xref: /openbmc/linux/mm/swap.c (revision 62e7ca52)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 
35 #include "internal.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/pagemap.h>
39 
40 /* How many pages do we try to swap or page in/out together? */
41 int page_cluster;
42 
43 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
44 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
45 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
46 
47 /*
48  * This path almost never happens for VM activity - pages are normally
49  * freed via pagevecs.  But it gets used by networking.
50  */
51 static void __page_cache_release(struct page *page)
52 {
53 	if (PageLRU(page)) {
54 		struct zone *zone = page_zone(page);
55 		struct lruvec *lruvec;
56 		unsigned long flags;
57 
58 		spin_lock_irqsave(&zone->lru_lock, flags);
59 		lruvec = mem_cgroup_page_lruvec(page, zone);
60 		VM_BUG_ON_PAGE(!PageLRU(page), page);
61 		__ClearPageLRU(page);
62 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
63 		spin_unlock_irqrestore(&zone->lru_lock, flags);
64 	}
65 }
66 
67 static void __put_single_page(struct page *page)
68 {
69 	__page_cache_release(page);
70 	free_hot_cold_page(page, false);
71 }
72 
73 static void __put_compound_page(struct page *page)
74 {
75 	compound_page_dtor *dtor;
76 
77 	__page_cache_release(page);
78 	dtor = get_compound_page_dtor(page);
79 	(*dtor)(page);
80 }
81 
82 /**
83  * Two special cases here: we could avoid taking compound_lock_irqsave
84  * and could skip the tail refcounting(in _mapcount).
85  *
86  * 1. Hugetlbfs page:
87  *
88  *    PageHeadHuge will remain true until the compound page
89  *    is released and enters the buddy allocator, and it could
90  *    not be split by __split_huge_page_refcount().
91  *
92  *    So if we see PageHeadHuge set, and we have the tail page pin,
93  *    then we could safely put head page.
94  *
95  * 2. Slab THP page:
96  *
97  *    PG_slab is cleared before the slab frees the head page, and
98  *    tail pin cannot be the last reference left on the head page,
99  *    because the slab code is free to reuse the compound page
100  *    after a kfree/kmem_cache_free without having to check if
101  *    there's any tail pin left.  In turn all tail pinsmust be always
102  *    released while the head is still pinned by the slab code
103  *    and so we know PG_slab will be still set too.
104  *
105  *    So if we see PageSlab set, and we have the tail page pin,
106  *    then we could safely put head page.
107  */
108 static __always_inline
109 void put_unrefcounted_compound_page(struct page *page_head, struct page *page)
110 {
111 	/*
112 	 * If @page is a THP tail, we must read the tail page
113 	 * flags after the head page flags. The
114 	 * __split_huge_page_refcount side enforces write memory barriers
115 	 * between clearing PageTail and before the head page
116 	 * can be freed and reallocated.
117 	 */
118 	smp_rmb();
119 	if (likely(PageTail(page))) {
120 		/*
121 		 * __split_huge_page_refcount cannot race
122 		 * here, see the comment above this function.
123 		 */
124 		VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
125 		VM_BUG_ON_PAGE(page_mapcount(page) != 0, page);
126 		if (put_page_testzero(page_head)) {
127 			/*
128 			 * If this is the tail of a slab THP page,
129 			 * the tail pin must not be the last reference
130 			 * held on the page, because the PG_slab cannot
131 			 * be cleared before all tail pins (which skips
132 			 * the _mapcount tail refcounting) have been
133 			 * released.
134 			 *
135 			 * If this is the tail of a hugetlbfs page,
136 			 * the tail pin may be the last reference on
137 			 * the page instead, because PageHeadHuge will
138 			 * not go away until the compound page enters
139 			 * the buddy allocator.
140 			 */
141 			VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
142 			__put_compound_page(page_head);
143 		}
144 	} else
145 		/*
146 		 * __split_huge_page_refcount run before us,
147 		 * @page was a THP tail. The split @page_head
148 		 * has been freed and reallocated as slab or
149 		 * hugetlbfs page of smaller order (only
150 		 * possible if reallocated as slab on x86).
151 		 */
152 		if (put_page_testzero(page))
153 			__put_single_page(page);
154 }
155 
156 static __always_inline
157 void put_refcounted_compound_page(struct page *page_head, struct page *page)
158 {
159 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
160 		unsigned long flags;
161 
162 		/*
163 		 * @page_head wasn't a dangling pointer but it may not
164 		 * be a head page anymore by the time we obtain the
165 		 * lock. That is ok as long as it can't be freed from
166 		 * under us.
