1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 #include <linux/buffer_head.h> 40 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/pagemap.h> 45 46 /* How many pages do we try to swap or page in/out together? As a power of 2 */ 47 int page_cluster; 48 const int page_cluster_max = 31; 49 50 /* Protecting only lru_rotate.fbatch which requires disabling interrupts */ 51 struct lru_rotate { 52 local_lock_t lock; 53 struct folio_batch fbatch; 54 }; 55 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = { 56 .lock = INIT_LOCAL_LOCK(lock), 57 }; 58 59 /* 60 * The following folio batches are grouped together because they are protected 61 * by disabling preemption (and interrupts remain enabled). 62 */ 63 struct cpu_fbatches { 64 local_lock_t lock; 65 struct folio_batch lru_add; 66 struct folio_batch lru_deactivate_file; 67 struct folio_batch lru_deactivate; 68 struct folio_batch lru_lazyfree; 69 #ifdef CONFIG_SMP 70 struct folio_batch activate; 71 #endif 72 }; 73 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = { 74 .lock = INIT_LOCAL_LOCK(lock), 75 }; 76 77 /* 78 * This path almost never happens for VM activity - pages are normally freed 79 * via pagevecs. But it gets used by networking - and for compound pages. 80 */ 81 static void __page_cache_release(struct folio *folio) 82 { 83 if (folio_test_lru(folio)) { 84 struct lruvec *lruvec; 85 unsigned long flags; 86 87 lruvec = folio_lruvec_lock_irqsave(folio, &flags); 88 lruvec_del_folio(lruvec, folio); 89 __folio_clear_lru_flags(folio); 90 unlock_page_lruvec_irqrestore(lruvec, flags); 91 } 92 /* See comment on folio_test_mlocked in release_pages() */ 93 if (unlikely(folio_test_mlocked(folio))) { 94 long nr_pages = folio_nr_pages(folio); 95 96 __folio_clear_mlocked(folio); 97 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 98 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 99 } 100 } 101 102 static void __folio_put_small(struct folio *folio) 103 { 104 __page_cache_release(folio); 105 mem_cgroup_uncharge(folio); 106 free_unref_page(&folio->page, 0); 107 } 108 109 static void __folio_put_large(struct folio *folio) 110 { 111 /* 112 * __page_cache_release() is supposed to be called for thp, not for 113 * hugetlb. This is because hugetlb page does never have PageLRU set 114 * (it's never listed to any LRU lists) and no memcg routines should 115 * be called for hugetlb (it has a separate hugetlb_cgroup.) 116 */ 117 if (!folio_test_hugetlb(folio)) 118 __page_cache_release(folio); 119 destroy_large_folio(folio); 120 } 121 122 void __folio_put(struct folio *folio) 123 { 124 if (unlikely(folio_is_zone_device(folio))) 125 free_zone_device_page(&folio->page); 126 else if (unlikely(folio_test_large(folio))) 127 __folio_put_large(folio); 128 else 129 __folio_put_small(folio); 130 } 131 EXPORT_SYMBOL(__folio_put); 132 133 /** 134 * put_pages_list() - release a list of pages 135 * @pages: list of pages threaded on page->lru 136 * 137 * Release a list of pages which are strung together on page.lru. 138 */ 139 void put_pages_list(struct list_head *pages) 140 { 141 struct folio *folio, *next; 142 143 list_for_each_entry_safe(folio, next, pages, lru) { 144 if (!folio_put_testzero(folio)) { 145 list_del(&folio->lru); 146 continue; 147 } 148 if (folio_test_large(folio)) { 149 list_del(&folio->lru); 150 __folio_put_large(folio); 151 continue; 152 } 153 /* LRU flag must be clear because it's passed using the lru */ 154 } 155 156 free_unref_page_list(pages); 157 INIT_LIST_HEAD(pages); 158 } 159 EXPORT_SYMBOL(put_pages_list); 160 161 /* 162 * get_kernel_pages() - pin kernel pages in memory 163 * @kiov: An array of struct kvec structures 164 * @nr_segs: number of segments to pin 165 * @write: pinning for read/write, currently ignored 166 * @pages: array that receives pointers to the pages pinned. 167 * Should be at least nr_segs long. 168 * 169 * Returns number of pages pinned. This may be fewer than the number requested. 170 * If nr_segs is 0 or negative, returns 0. If no pages were pinned, returns 0. 