			if (zone) {
310 				spin_unlock_irqrestore(&zone->lru_lock, flags);
311 				zone = NULL;
312 			}
313 			put_compound_page(page);
314 			continue;
315 		}
316 
317 		if (!put_page_testzero(page))
318 			continue;
319 
320 		if (PageLRU(page)) {
321 			struct zone *pagezone = page_zone(page);
322 			if (pagezone != zone) {
323 				if (zone)
324 					spin_unlock_irqrestore(&zone->lru_lock,
325 									flags);
326 				zone = pagezone;
327 				spin_lock_irqsave(&zone->lru_lock, flags);
328 			}
329 			VM_BUG_ON(!PageLRU(page));
330 			__ClearPageLRU(page);
331 			del_page_from_lru(zone, page);
332 		}
333 
334 		if (!pagevec_add(&pages_to_free, page)) {
335 			if (zone) {
336 				spin_unlock_irqrestore(&zone->lru_lock, flags);
337 				zone = NULL;
338 			}
339 			__pagevec_free(&pages_to_free);
340 			pagevec_reinit(&pages_to_free);
341   		}
342 	}
343 	if (zone)
344 		spin_unlock_irqrestore(&zone->lru_lock, flags);
345 
346 	pagevec_free(&pages_to_free);
347 }
348 
349 /*
350  * The pages which we're about to release may be in the deferred lru-addition
351  * queues.  That would prevent them from really being freed right now.  That's
352  * OK from a correctness point of view but is inefficient - those pages may be
353  * cache-warm and we want to give them back to the page allocator ASAP.
354  *
355  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
356  * and __pagevec_lru_add_active() call release_pages() directly to avoid
357  * mutual recursion.
358  */
359 void __pagevec_release(struct pagevec *pvec)
360 {
361 	lru_add_drain();
362 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
363 	pagevec_reinit(pvec);
364 }
365 
366 EXPORT_SYMBOL(__pagevec_release);
367 
368 /*
369  * pagevec_release() for pages which are known to not be on the LRU
370  *
371  * This function reinitialises the caller's pagevec.
372  */
373 void __pagevec_release_nonlru(struct pagevec *pvec)
374 {
375 	int i;
376 	struct pagevec pages_to_free;
377 
378 	pagevec_init(&pages_to_free, pvec->cold);
379 	for (i = 0; i < pagevec_count(pvec); i++) {
380 		struct page *page = pvec->pages[i];
381 
382 		VM_BUG_ON(PageLRU(page));
383 		if (put_page_testzero(page))
384 			pagevec_add(&pages_to_free, page);
385 	}
386 	pagevec_free(&pages_to_free);
387 	pagevec_reinit(pvec);
388 }
389 
390 /*
391  * Add the passed pages to the LRU, then drop the caller's refcount
392  * on them.  Reinitialises the caller's pagevec.
393  */
394 void __pagevec_lru_add(struct pagevec *pvec)
395 {
396 	int i;
397 	struct zone *zone = NULL;
398 
399 	for (i = 0; i < pagevec_count(pvec); i++) {
400 		struct page *page = pvec->pages[i];
401 		struct zone *pagezone = page_zone(page);
402 
403 		if (pagezone != zone) {
404 			if (zone)
405 				spin_unlock_irq(&zone->lru_lock);
406 			zone = pagezone;
407 			spin_lock_irq(&zone->lru_lock);
408 		}
409 		VM_BUG_ON(PageLRU(page));
410 		SetPageLRU(page);
411 		add_page_to_inactive_list(zone, page);
412 	}
413 	if (zone)
414 		spin_unlock_irq(&zone->lru_lock);
415 	release_pages(pvec->pages, pvec->nr, pvec->cold);
416 	pagevec_reinit(pvec);
417 }
418 
419 EXPORT_SYMBOL(__pagevec_lru_add);
420 
421 void __pagevec_lru_add_active(struct pagevec *pvec)
422 {
423 	int i;
424 	struct zone *zone = NULL;
425 
426 	for (i = 0; i < pagevec_count(pvec); i++) {
427 		struct page *page = pvec->pages[i];
428 		struct zone *pagezone = page_zone(page);
429 
430 		if (pagezone != zone) {
431 			if (zone)
432 				spin_unlock_irq(&zone->lru_lock);
433 			zone = pagezone;
434 			spin_lock_irq(&zone->lru_lock);
435 		}
436 		VM_BUG_ON(PageLRU(page));
437 		SetPageLRU(page);