167 		 */
168 		flags = compound_lock_irqsave(page_head);
169 		if (unlikely(!PageTail(page))) {
170 			/* __split_huge_page_refcount run before us */
171 			compound_unlock_irqrestore(page_head, flags);
172 			if (put_page_testzero(page_head)) {
173 				/*
174 				 * The @page_head may have been freed
175 				 * and reallocated as a compound page
176 				 * of smaller order and then freed
177 				 * again.  All we know is that it
178 				 * cannot have become: a THP page, a
179 				 * compound page of higher order, a
180 				 * tail page.  That is because we
181 				 * still hold the refcount of the
182 				 * split THP tail and page_head was
183 				 * the THP head before the split.
184 				 */
185 				if (PageHead(page_head))
186 					__put_compound_page(page_head);
187 				else
188 					__put_single_page(page_head);
189 			}
190 out_put_single:
191 			if (put_page_testzero(page))
192 				__put_single_page(page);
193 			return;
194 		}
195 		VM_BUG_ON_PAGE(page_head != page->first_page, page);
196 		/*
197 		 * We can release the refcount taken by
198 		 * get_page_unless_zero() now that
199 		 * __split_huge_page_refcount() is blocked on the
200 		 * compound_lock.
201 		 */
202 		if (put_page_testzero(page_head))
203 			VM_BUG_ON_PAGE(1, page_head);
204 		/* __split_huge_page_refcount will wait now */
205 		VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
206 		atomic_dec(&page->_mapcount);
207 		VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
208 		VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
209 		compound_unlock_irqrestore(page_head, flags);
210 
211 		if (put_page_testzero(page_head)) {
212 			if (PageHead(page_head))
213 				__put_compound_page(page_head);
214 			else
215 				__put_single_page(page_head);
216 		}
217 	} else {
218 		/* @page_head is a dangling pointer */
219 		VM_BUG_ON_PAGE(PageTail(page), page);
220 		goto out_put_single;
221 	}
222 }
223 
224 static void put_compound_page(struct page *page)
225 {
226 	struct page *page_head;
227 
228 	/*
229 	 * We see the PageCompound set and PageTail not set, so @page maybe:
230 	 *  1. hugetlbfs head page, or
231 	 *  2. THP head page.
232 	 */
233 	if (likely(!PageTail(page))) {
234 		if (put_page_testzero(page)) {
235 			/*
236 			 * By the time all refcounts have been released
237 			 * split_huge_page cannot run anymore from under us.
238 			 */
239 			if (PageHead(page))
240 				__put_compound_page(page);
241 			else
242 				__put_single_page(page);
243 		}
244 		return;
245 	}
246 
247 	/*
248 	 * We see the PageCompound set and PageTail set, so @page maybe:
249 	 *  1. a tail hugetlbfs page, or
250 	 *  2. a tail THP page, or
251 	 *  3. a split THP page.
252 	 *
253 	 *  Case 3 is possible, as we may race with
254 	 *  __split_huge_page_refcount tearing down a THP page.
255 	 */
256 	page_head = compound_head_by_tail(page);
257 	if (!__compound_tail_refcounted(page_head))
258 		put_unrefcounted_compound_page(page_head, page);
259 	else
260 		put_refcounted_compound_page(page_head, page);
261 }
262 
263 void put_page(struct page *page)
264 {
265 	if (unlikely(PageCompound(page)))
266 		put_compound_page(page);
267 	else if (put_page_testzero(page))
268 		__put_single_page(page);
269 }
270 EXPORT_SYMBOL(put_page);
271 
272 /*
273  * This function is exported but must not be called by anything other
274  * than get_page(). It implements the slow path of get_page().
275  */
276 bool __get_page_tail(struct page *page)
277 {
278 	/*
279 	 * This takes care of get_page() if run on a tail page
280 	 * returned by one of the get_user_pages/follow_page variants.
281 	 * get_user_pages/follow_page itself doesn't need the compound
282 	 * lock because it runs __get_page_tail_foll() under the
283 	 * proper PT lock that already serializes against
284 	 * split_huge_page().