171 * Each page returned must be released with a put_page() call when it is 172 * finished with. 173 */ 174 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 175 struct page **pages) 176 { 177 int seg; 178 179 for (seg = 0; seg < nr_segs; seg++) { 180 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 181 return seg; 182 183 pages[seg] = kmap_to_page(kiov[seg].iov_base); 184 get_page(pages[seg]); 185 } 186 187 return seg; 188 } 189 EXPORT_SYMBOL_GPL(get_kernel_pages); 190 191 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio); 192 193 static void lru_add_fn(struct lruvec *lruvec, struct folio *folio) 194 { 195 int was_unevictable = folio_test_clear_unevictable(folio); 196 long nr_pages = folio_nr_pages(folio); 197 198 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 199 200 /* 201 * Is an smp_mb__after_atomic() still required here, before 202 * folio_evictable() tests the mlocked flag, to rule out the possibility 203 * of stranding an evictable folio on an unevictable LRU? I think 204 * not, because __munlock_page() only clears the mlocked flag 205 * while the LRU lock is held. 206 * 207 * (That is not true of __page_cache_release(), and not necessarily 208 * true of release_pages(): but those only clear the mlocked flag after 209 * folio_put_testzero() has excluded any other users of the folio.) 210 */ 211 if (folio_evictable(folio)) { 212 if (was_unevictable) 213 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 214 } else { 215 folio_clear_active(folio); 216 folio_set_unevictable(folio); 217 /* 218 * folio->mlock_count = !!folio_test_mlocked(folio)? 219 * But that leaves __mlock_page() in doubt whether another 220 * actor has already counted the mlock or not. Err on the 221 * safe side, underestimate, let page reclaim fix it, rather 222 * than leaving a page on the unevictable LRU indefinitely. 223 */ 224 folio->mlock_count = 0; 225 if (!was_unevictable) 226 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 227 } 228 229 lruvec_add_folio(lruvec, folio); 230 trace_mm_lru_insertion(folio); 231 } 232 233 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn) 234 { 235 int i; 236 struct lruvec *lruvec = NULL; 237 unsigned long flags = 0; 238 239 for (i = 0; i < folio_batch_count(fbatch); i++) { 240 struct folio *folio = fbatch->folios[i]; 241 242 /* block memcg migration while the folio moves between lru */ 243 if (move_fn != lru_add_fn && !folio_test_clear_lru(folio)) 244 continue; 245 246 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags); 247 move_fn(lruvec, folio); 248 249 folio_set_lru(folio); 250 } 251 252 if (lruvec) 253 unlock_page_lruvec_irqrestore(lruvec, flags); 254 folios_put(fbatch->folios, folio_batch_count(fbatch)); 255 folio_batch_init(fbatch); 256 } 257 258 static void folio_batch_add_and_move(struct folio_batch *fbatch, 259 struct folio *folio, move_fn_t move_fn) 260 { 261 if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) && 262 !lru_cache_disabled()) 263 return; 264 folio_batch_move_lru(fbatch, move_fn); 265 } 266 267 static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio) 268 { 269 if (!folio_test_unevictable(folio)) { 270 lruvec_del_folio(lruvec, folio); 271 folio_clear_active(folio); 272 lruvec_add_folio_tail(lruvec, folio); 273 __count_vm_events(PGROTATED, folio_nr_pages(folio)); 274 } 275 } 276 277 /* 278 * Writeback is about to end against a folio which has been marked for 279 * immediate reclaim. If it still appears to be reclaimable, move it 280 * to the tail of the inactive list. 281 * 282 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races. 283 */ 284 void folio_rotate_reclaimable(struct folio *folio) 285 { 286 if (!folio_test_locked(folio) && !folio_test_dirty(folio) && 287 !folio_test_unevictable(folio) && folio_test_lru(folio)) { 288 struct folio_batch *fbatch; 289 unsigned long flags; 290 291 folio_get(folio); 292 local_lock_irqsave(&lru_rotate.lock, flags); 293 fbatch = this_cpu_ptr(&lru_rotate.fbatch); 294 folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn); 295 local_unlock_irqrestore(&lru_rotate.lock, flags); 296 } 297 } 298 299 void lru_note_cost(struct lruvec *lruvec, bool file, 300 unsigned int nr_io, unsigned int nr_rotated) 301 { 302 unsigned long cost; 303 304 /* 305 * Reflect the relative cost of incurring IO and spending CPU 306 * time on rotations. This doesn't attempt to make a precise 307 * comparison, it just says: if reloads are about comparable 308 * between the LRU lists, or rotations are overwhelmingly 309 * different between them, adjust scan balance for CPU work. 310 */ 311 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated; 312 313 do { 314 unsigned long lrusize; 315 316 /* 317 * Hold lruvec->lru_lock is safe here, since 318 * 1) The pinned lruvec in reclaim, or 319 * 2) From a pre-LRU page during refault (which also holds the 320 * rcu lock, so would be safe even if the page was on the LRU 321 * and could move simultaneously to a new lruvec). 