xref: /openbmc/linux/mm/swap.c (revision 61f4d204)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40 
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45 
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
47 int page_cluster;
48 const int page_cluster_max = 31;
49 
50 /* Protecting only lru_rotate.fbatch which requires disabling interrupts */
51 struct lru_rotate {
52 	local_lock_t lock;
53 	struct folio_batch fbatch;
54 };
55 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
56 	.lock = INIT_LOCAL_LOCK(lock),
57 };
58 
59 /*
60  * The following folio batches are grouped together because they are protected
61  * by disabling preemption (and interrupts remain enabled).
62  */
63 struct cpu_fbatches {
64 	local_lock_t lock;
65 	struct folio_batch lru_add;
66 	struct folio_batch lru_deactivate_file;
67 	struct folio_batch lru_deactivate;
68 	struct folio_batch lru_lazyfree;
69 #ifdef CONFIG_SMP
70 	struct folio_batch activate;
71 #endif
72 };
73 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
74 	.lock = INIT_LOCAL_LOCK(lock),
75 };
76 
77 /*
78  * This path almost never happens for VM activity - pages are normally freed
79  * in batches.  But it gets used by networking - and for compound pages.
80  */
81 static void __page_cache_release(struct folio *folio)
82 {
83 	if (folio_test_lru(folio)) {
84 		struct lruvec *lruvec;
85 		unsigned long flags;
86 
87 		lruvec = folio_lruvec_lock_irqsave(folio, &flags);
88 		lruvec_del_folio(lruvec, folio);
89 		__folio_clear_lru_flags(folio);
90 		unlock_page_lruvec_irqrestore(lruvec, flags);
91 	}
92 	/* See comment on folio_test_mlocked in release_pages() */
93 	if (unlikely(folio_test_mlocked(folio))) {
94 		long nr_pages = folio_nr_pages(folio);
95 
96 		__folio_clear_mlocked(folio);
97 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
98 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
99 	}
100 }
101 
102 static void __folio_put_small(struct folio *folio)
103 {
104 	__page_cache_release(folio);
105 	mem_cgroup_uncharge(folio);
106 	free_unref_page(&folio->page, 0);
107 }
108 
109 static void __folio_put_large(struct folio *folio)
110 {
111 	/*
112 	 * __page_cache_release() is supposed to be called for thp, not for
113 	 * hugetlb. This is because hugetlb page does never have PageLRU set
114 	 * (it's never listed to any LRU lists) and no memcg routines should
115 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
116 	 */
117 	if (!folio_test_hugetlb(folio))
118 		__page_cache_release(folio);
119 	destroy_large_folio(folio);
120 }
121 
122 void __folio_put(struct folio *folio)
123 {
124 	if (unlikely(folio_is_zone_device(folio)))
125 		free_zone_device_page(&folio->page);
126 	else if (unlikely(folio_test_large(folio)))
127 		__folio_put_large(folio);
128 	else
129 		__folio_put_small(folio);
130 }
131 EXPORT_SYMBOL(__folio_put);
132 
133 /**
134  * put_pages_list() - release a list of pages
135  * @pages: list of pages threaded on page->lru
136  *
137  * Release a list of pages which are strung together on page.lru.
138  */
139 void put_pages_list(struct list_head *pages)
140 {
141 	struct folio *folio, *next;
142 
143 	list_for_each_entry_safe(folio, next, pages, lru) {
144 		if (!folio_put_testzero(folio)) {
145 			list_del(&folio->lru);
146 			continue;
147 		}
148 		if (folio_test_large(folio)) {
149 			list_del(&folio->lru);
150 			__folio_put_large(folio);
151 			continue;
152 		}
153 		/* LRU flag must be clear because it's passed using the lru */
154 	}
155 
156 	free_unref_page_list(pages);
157 	INIT_LIST_HEAD(pages);
158 }
159 EXPORT_SYMBOL(put_pages_list);
160 
161 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
162 
163 static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
164 {
165 	int was_unevictable = folio_test_clear_unevictable(folio);
166 	long nr_pages = folio_nr_pages(folio);
167 
168 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
169 
170 	/*
171 	 * Is an smp_mb__after_atomic() still required here, before
172 	 * folio_evictable() tests the mlocked flag, to rule out the possibility
173 	 * of stranding an evictable folio on an unevictable LRU?  I think
174 	 * not, because __munlock_folio() only clears the mlocked flag
175 	 * while the LRU lock is held.