285 	 */
286 	unsigned long flags;
287 	bool got;
288 	struct page *page_head = compound_head(page);
289 
290 	/* Ref to put_compound_page() comment. */
291 	if (!__compound_tail_refcounted(page_head)) {
292 		smp_rmb();
293 		if (likely(PageTail(page))) {
294 			/*
295 			 * This is a hugetlbfs page or a slab
296 			 * page. __split_huge_page_refcount
297 			 * cannot race here.
298 			 */
299 			VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
300 			__get_page_tail_foll(page, true);
301 			return true;
302 		} else {
303 			/*
304 			 * __split_huge_page_refcount run
305 			 * before us, "page" was a THP
306 			 * tail. The split page_head has been
307 			 * freed and reallocated as slab or
308 			 * hugetlbfs page of smaller order
309 			 * (only possible if reallocated as
310 			 * slab on x86).
311 			 */
312 			return false;
313 		}
314 	}
315 
316 	got = false;
317 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
318 		/*
319 		 * page_head wasn't a dangling pointer but it
320 		 * may not be a head page anymore by the time
321 		 * we obtain the lock. That is ok as long as it
322 		 * can't be freed from under us.
323 		 */
324 		flags = compound_lock_irqsave(page_head);
325 		/* here __split_huge_page_refcount won't run anymore */
326 		if (likely(PageTail(page))) {
327 			__get_page_tail_foll(page, false);
328 			got = true;
329 		}
330 		compound_unlock_irqrestore(page_head, flags);
331 		if (unlikely(!got))
332 			put_page(page_head);
333 	}
334 	return got;
335 }
336 EXPORT_SYMBOL(__get_page_tail);
337 
338 /**
339  * put_pages_list() - release a list of pages
340  * @pages: list of pages threaded on page->lru
341  *
342  * Release a list of pages which are strung together on page.lru.  Currently
343  * used by read_cache_pages() and related error recovery code.
344  */
345 void put_pages_list(struct list_head *pages)
346 {
347 	while (!list_empty(pages)) {
348 		struct page *victim;
349 
350 		victim = list_entry(pages->prev, struct page, lru);
351 		list_del(&victim->lru);
352 		page_cache_release(victim);
353 	}
354 }
355 EXPORT_SYMBOL(put_pages_list);
356 
357 /*
358  * get_kernel_pages() - pin kernel pages in memory
359  * @kiov:	An array of struct kvec structures
360  * @nr_segs:	number of segments to pin
361  * @write:	pinning for read/write, currently ignored
362  * @pages:	array that receives pointers to the pages pinned.
363  *		Should be at least nr_segs long.
364  *
365  * Returns number of pages pinned. This may be fewer than the number
366  * requested. If nr_pages is 0 or negative, returns 0. If no pages
367  * were pinned, returns -errno. Each page returned must be released
368  * with a put_page() call when it is finished with.
369  */
370 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
371 		struct page **pages)
372 {
373 	int seg;
374 
375 	for (seg = 0; seg < nr_segs; seg++) {
376 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
377 			return seg;
378 
379 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
380 		page_cache_get(pages[seg]);
381 	}
382 
383 	return seg;
384 }
385 EXPORT_SYMBOL_GPL(get_kernel_pages);
386 
387 /*
388  * get_kernel_page() - pin a kernel page in memory
389  * @start:	starting kernel address
390  * @write:	pinning for read/write, currently ignored
391  * @pages:	array that receives pointer to the page pinned.
392  *		Must be at least nr_segs long.
393  *
394  * Returns 1 if page is pinned. If the page was not pinned, returns
395  * -errno. The page returned must be released with a put_page() call
396  * when it is finished with.