322 */ 323 spin_lock_irq(&lruvec->lru_lock); 324 /* Record cost event */ 325 if (file) 326 lruvec->file_cost += cost; 327 else 328 lruvec->anon_cost += cost; 329 330 /* 331 * Decay previous events 332 * 333 * Because workloads change over time (and to avoid 334 * overflow) we keep these statistics as a floating 335 * average, which ends up weighing recent refaults 336 * more than old ones. 337 */ 338 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 339 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 340 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 341 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 342 343 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 344 lruvec->file_cost /= 2; 345 lruvec->anon_cost /= 2; 346 } 347 spin_unlock_irq(&lruvec->lru_lock); 348 } while ((lruvec = parent_lruvec(lruvec))); 349 } 350 351 void lru_note_cost_refault(struct folio *folio) 352 { 353 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio), 354 folio_nr_pages(folio), 0); 355 } 356 357 static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio) 358 { 359 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) { 360 long nr_pages = folio_nr_pages(folio); 361 362 lruvec_del_folio(lruvec, folio); 363 folio_set_active(folio); 364 lruvec_add_folio(lruvec, folio); 365 trace_mm_lru_activate(folio); 366 367 __count_vm_events(PGACTIVATE, nr_pages); 368 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, 369 nr_pages); 370 } 371 } 372 373 #ifdef CONFIG_SMP 374 static void folio_activate_drain(int cpu) 375 { 376 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu); 377 378 if (folio_batch_count(fbatch)) 379 folio_batch_move_lru(fbatch, folio_activate_fn); 380 } 381 382 void folio_activate(struct folio *folio) 383 { 384 if (folio_test_lru(folio) && !folio_test_active(folio) && 385 !folio_test_unevictable(folio)) { 386 struct folio_batch *fbatch; 387 388 folio_get(folio); 389 local_lock(&cpu_fbatches.lock); 390 fbatch = this_cpu_ptr(&cpu_fbatches.activate); 391 folio_batch_add_and_move(fbatch, folio, folio_activate_fn); 392 local_unlock(&cpu_fbatches.lock); 393 } 394 } 395 396 #else 397 static inline void folio_activate_drain(int cpu) 398 { 399 } 400 401 void folio_activate(struct folio *folio) 402 { 403 struct lruvec *lruvec; 404 405 if (folio_test_clear_lru(folio)) { 406 lruvec = folio_lruvec_lock_irq(folio); 407 folio_activate_fn(lruvec, folio); 408 unlock_page_lruvec_irq(lruvec); 409 folio_set_lru(folio); 410 } 411 } 412 #endif 413 414 static void __lru_cache_activate_folio(struct folio *folio) 415 { 416 struct folio_batch *fbatch; 417 int i; 418 419 local_lock(&cpu_fbatches.lock); 420 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add); 421 422 /* 423 * Search backwards on the optimistic assumption that the folio being 424 * activated has just been added to this batch. Note that only 425 * the local batch is examined as a !LRU folio could be in the 426 * process of being released, reclaimed, migrated or on a remote 427 * batch that is currently being drained. Furthermore, marking 428 * a remote batch's folio active potentially hits a race where 429 * a folio is marked active just after it is added to the inactive 430 * list causing accounting errors and BUG_ON checks to trigger. 431 */ 432 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) { 433 struct folio *batch_folio = fbatch->folios[i]; 434 435 if (batch_folio == folio) { 436 folio_set_active(folio); 437 break; 438 } 439 } 440 441 local_unlock(&cpu_fbatches.lock); 442 } 443 444 #ifdef CONFIG_LRU_GEN 445 static void folio_inc_refs(struct folio *folio) 446 { 447 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 448 449 if (folio_test_unevictable(folio)) 450 return; 451 452 if (!folio_test_referenced(folio)) { 453 folio_set_referenced(folio); 454 return; 455 } 456 457 if (!folio_test_workingset(folio)) { 458 folio_set_workingset(folio); 459 return; 460 } 461 462 /* see the comment on MAX_NR_TIERS */ 463 do { 464 new_flags = old_flags & LRU_REFS_MASK; 465 if (new_flags == LRU_REFS_MASK) 466 break; 467 468 new_flags += BIT(LRU_REFS_PGOFF); 469 new_flags |= old_flags & ~LRU_REFS_MASK; 470 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 471 } 472 #else 473 static void folio_inc_refs(struct folio *folio) 474 { 475 } 476 #endif /* CONFIG_LRU_GEN */ 477 478 /* 479 * Mark a page as having seen activity. 