438 		VM_BUG_ON(PageActive(page));
439 		SetPageActive(page);
440 		add_page_to_active_list(zone, page);
441 	}
442 	if (zone)
443 		spin_unlock_irq(&zone->lru_lock);
444 	release_pages(pvec->pages, pvec->nr, pvec->cold);
445 	pagevec_reinit(pvec);
446 }
447 
448 /*
449  * Try to drop buffers from the pages in a pagevec
450  */
451 void pagevec_strip(struct pagevec *pvec)
452 {
453 	int i;
454 
455 	for (i = 0; i < pagevec_count(pvec); i++) {
456 		struct page *page = pvec->pages[i];
457 
458 		if (PagePrivate(page) && !TestSetPageLocked(page)) {
459 			if (PagePrivate(page))
460 				try_to_release_page(page, 0);
461 			unlock_page(page);
462 		}
463 	}
464 }
465 
466 /**
467  * pagevec_lookup - gang pagecache lookup
468  * @pvec:	Where the resulting pages are placed
469  * @mapping:	The address_space to search
470  * @start:	The starting page index
471  * @nr_pages:	The maximum number of pages
472  *
473  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
474  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
475  * reference against the pages in @pvec.
476  *
477  * The search returns a group of mapping-contiguous pages with ascending
478  * indexes.  There may be holes in the indices due to not-present pages.
479  *
480  * pagevec_lookup() returns the number of pages which were found.
481  */
482 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
483 		pgoff_t start, unsigned nr_pages)
484 {
485 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
486 	return pagevec_count(pvec);
487 }
488 
489 EXPORT_SYMBOL(pagevec_lookup);
490 
491 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
492 		pgoff_t *index, int tag, unsigned nr_pages)
493 {
494 	pvec->nr = find_get_pages_tag(mapping, index, tag,
495 					nr_pages, pvec->pages);
496 	return pagevec_count(pvec);
497 }
498 
499 EXPORT_SYMBOL(pagevec_lookup_tag);
500 
501 #ifdef CONFIG_SMP
502 /*
503  * We tolerate a little inaccuracy to avoid ping-ponging the counter between
504  * CPUs
505  */
506 #define ACCT_THRESHOLD	max(16, NR_CPUS * 2)
507 
508 static DEFINE_PER_CPU(long, committed_space) = 0;
509 
510 void vm_acct_memory(long pages)
511 {
512 	long *local;
513 
514 	preempt_disable();
515 	local = &__get_cpu_var(committed_space);
516 	*local += pages;
517 	if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
518 		atomic_add(*local, &vm_committed_space);
519 		*local = 0;
520 	}
521 	preempt_enable();
522 }
523 
524 #ifdef CONFIG_HOTPLUG_CPU
525 
526 /* Drop the CPU's cached committed space back into the central pool. */
527 static int cpu_swap_callback(struct notifier_block *nfb,
528 			     unsigned long action,
529 			     void *hcpu)
530 {
531 	long *committed;
532 
533 	committed = &per_cpu(committed_space, (long)hcpu);
534 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
535 		atomic_add(*committed, &vm_committed_space);
536 		*committed = 0;
537 		drain_cpu_pagevecs((long)hcpu);
538 	}
539 	return NOTIFY_OK;
540 }
541 #endif /* CONFIG_HOTPLUG_CPU */
542 #endif /* CONFIG_SMP */
543 
544 /*
545  * Perform any setup for the swap system
546  */
547 void __init swap_setup(void)
548 {
549 	unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
550 
551 #ifdef CONFIG_SWAP
552 	bdi_init(swapper_space.backing_dev_info);
553 #endif
554 
555 	/* Use a smaller cluster for small-memory machines */
556 	if (megs < 16)
557 		page_cluster = 2;
558 	else
559 		page_cluster = 3;
560 	/*
561 	 * Right now other parts of the system means that we
562 	 * _really_ don't want to cluster much more
563 	 */
564 #ifdef CONFIG_HOTPLUG_CPU
565 	hotcpu_notifier(cpu_swap_callback, 0);
566 #endif
567 }
568