397  */
398 int get_kernel_page(unsigned long start, int write, struct page **pages)
399 {
400 	const struct kvec kiov = {
401 		.iov_base = (void *)start,
402 		.iov_len = PAGE_SIZE
403 	};
404 
405 	return get_kernel_pages(&kiov, 1, write, pages);
406 }
407 EXPORT_SYMBOL_GPL(get_kernel_page);
408 
409 static void pagevec_lru_move_fn(struct pagevec *pvec,
410 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
411 	void *arg)
412 {
413 	int i;
414 	struct zone *zone = NULL;
415 	struct lruvec *lruvec;
416 	unsigned long flags = 0;
417 
418 	for (i = 0; i < pagevec_count(pvec); i++) {
419 		struct page *page = pvec->pages[i];
420 		struct zone *pagezone = page_zone(page);
421 
422 		if (pagezone != zone) {
423 			if (zone)
424 				spin_unlock_irqrestore(&zone->lru_lock, flags);
425 			zone = pagezone;
426 			spin_lock_irqsave(&zone->lru_lock, flags);
427 		}
428 
429 		lruvec = mem_cgroup_page_lruvec(page, zone);
430 		(*move_fn)(page, lruvec, arg);
431 	}
432 	if (zone)
433 		spin_unlock_irqrestore(&zone->lru_lock, flags);
434 	release_pages(pvec->pages, pvec->nr, pvec->cold);
435 	pagevec_reinit(pvec);
436 }
437 
438 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
439 				 void *arg)
440 {
441 	int *pgmoved = arg;
442 
443 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
444 		enum lru_list lru = page_lru_base_type(page);
445 		list_move_tail(&page->lru, &lruvec->lists[lru]);
446 		(*pgmoved)++;
447 	}
448 }
449 
450 /*
451  * pagevec_move_tail() must be called with IRQ disabled.
452  * Otherwise this may cause nasty races.
453  */
454 static void pagevec_move_tail(struct pagevec *pvec)
455 {
456 	int pgmoved = 0;
457 
458 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
459 	__count_vm_events(PGROTATED, pgmoved);
460 }
461 
462 /*
463  * Writeback is about to end against a page which has been marked for immediate
464  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
465  * inactive list.
466  */
467 void rotate_reclaimable_page(struct page *page)
468 {
469 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
470 	    !PageUnevictable(page) && PageLRU(page)) {
471 		struct pagevec *pvec;
472 		unsigned long flags;
473 
474 		page_cache_get(page);
475 		local_irq_save(flags);
476 		pvec = this_cpu_ptr(&lru_rotate_pvecs);
477 		if (!pagevec_add(pvec, page))
478 			pagevec_move_tail(pvec);
479 		local_irq_restore(flags);
480 	}
481 }
482 
483 static void update_page_reclaim_stat(struct lruvec *lruvec,
484 				     int file, int rotated)
485 {
486 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
487 
488 	reclaim_stat->recent_scanned[file]++;
489 	if (rotated)
490 		reclaim_stat->recent_rotated[file]++;
491 }
492 
493 static void __activate_page(struct page *page, struct lruvec *lruvec,
494 			    void *arg)
495 {
496 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
497 		int file = page_is_file_cache(page);
498 		int lru = page_lru_base_type(page);
499 
500 		del_page_from_lru_list(page, lruvec, lru);
501 		SetPageActive(page);
502 		lru += LRU_ACTIVE;
503 		add_page_to_lru_list(page, lruvec, lru);
504 		trace_mm_lru_activate(page);
505 
506 		__count_vm_event(PGACTIVATE);
507 		update_page_reclaim_stat(lruvec, file, 1);
508 	}
509 }
510 
511 #ifdef CONFIG_SMP
512 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
513 
514 static void activate_page_drain(int cpu)
515 {
516 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
517 
518 	if (pagevec_count(pvec))
519 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
520 }
521 
522 static bool need_activate_page_drain(int cpu)
523 {
524 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
525 }
526 
527 void activate_page(struct page *page)
528 {
529 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
530 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
531 
532 		page_cache_get(page);
533 		if (!pagevec_add(pvec, page))
534 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
535 		put_cpu_var(activate_page_pvecs);
536 	}
537 }
538 
539 #else
540 static inline void activate_page_drain(int cpu)
541 {
542 }
543 
544 static bool need_activate_page_drain(int cpu)
545 {
546 	return false;
547 }
548 
549 void activate_page(struct page *page)
550 {
551 	struct zone *zone = page_zone(page);
552 
553 	spin_lock_irq(&zone->lru_lock);
554 	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
555 	spin_unlock_irq(&zone->lru_lock);
556 }
557 #endif
558 
559 static void __lru_cache_activate_page(struct page *page)
560 {
561 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
562 	int i;
563 
564 	/*
565 	 * Search backwards on the optimistic assumption that the page being
566 	 * activated has just been added to this pagevec. Note that only
567 	 * the local pagevec is examined as a !PageLRU page could be in the
568 	 * process of being released, reclaimed, migrated or on a remote
569 	 * pagevec that is currently being drained. Furthermore, marking
570 	 * a remote pagevec's page PageActive potentially hits a race where
571 	 * a page is marked PageActive just after it is added to the inactive
572 	 * list causing accounting errors and BUG_ON checks to trigger.