480 * 481 * inactive,unreferenced -> inactive,referenced 482 * inactive,referenced -> active,unreferenced 483 * active,unreferenced -> active,referenced 484 * 485 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 486 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 487 */ 488 void folio_mark_accessed(struct folio *folio) 489 { 490 if (lru_gen_enabled()) { 491 folio_inc_refs(folio); 492 return; 493 } 494 495 if (!folio_test_referenced(folio)) { 496 folio_set_referenced(folio); 497 } else if (folio_test_unevictable(folio)) { 498 /* 499 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 500 * this list is never rotated or maintained, so marking an 501 * unevictable page accessed has no effect. 502 */ 503 } else if (!folio_test_active(folio)) { 504 /* 505 * If the folio is on the LRU, queue it for activation via 506 * cpu_fbatches.activate. Otherwise, assume the folio is in a 507 * folio_batch, mark it active and it'll be moved to the active 508 * LRU on the next drain. 509 */ 510 if (folio_test_lru(folio)) 511 folio_activate(folio); 512 else 513 __lru_cache_activate_folio(folio); 514 folio_clear_referenced(folio); 515 workingset_activation(folio); 516 } 517 if (folio_test_idle(folio)) 518 folio_clear_idle(folio); 519 } 520 EXPORT_SYMBOL(folio_mark_accessed); 521 522 /** 523 * folio_add_lru - Add a folio to an LRU list. 524 * @folio: The folio to be added to the LRU. 525 * 526 * Queue the folio for addition to the LRU. The decision on whether 527 * to add the page to the [in]active [file|anon] list is deferred until the 528 * folio_batch is drained. This gives a chance for the caller of folio_add_lru() 529 * have the folio added to the active list using folio_mark_accessed(). 530 */ 531 void folio_add_lru(struct folio *folio) 532 { 533 struct folio_batch *fbatch; 534 535 VM_BUG_ON_FOLIO(folio_test_active(folio) && 536 folio_test_unevictable(folio), folio); 537 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 538 539 /* see the comment in lru_gen_add_folio() */ 540 if (lru_gen_enabled() && !folio_test_unevictable(folio) && 541 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC)) 542 folio_set_active(folio); 543 544 folio_get(folio); 545 local_lock(&cpu_fbatches.lock); 546 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add); 547 folio_batch_add_and_move(fbatch, folio, lru_add_fn); 548 local_unlock(&cpu_fbatches.lock); 549 } 550 EXPORT_SYMBOL(folio_add_lru); 551 552 /** 553 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA. 554 * @folio: The folio to be added to the LRU. 555 * @vma: VMA in which the folio is mapped. 556 * 557 * If the VMA is mlocked, @folio is added to the unevictable list. 558 * Otherwise, it is treated the same way as folio_add_lru(). 559 */ 560 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma) 561 { 562 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 563 564 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED)) 565 mlock_new_folio(folio); 566 else 567 folio_add_lru(folio); 568 } 569 570 /* 571 * If the folio cannot be invalidated, it is moved to the 572 * inactive list to speed up its reclaim. It is moved to the 573 * head of the list, rather than the tail, to give the flusher 574 * threads some time to write it out, as this is much more 575 * effective than the single-page writeout from reclaim. 576 * 577 * If the folio isn't mapped and dirty/writeback, the folio 578 * could be reclaimed asap using the reclaim flag. 579 * 580 * 1. active, mapped folio -> none 581 * 2. active, dirty/writeback folio -> inactive, head, reclaim 582 * 3. inactive, mapped folio -> none 583 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim 584 * 5. inactive, clean -> inactive, tail 585 * 6. Others -> none 586 * 587 * In 4, it moves to the head of the inactive list so the folio is 588 * written out by flusher threads as this is much more efficient 589 * than the single-page writeout from reclaim. 