573 	 */
574 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
575 		struct page *pagevec_page = pvec->pages[i];
576 
577 		if (pagevec_page == page) {
578 			SetPageActive(page);
579 			break;
580 		}
581 	}
582 
583 	put_cpu_var(lru_add_pvec);
584 }
585 
586 /*
587  * Mark a page as having seen activity.
588  *
589  * inactive,unreferenced	->	inactive,referenced
590  * inactive,referenced		->	active,unreferenced
591  * active,unreferenced		->	active,referenced
592  *
593  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
594  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
595  */
596 void mark_page_accessed(struct page *page)
597 {
598 	if (!PageActive(page) && !PageUnevictable(page) &&
599 			PageReferenced(page)) {
600 
601 		/*
602 		 * If the page is on the LRU, queue it for activation via
603 		 * activate_page_pvecs. Otherwise, assume the page is on a
604 		 * pagevec, mark it active and it'll be moved to the active
605 		 * LRU on the next drain.
606 		 */
607 		if (PageLRU(page))
608 			activate_page(page);
609 		else
610 			__lru_cache_activate_page(page);
611 		ClearPageReferenced(page);
612 		if (page_is_file_cache(page))
613 			workingset_activation(page);
614 	} else if (!PageReferenced(page)) {
615 		SetPageReferenced(page);
616 	}
617 }
618 EXPORT_SYMBOL(mark_page_accessed);
619 
620 static void __lru_cache_add(struct page *page)
621 {
622 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
623 
624 	page_cache_get(page);
625 	if (!pagevec_space(pvec))
626 		__pagevec_lru_add(pvec);
627 	pagevec_add(pvec, page);
628 	put_cpu_var(lru_add_pvec);
629 }
630 
631 /**
632  * lru_cache_add: add a page to the page lists
633  * @page: the page to add
634  */
635 void lru_cache_add_anon(struct page *page)
636 {
637 	if (PageActive(page))
638 		ClearPageActive(page);
639 	__lru_cache_add(page);
640 }
641 
642 void lru_cache_add_file(struct page *page)
643 {
644 	if (PageActive(page))
645 		ClearPageActive(page);
646 	__lru_cache_add(page);
647 }
648 EXPORT_SYMBOL(lru_cache_add_file);
649 
650 /**
651  * lru_cache_add - add a page to a page list
652  * @page: the page to be added to the LRU.
653  *
654  * Queue the page for addition to the LRU via pagevec. The decision on whether
655  * to add the page to the [in]active [file|anon] list is deferred until the
656  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
657  * have the page added to the active list using mark_page_accessed().
658  */
659 void lru_cache_add(struct page *page)
660 {
661 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
662 	VM_BUG_ON_PAGE(PageLRU(page), page);
663 	__lru_cache_add(page);
664 }
665 
666 /**
667  * add_page_to_unevictable_list - add a page to the unevictable list
668  * @page:  the page to be added to the unevictable list
669  *
670  * Add page directly to its zone's unevictable list.  To avoid races with
671  * tasks that might be making the page evictable, through eg. munlock,
672  * munmap or exit, while it's not on the lru, we want to add the page
673  * while it's locked or otherwise "invisible" to other tasks.  This is
674  * difficult to do when using the pagevec cache, so bypass that.
675  */
676 void add_page_to_unevictable_list(struct page *page)
677 {
678 	struct zone *zone = page_zone(page);
679 	struct lruvec *lruvec;
680 
681 	spin_lock_irq(&zone->lru_lock);
682 	lruvec = mem_cgroup_page_lruvec(page, zone);
683 	ClearPageActive(page);
684 	SetPageUnevictable(page);
685 	SetPageLRU(page);
686 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
687 	spin_unlock_irq(&zone->lru_lock);
688 }
689 
690 /*
691  * If the page can not be invalidated, it is moved to the
692  * inactive list to speed up its reclaim.  It is moved to the
693  * head of the list, rather than the tail, to give the flusher
694  * threads some time to write it out, as this is much more
695  * effective than the single-page writeout from reclaim.
696  *
697  * If the page isn't page_mapped and dirty/writeback, the page
698  * could reclaim asap using PG_reclaim.
699  *
700  * 1. active, mapped page -> none
701  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
702  * 3. inactive, mapped page -> none
703  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
704  * 5. inactive, clean -> inactive, tail
705  * 6. Others -> none
706  *
707  * In 4, why it moves inactive's head, the VM expects the page would
708  * be write it out by flusher threads as this is much more effective
709  * than the single-page writeout from reclaim.
710  */
711 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
712 			      void *arg)
713 {
714 	int lru, file;
715 	bool active;
716 
717 	if (!PageLRU(page))
718 		return;
719 
720 	if (PageUnevictable(page))
721 		return;
722 
723 	/* Some processes are using the page */
724 	if (page_mapped(page))
725 		return;
726 
727 	active = PageActive(page);
728 	file = page_is_file_cache(page);
729 	lru = page_lru_base_type(page);
730 
731 	del_page_from_lru_list(page, lruvec, lru + active);
732 	ClearPageActive(page);
733 	ClearPageReferenced(page);
734 	add_page_to_lru_list(page, lruvec, lru);
735 
736 	if (PageWriteback(page) || PageDirty(page)) {
737 		/*
738 		 * PG_reclaim could be raced with end_page_writeback
739 		 * It can make readahead confusing.  But race window
740 		 * is _really_ small and  it's non-critical problem.
741 		 */
742 		SetPageReclaim(page);
743 	} else {
744 		/*
745 		 * The page's writeback ends up during pagevec
746 		 * We moves tha page into tail of inactive.
747 		 */
748 		list_move_tail(&page->lru, &lruvec->lists[lru]);
749 		__count_vm_event(PGROTATED);
750 	}
751 
752 	if (active)
753 		__count_vm_event(PGDEACTIVATE);
754 	update_page_reclaim_stat(lruvec, file, 0);
755 }
756 
757 /*
758  * Drain pages out of the cpu's pagevecs.
759  * Either "cpu" is the current CPU, and preemption has already been
760  * disabled; or "cpu" is being hot-unplugged, and is already dead.
761  */
762 void lru_add_drain_cpu(int cpu)
763 {
764 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
765 
766 	if (pagevec_count(pvec))
767 		__pagevec_lru_add(pvec);
768 
769 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
770 	if (pagevec_count(pvec)) {
771 		unsigned long flags;
772 
773 		/* No harm done if a racing interrupt already did this */
774 		local_irq_save(flags);
775 		pagevec_move_tail(pvec);
776 		local_irq_restore(flags);
777 	}
778 
779 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
780 	if (pagevec_count(pvec))
781 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
782 
783 	activate_page_drain(cpu);
784 }
785 
786 /**
787  * deactivate_page - forcefully deactivate a page
788  * @page: page to deactivate
789  *
790  * This function hints the VM that @page is a good reclaim candidate,
791  * for example if its invalidation fails due to the page being dirty
792  * or under writeback.
793  */
794 void deactivate_page(struct page *page)
795 {
796 	/*
797 	 * In a workload with many unevictable page such as mprotect, unevictable
798 	 * page deactivation for accelerating reclaim is pointless.
799 	 */
800 	if (PageUnevictable(page))
801 		return;
802 
803 	if (likely(get_page_unless_zero(page))) {
804 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
805 
806 		if (!pagevec_add(pvec, page))
807 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
808 		put_cpu_var(lru_deactivate_pvecs);
809 	}
810 }
811 
812 void lru_add_drain(void)
813 {
814 	lru_add_drain_cpu(get_cpu());
815 	put_cpu();
816 }
817 
818 static void lru_add_drain_per_cpu(struct work_struct *dummy)
819 {
820 	lru_add_drain();
821 }
822 
823 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
824 
825 void lru_add_drain_all(void)
826 {
827 	static DEFINE_MUTEX(lock);
828 	static struct cpumask has_work;
829 	int cpu;
830 
831 	mutex_lock(&lock);
832 	get_online_cpus();
833 	cpumask_clear(&has_work);
834 
835 	for_each_online_cpu(cpu) {
836 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
837 
838 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
839 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
840 		    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
841 		    need_activate_page_drain(cpu)) {
842 			INIT_WORK(work, lru_add_drain_per_cpu);
843 			schedule_work_on(cpu, work);
844 			cpumask_set_cpu(cpu, &has_work);
845 		}
846 	}
847 
848 	for_each_cpu(cpu, &has_work)
849 		flush_work(&per_cpu(lru_add_drain_work, cpu));
850 
851 	put_online_cpus();
852 	mutex_unlock(&lock);
853 }
854 
855 /*
856  * Batched page_cache_release().  Decrement the reference count on all the
857  * passed pages.  If it fell to zero then remove the page from the LRU and
858  * free it.