590 */ 591 static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio) 592 { 593 bool active = folio_test_active(folio); 594 long nr_pages = folio_nr_pages(folio); 595 596 if (folio_test_unevictable(folio)) 597 return; 598 599 /* Some processes are using the folio */ 600 if (folio_mapped(folio)) 601 return; 602 603 lruvec_del_folio(lruvec, folio); 604 folio_clear_active(folio); 605 folio_clear_referenced(folio); 606 607 if (folio_test_writeback(folio) || folio_test_dirty(folio)) { 608 /* 609 * Setting the reclaim flag could race with 610 * folio_end_writeback() and confuse readahead. But the 611 * race window is _really_ small and it's not a critical 612 * problem. 613 */ 614 lruvec_add_folio(lruvec, folio); 615 folio_set_reclaim(folio); 616 } else { 617 /* 618 * The folio's writeback ended while it was in the batch. 619 * We move that folio to the tail of the inactive list. 620 */ 621 lruvec_add_folio_tail(lruvec, folio); 622 __count_vm_events(PGROTATED, nr_pages); 623 } 624 625 if (active) { 626 __count_vm_events(PGDEACTIVATE, nr_pages); 627 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 628 nr_pages); 629 } 630 } 631 632 static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio) 633 { 634 if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) { 635 long nr_pages = folio_nr_pages(folio); 636 637 lruvec_del_folio(lruvec, folio); 638 folio_clear_active(folio); 639 folio_clear_referenced(folio); 640 lruvec_add_folio(lruvec, folio); 641 642 __count_vm_events(PGDEACTIVATE, nr_pages); 643 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 644 nr_pages); 645 } 646 } 647 648 static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio) 649 { 650 if (folio_test_anon(folio) && folio_test_swapbacked(folio) && 651 !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) { 652 long nr_pages = folio_nr_pages(folio); 653 654 lruvec_del_folio(lruvec, folio); 655 folio_clear_active(folio); 656 folio_clear_referenced(folio); 657 /* 658 * Lazyfree folios are clean anonymous folios. They have 659 * the swapbacked flag cleared, to distinguish them from normal 660 * anonymous folios 661 */ 662 folio_clear_swapbacked(folio); 663 lruvec_add_folio(lruvec, folio); 664 665 __count_vm_events(PGLAZYFREE, nr_pages); 666 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, 667 nr_pages); 668 } 669 } 670 671 /* 672 * Drain pages out of the cpu's folio_batch. 673 * Either "cpu" is the current CPU, and preemption has already been 674 * disabled; or "cpu" is being hot-unplugged, and is already dead. 675 */ 676 void lru_add_drain_cpu(int cpu) 677 { 678 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 679 struct folio_batch *fbatch = &fbatches->lru_add; 680 681 if (folio_batch_count(fbatch)) 682 folio_batch_move_lru(fbatch, lru_add_fn); 683 684 fbatch = &per_cpu(lru_rotate.fbatch, cpu); 685 /* Disabling interrupts below acts as a compiler barrier. */ 686 if (data_race(folio_batch_count(fbatch))) { 687 unsigned long flags; 688 689 /* No harm done if a racing interrupt already did this */ 690 local_lock_irqsave(&lru_rotate.lock, flags); 691 folio_batch_move_lru(fbatch, lru_move_tail_fn); 692 local_unlock_irqrestore(&lru_rotate.lock, flags); 693 } 694 695 fbatch = &fbatches->lru_deactivate_file; 696 if (folio_batch_count(fbatch)) 697 folio_batch_move_lru(fbatch, lru_deactivate_file_fn); 698 699 fbatch = &fbatches->lru_deactivate; 700 if (folio_batch_count(fbatch)) 701 folio_batch_move_lru(fbatch, lru_deactivate_fn); 702 703 fbatch = &fbatches->lru_lazyfree; 704 if (folio_batch_count(fbatch)) 705 folio_batch_move_lru(fbatch, lru_lazyfree_fn); 706 707 folio_activate_drain(cpu); 708 } 709 710 /** 711 * deactivate_file_folio() - Deactivate a file folio. 712 * @folio: Folio to deactivate. 713 * 714 * This function hints to the VM that @folio is a good reclaim candidate, 715 * for example if its invalidation fails due to the folio being dirty 716 * or under writeback. 717 * 718 * Context: Caller holds a reference on the folio. 719 */ 720 void deactivate_file_folio(struct folio *folio) 721 { 722 struct folio_batch *fbatch; 723 724 /* Deactivating an unevictable folio will not accelerate reclaim */ 725 if (folio_test_unevictable(folio)) 726 return; 727 728 folio_get(folio); 729 local_lock(&cpu_fbatches.lock); 730 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file); 731 folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn); 732 local_unlock(&cpu_fbatches.lock); 733 } 734 735 /* 736 * folio_deactivate - deactivate a folio 737 * @folio: folio to deactivate 738 * 739 * folio_deactivate() moves @folio to the inactive list if @folio was on the 740 * active list and was not unevictable. This is done to accelerate the 741 * reclaim of @folio. 742 */ 743 void folio_deactivate(struct folio *folio) 744 { 745 if (folio_test_lru(folio) && !folio_test_unevictable(folio) && 746 (folio_test_active(folio) || lru_gen_enabled())) { 747 struct folio_batch *fbatch; 748 749 folio_get(folio); 750 local_lock(&cpu_fbatches.lock); 751 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate); 752 folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn); 753 local_unlock(&cpu_fbatches.lock); 754 } 755 } 756 757 /** 758 * folio_mark_lazyfree - make an anon folio lazyfree 759 * @folio: folio to deactivate 760 * 761 * folio_mark_lazyfree() moves @folio to the inactive file list. 762 * This is done to accelerate the reclaim of @folio. 763 */ 764 void folio_mark_lazyfree(struct folio *folio) 765 { 766 if (folio_test_lru(folio) && folio_test_anon(folio) && 767 folio_test_swapbacked(folio) && !folio_test_swapcache(folio) && 768 !folio_test_unevictable(folio)) { 769 struct folio_batch *fbatch; 770 771 folio_get(folio); 772 local_lock(&cpu_fbatches.lock); 773 fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree); 774 folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn); 775 local_unlock(&cpu_fbatches.lock); 776 } 777 } 778 779 void lru_add_drain(void) 780 { 781 local_lock(&cpu_fbatches.lock); 782 lru_add_drain_cpu(smp_processor_id()); 783 local_unlock(&cpu_fbatches.lock); 784 mlock_drain_local(); 785 } 786 787 /* 788 * It's called from per-cpu workqueue context in SMP case so 789 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on 790 * the same cpu. It shouldn't be a problem in !SMP case since 791 * the core is only one and the locks will disable preemption. 792 */ 793 static void lru_add_and_bh_lrus_drain(void) 794 { 795 local_lock(&cpu_fbatches.lock); 796 lru_add_drain_cpu(smp_processor_id()); 797 local_unlock(&cpu_fbatches.lock); 798 invalidate_bh_lrus_cpu(); 799 mlock_drain_local(); 800 } 801 802 void lru_add_drain_cpu_zone(struct zone *zone) 803 { 804 local_lock(&cpu_fbatches.lock); 805 lru_add_drain_cpu(smp_processor_id()); 806 drain_local_pages(zone); 807 local_unlock(&cpu_fbatches.lock); 808 mlock_drain_local(); 809 } 810 811 #ifdef CONFIG_SMP 812 813 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 814 815 static void lru_add_drain_per_cpu(struct work_struct *dummy) 816 { 817 lru_add_and_bh_lrus_drain(); 818 } 819 820 static bool cpu_needs_drain(unsigned int cpu) 821 { 822 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 823 824 /* Check these in order of likelihood that they're not zero */ 825 return folio_batch_count(&fbatches->lru_add) || 826 data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) || 827 folio_batch_count(&fbatches->lru_deactivate_file) || 828 folio_batch_count(&fbatches->lru_deactivate) || 829 folio_batch_count(&fbatches->lru_lazyfree) || 830 folio_batch_count(&fbatches->activate) || 831 need_mlock_drain(cpu) || 832 has_bh_in_lru(cpu, NULL); 833 } 834 835 /* 836 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 837 * kworkers being shut down before our page_alloc_cpu_dead callback is 838 * executed on the offlined cpu. 839 * Calling this function with cpu hotplug locks held can actually lead 840 * to obscure indirect dependencies via WQ context. 841 */ 842 static inline void __lru_add_drain_all(bool force_all_cpus) 843 { 844 /* 845 * lru_drain_gen - Global pages generation number 846 * 847 * (A) Definition: global lru_drain_gen = x implies that all generations 848 * 0 < n <= x are already *scheduled* for draining. 849 * 850 * This is an optimization for the highly-contended use case where a 851 * user space workload keeps constantly generating a flow of pages for 852 * each CPU. 853 */ 854 static unsigned int lru_drain_gen; 855 static struct cpumask has_work; 856 static DEFINE_MUTEX(lock); 857 unsigned cpu, this_gen; 858 859 /* 860 * Make sure nobody triggers this path before mm_percpu_wq is fully 861 * initialized. 