859  *
860  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
861  * for the remainder of the operation.
862  *
863  * The locking in this function is against shrink_inactive_list(): we recheck
864  * the page count inside the lock to see whether shrink_inactive_list()
865  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
866  * will free it.
867  */
868 void release_pages(struct page **pages, int nr, bool cold)
869 {
870 	int i;
871 	LIST_HEAD(pages_to_free);
872 	struct zone *zone = NULL;
873 	struct lruvec *lruvec;
874 	unsigned long uninitialized_var(flags);
875 
876 	for (i = 0; i < nr; i++) {
877 		struct page *page = pages[i];
878 
879 		if (unlikely(PageCompound(page))) {
880 			if (zone) {
881 				spin_unlock_irqrestore(&zone->lru_lock, flags);
882 				zone = NULL;
883 			}
884 			put_compound_page(page);
885 			continue;
886 		}
887 
888 		if (!put_page_testzero(page))
889 			continue;
890 
891 		if (PageLRU(page)) {
892 			struct zone *pagezone = page_zone(page);
893 
894 			if (pagezone != zone) {
895 				if (zone)
896 					spin_unlock_irqrestore(&zone->lru_lock,
897 									flags);
898 				zone = pagezone;
899 				spin_lock_irqsave(&zone->lru_lock, flags);
900 			}
901 
902 			lruvec = mem_cgroup_page_lruvec(page, zone);
903 			VM_BUG_ON_PAGE(!PageLRU(page), page);
904 			__ClearPageLRU(page);
905 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
906 		}
907 
908 		/* Clear Active bit in case of parallel mark_page_accessed */
909 		__ClearPageActive(page);
910 
911 		list_add(&page->lru, &pages_to_free);
912 	}
913 	if (zone)
914 		spin_unlock_irqrestore(&zone->lru_lock, flags);
915 
916 	free_hot_cold_page_list(&pages_to_free, cold);
917 }
918 EXPORT_SYMBOL(release_pages);
919 
920 /*
921  * The pages which we're about to release may be in the deferred lru-addition
922  * queues.  That would prevent them from really being freed right now.  That's
923  * OK from a correctness point of view but is inefficient - those pages may be
924  * cache-warm and we want to give them back to the page allocator ASAP.
925  *
926  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
927  * and __pagevec_lru_add_active() call release_pages() directly to avoid
928  * mutual recursion.
929  */
930 void __pagevec_release(struct pagevec *pvec)
931 {
932 	lru_add_drain();
933 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
934 	pagevec_reinit(pvec);
935 }
936 EXPORT_SYMBOL(__pagevec_release);
937 
938 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
939 /* used by __split_huge_page_refcount() */
940 void lru_add_page_tail(struct page *page, struct page *page_tail,
941 		       struct lruvec *lruvec, struct list_head *list)
942 {
943 	const int file = 0;
944 
945 	VM_BUG_ON_PAGE(!PageHead(page), page);
946 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
947 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
948 	VM_BUG_ON(NR_CPUS != 1 &&
949 		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
950 
951 	if (!list)
952 		SetPageLRU(page_tail);
953 
954 	if (likely(PageLRU(page)))
955 		list_add_tail(&page_tail->lru, &page->lru);
956 	else if (list) {
957 		/* page reclaim is reclaiming a huge page */
958 		get_page(page_tail);
959 		list_add_tail(&page_tail->lru, list);
960 	} else {
961 		struct list_head *list_head;
962 		/*
963 		 * Head page has not yet been counted, as an hpage,
964 		 * so we must account for each subpage individually.
965 		 *
966 		 * Use the standard add function to put page_tail on the list,
967 		 * but then correct its position so they all end up in order.
968 		 */
969 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
970 		list_head = page_tail->lru.prev;
971 		list_move_tail(&page_tail->lru, list_head);
972 	}
973 
974 	if (!PageUnevictable(page))
975 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
976 }
977 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
978 
979 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
980 				 void *arg)
981 {
982 	int file = page_is_file_cache(page);
983 	int active = PageActive(page);
984 	enum lru_list lru = page_lru(page);
985 
986 	VM_BUG_ON_PAGE(PageLRU(page), page);
987 
988 	SetPageLRU(page);
989 	add_page_to_lru_list(page, lruvec, lru);
990 	update_page_reclaim_stat(lruvec, file, active);
991 	trace_mm_lru_insertion(page, lru);
992 }
993 
994 /*
995  * Add the passed pages to the LRU, then drop the caller's refcount
996  * on them.  Reinitialises the caller's pagevec.