862 */ 863 if (WARN_ON(!mm_percpu_wq)) 864 return; 865 866 /* 867 * Guarantee folio_batch counter stores visible by this CPU 868 * are visible to other CPUs before loading the current drain 869 * generation. 870 */ 871 smp_mb(); 872 873 /* 874 * (B) Locally cache global LRU draining generation number 875 * 876 * The read barrier ensures that the counter is loaded before the mutex 877 * is taken. It pairs with smp_mb() inside the mutex critical section 878 * at (D). 879 */ 880 this_gen = smp_load_acquire(&lru_drain_gen); 881 882 mutex_lock(&lock); 883 884 /* 885 * (C) Exit the draining operation if a newer generation, from another 886 * lru_add_drain_all(), was already scheduled for draining. Check (A). 887 */ 888 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) 889 goto done; 890 891 /* 892 * (D) Increment global generation number 893 * 894 * Pairs with smp_load_acquire() at (B), outside of the critical 895 * section. Use a full memory barrier to guarantee that the 896 * new global drain generation number is stored before loading 897 * folio_batch counters. 898 * 899 * This pairing must be done here, before the for_each_online_cpu loop 900 * below which drains the page vectors. 901 * 902 * Let x, y, and z represent some system CPU numbers, where x < y < z. 903 * Assume CPU #z is in the middle of the for_each_online_cpu loop 904 * below and has already reached CPU #y's per-cpu data. CPU #x comes 905 * along, adds some pages to its per-cpu vectors, then calls 906 * lru_add_drain_all(). 907 * 908 * If the paired barrier is done at any later step, e.g. after the 909 * loop, CPU #x will just exit at (C) and miss flushing out all of its 910 * added pages. 911 */ 912 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 913 smp_mb(); 914 915 cpumask_clear(&has_work); 916 for_each_online_cpu(cpu) { 917 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 918 919 if (cpu_needs_drain(cpu)) { 920 INIT_WORK(work, lru_add_drain_per_cpu); 921 queue_work_on(cpu, mm_percpu_wq, work); 922 __cpumask_set_cpu(cpu, &has_work); 923 } 924 } 925 926 for_each_cpu(cpu, &has_work) 927 flush_work(&per_cpu(lru_add_drain_work, cpu)); 928 929 done: 930 mutex_unlock(&lock); 931 } 932 933 void lru_add_drain_all(void) 934 { 935 __lru_add_drain_all(false); 936 } 937 #else 938 void lru_add_drain_all(void) 939 { 940 lru_add_drain(); 941 } 942 #endif /* CONFIG_SMP */ 943 944 atomic_t lru_disable_count = ATOMIC_INIT(0); 945 946 /* 947 * lru_cache_disable() needs to be called before we start compiling 948 * a list of pages to be migrated using isolate_lru_page(). 949 * It drains pages on LRU cache and then disable on all cpus until 950 * lru_cache_enable is called. 951 * 952 * Must be paired with a call to lru_cache_enable(). 953 */ 954 void lru_cache_disable(void) 955 { 956 atomic_inc(&lru_disable_count); 957 /* 958 * Readers of lru_disable_count are protected by either disabling 959 * preemption or rcu_read_lock: 960 * 961 * preempt_disable, local_irq_disable [bh_lru_lock()] 962 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT] 963 * preempt_disable [local_lock !CONFIG_PREEMPT_RT] 964 * 965 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on 966 * preempt_disable() regions of code. So any CPU which sees 967 * lru_disable_count = 0 will have exited the critical 968 * section when synchronize_rcu() returns. 969 */ 970 synchronize_rcu_expedited(); 971 #ifdef CONFIG_SMP 972 __lru_add_drain_all(true); 973 #else 974 lru_add_and_bh_lrus_drain(); 975 #endif 976 } 977 978 /** 979 * release_pages - batched put_page() 980 * @arg: array of pages to release 981 * @nr: number of pages 982 * 983 * Decrement the reference count on all the pages in @arg. If it 984 * fell to zero, remove the page from the LRU and free it. 985 * 986 * Note that the argument can be an array of pages, encoded pages, 987 * or folio pointers. We ignore any encoded bits, and turn any of 988 * them into just a folio that gets free'd. 989 */ 990 void release_pages(release_pages_arg arg, int nr) 991 { 992 int i; 993 struct encoded_page **encoded = arg.encoded_pages; 994 LIST_HEAD(pages_to_free); 995 struct lruvec *lruvec = NULL; 996 unsigned long flags = 0; 997 unsigned int lock_batch; 998 999 for (i = 0; i < nr; i++) { 1000 struct folio *folio; 1001 1002 /* Turn any of the argument types into a folio */ 1003 folio = page_folio(encoded_page_ptr(encoded[i])); 1004 1005 /* 1006 * Make sure the IRQ-safe lock-holding time does not get 1007 * excessive with a continuous string of pages from the 1008 * same lruvec. The lock is held only if lruvec != NULL. 1009 */ 1010 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) { 1011 unlock_page_lruvec_irqrestore(lruvec, flags); 1012 lruvec = NULL; 1013 } 1014 1015 if (is_huge_zero_page(&folio->page)) 1016 continue; 1017 1018 if (folio_is_zone_device(folio)) { 1019 if (lruvec) { 1020 unlock_page_lruvec_irqrestore(lruvec, flags); 1021 lruvec = NULL; 1022 } 1023 if (put_devmap_managed_page(&folio->page)) 1024 continue; 1025 if (folio_put_testzero(folio)) 1026 free_zone_device_page(&folio->page); 1027 continue; 1028 } 1029 1030 if (!folio_put_testzero(folio)) 1031 continue; 1032 1033 if (folio_test_large(folio)) { 1034 if (lruvec) { 1035 unlock_page_lruvec_irqrestore(lruvec, flags); 1036 lruvec = NULL; 1037 } 1038 __folio_put_large(folio); 1039 continue; 1040 } 1041 1042 if (folio_test_lru(folio)) { 1043 struct lruvec *prev_lruvec = lruvec; 1044 1045 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, 1046 &flags); 1047 if (prev_lruvec != lruvec) 1048 lock_batch = 0; 1049 1050 lruvec_del_folio(lruvec, folio); 1051 __folio_clear_lru_flags(folio); 1052 } 1053 1054 /* 1055 * In rare cases, when truncation or holepunching raced with 1056 * munlock after VM_LOCKED was cleared, Mlocked may still be 1057 * found set here. This does not indicate a problem, unless 1058 * "unevictable_pgs_cleared" appears worryingly large. 1059 */ 1060 if (unlikely(folio_test_mlocked(folio))) { 1061 __folio_clear_mlocked(folio); 1062 zone_stat_sub_folio(folio, NR_MLOCK); 1063 count_vm_event(UNEVICTABLE_PGCLEARED); 1064 } 1065 1066 list_add(&folio->lru, &pages_to_free); 1067 } 1068 if (lruvec) 1069 unlock_page_lruvec_irqrestore(lruvec, flags); 1070 1071 mem_cgroup_uncharge_list(&pages_to_free); 1072 free_unref_page_list(&pages_to_free); 1073 } 1074 EXPORT_SYMBOL(release_pages); 1075 1076 /* 1077 * The pages which we're about to release may be in the deferred lru-addition 1078 * queues. That would prevent them from really being freed right now. That's 1079 * OK from a correctness point of view but is inefficient - those pages may be 1080 * cache-warm and we want to give them back to the page allocator ASAP. 1081 * 1082 * So __pagevec_release() will drain those queues here. 1083 * folio_batch_move_lru() calls folios_put() directly to avoid 1084 * mutual recursion. 1085 */ 1086 void __pagevec_release(struct pagevec *pvec) 1087 { 1088 if (!pvec->percpu_pvec_drained) { 1089 lru_add_drain(); 1090 pvec->percpu_pvec_drained = true; 1091 } 1092 release_pages(pvec->pages, pagevec_count(pvec)); 1093 pagevec_reinit(pvec); 1094 } 1095 EXPORT_SYMBOL(__pagevec_release); 1096 1097 /** 1098 * folio_batch_remove_exceptionals() - Prune non-folios from a batch. 1099 * @fbatch: The batch to prune 1100 * 1101 * find_get_entries() fills a batch with both folios and shadow/swap/DAX 1102 * entries. This function prunes all the non-folio entries from @fbatch 1103 * without leaving holes, so that it can be passed on to folio-only batch 1104 * operations. 1105 */ 1106 void folio_batch_remove_exceptionals(struct folio_batch *fbatch) 1107 { 1108 unsigned int i, j; 1109 1110 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) { 1111 struct folio *folio = fbatch->folios[i]; 1112 if (!xa_is_value(folio)) 1113 fbatch->folios[j++] = folio; 1114 } 1115 fbatch->nr = j; 1116 } 1117 1118 unsigned pagevec_lookup_range_tag(struct pagevec *pvec, 1119 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1120 xa_mark_t tag) 1121 { 1122 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1123 PAGEVEC_SIZE, pvec->pages); 1124 return pagevec_count(pvec); 1125 } 1126 EXPORT_SYMBOL(pagevec_lookup_range_tag); 1127 1128 /* 1129 * Perform any setup for the swap system 1130 */ 1131 void __init swap_setup(void) 1132 { 1133 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1134 1135 /* Use a smaller cluster for small-memory machines */ 1136 if (megs < 16) 1137 page_cluster = 2; 1138 else 1139 page_cluster = 3; 1140 /* 1141 * Right now other parts of the system means that we 1142 * _really_ don't want to cluster much more 1143 */ 1144 } 1145