997  */
998 void __pagevec_lru_add(struct pagevec *pvec)
999 {
1000 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1001 }
1002 EXPORT_SYMBOL(__pagevec_lru_add);
1003 
1004 /**
1005  * pagevec_lookup_entries - gang pagecache lookup
1006  * @pvec:	Where the resulting entries are placed
1007  * @mapping:	The address_space to search
1008  * @start:	The starting entry index
1009  * @nr_entries:	The maximum number of entries
1010  * @indices:	The cache indices corresponding to the entries in @pvec
1011  *
1012  * pagevec_lookup_entries() will search for and return a group of up
1013  * to @nr_entries pages and shadow entries in the mapping.  All
1014  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
1015  * reference against actual pages in @pvec.
1016  *
1017  * The search returns a group of mapping-contiguous entries with
1018  * ascending indexes.  There may be holes in the indices due to
1019  * not-present entries.
1020  *
1021  * pagevec_lookup_entries() returns the number of entries which were
1022  * found.
1023  */
1024 unsigned pagevec_lookup_entries(struct pagevec *pvec,
1025 				struct address_space *mapping,
1026 				pgoff_t start, unsigned nr_pages,
1027 				pgoff_t *indices)
1028 {
1029 	pvec->nr = find_get_entries(mapping, start, nr_pages,
1030 				    pvec->pages, indices);
1031 	return pagevec_count(pvec);
1032 }
1033 
1034 /**
1035  * pagevec_remove_exceptionals - pagevec exceptionals pruning
1036  * @pvec:	The pagevec to prune
1037  *
1038  * pagevec_lookup_entries() fills both pages and exceptional radix
1039  * tree entries into the pagevec.  This function prunes all
1040  * exceptionals from @pvec without leaving holes, so that it can be
1041  * passed on to page-only pagevec operations.
1042  */
1043 void pagevec_remove_exceptionals(struct pagevec *pvec)
1044 {
1045 	int i, j;
1046 
1047 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1048 		struct page *page = pvec->pages[i];
1049 		if (!radix_tree_exceptional_entry(page))
1050 			pvec->pages[j++] = page;
1051 	}
1052 	pvec->nr = j;
1053 }
1054 
1055 /**
1056  * pagevec_lookup - gang pagecache lookup
1057  * @pvec:	Where the resulting pages are placed
1058  * @mapping:	The address_space to search
1059  * @start:	The starting page index
1060  * @nr_pages:	The maximum number of pages
1061  *
1062  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1063  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
1064  * reference against the pages in @pvec.
1065  *
1066  * The search returns a group of mapping-contiguous pages with ascending
1067  * indexes.  There may be holes in the indices due to not-present pages.
1068  *
1069  * pagevec_lookup() returns the number of pages which were found.
1070  */
1071 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
1072 		pgoff_t start, unsigned nr_pages)
1073 {
1074 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
1075 	return pagevec_count(pvec);
1076 }
1077 EXPORT_SYMBOL(pagevec_lookup);
1078 
1079 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
1080 		pgoff_t *index, int tag, unsigned nr_pages)
1081 {
1082 	pvec->nr = find_get_pages_tag(mapping, index, tag,
1083 					nr_pages, pvec->pages);
1084 	return pagevec_count(pvec);
1085 }
1086 EXPORT_SYMBOL(pagevec_lookup_tag);
1087 
1088 /*
1089  * Perform any setup for the swap system
1090  */
1091 void __init swap_setup(void)
1092 {
1093 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1094 #ifdef CONFIG_SWAP
1095 	int i;
1096 
1097 	if (bdi_init(swapper_spaces[0].backing_dev_info))
1098 		panic("Failed to init swap bdi");
1099 	for (i = 0; i < MAX_SWAPFILES; i++) {
1100 		spin_lock_init(&swapper_spaces[i].tree_lock);
1101 		INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
1102 	}
1103 #endif
1104 
1105 	/* Use a smaller cluster for small-memory machines */
1106 	if (megs < 16)
1107 		page_cluster = 2;
1108 	else
1109 		page_cluster = 3;
1110 	/*
1111 	 * Right now other parts of the system means that we
1112 	 * _really_ don't want to cluster much more
1113 	 */
1114 }
1115