176 	 *
177 	 * (That is not true of __page_cache_release(), and not necessarily
178 	 * true of release_pages(): but those only clear the mlocked flag after
179 	 * folio_put_testzero() has excluded any other users of the folio.)
180 	 */
181 	if (folio_evictable(folio)) {
182 		if (was_unevictable)
183 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
184 	} else {
185 		folio_clear_active(folio);
186 		folio_set_unevictable(folio);
187 		/*
188 		 * folio->mlock_count = !!folio_test_mlocked(folio)?
189 		 * But that leaves __mlock_folio() in doubt whether another
190 		 * actor has already counted the mlock or not.  Err on the
191 		 * safe side, underestimate, let page reclaim fix it, rather
192 		 * than leaving a page on the unevictable LRU indefinitely.
193 		 */
194 		folio->mlock_count = 0;
195 		if (!was_unevictable)
196 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
197 	}
198 
199 	lruvec_add_folio(lruvec, folio);
200 	trace_mm_lru_insertion(folio);
201 }
202 
203 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
204 {
205 	int i;
206 	struct lruvec *lruvec = NULL;
207 	unsigned long flags = 0;
208 
209 	for (i = 0; i < folio_batch_count(fbatch); i++) {
210 		struct folio *folio = fbatch->folios[i];
211 
212 		/* block memcg migration while the folio moves between lru */
213 		if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
214 			continue;
215 
216 		lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
217 		move_fn(lruvec, folio);
218 
219 		folio_set_lru(folio);
220 	}
221 
222 	if (lruvec)
223 		unlock_page_lruvec_irqrestore(lruvec, flags);
224 	folios_put(fbatch->folios, folio_batch_count(fbatch));
225 	folio_batch_reinit(fbatch);
226 }
227 
228 static void folio_batch_add_and_move(struct folio_batch *fbatch,
229 		struct folio *folio, move_fn_t move_fn)
230 {
231 	if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
232 	    !lru_cache_disabled())
233 		return;
234 	folio_batch_move_lru(fbatch, move_fn);
235 }
236 
237 static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
238 {
239 	if (!folio_test_unevictable(folio)) {
240 		lruvec_del_folio(lruvec, folio);
241 		folio_clear_active(folio);
242 		lruvec_add_folio_tail(lruvec, folio);
243 		__count_vm_events(PGROTATED, folio_nr_pages(folio));
244 	}
245 }
246 
247 /*
248  * Writeback is about to end against a folio which has been marked for
249  * immediate reclaim.  If it still appears to be reclaimable, move it
250  * to the tail of the inactive list.
251  *
252  * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
253  */
254 void folio_rotate_reclaimable(struct folio *folio)
255 {
256 	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
257 	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
258 		struct folio_batch *fbatch;
259 		unsigned long flags;
260 
261 		folio_get(folio);
262 		local_lock_irqsave(&lru_rotate.lock, flags);
263 		fbatch = this_cpu_ptr(&lru_rotate.fbatch);
264 		folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
265 		local_unlock_irqrestore(&lru_rotate.lock, flags);
266 	}
267 }
268 
269 void lru_note_cost(struct lruvec *lruvec, bool file,
270 		   unsigned int nr_io, unsigned int nr_rotated)
271 {
272 	unsigned long cost;
273 
274 	/*
275 	 * Reflect the relative cost of incurring IO and spending CPU
276 	 * time on rotations. This doesn't attempt to make a precise
277 	 * comparison, it just says: if reloads are about comparable
278 	 * between the LRU lists, or rotations are overwhelmingly
279 	 * different between them, adjust scan balance for CPU work.
280 	 */
281 	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
282 
283 	do {
284 		unsigned long lrusize;
285 
286 		/*
287 		 * Hold lruvec->lru_lock is safe here, since
288 		 * 1) The pinned lruvec in reclaim, or
289 		 * 2) From a pre-LRU page during refault (which also holds the
290 		 *    rcu lock, so would be safe even if the page was on the LRU
291 		 *    and could move simultaneously to a new lruvec).
292 		 */
293 		spin_lock_irq(&lruvec->lru_lock);
294 		/* Record cost event */
295 		if (file)
296 			lruvec->file_cost += cost;
297 		else
298 			lruvec->anon_cost += cost;
299 
300 		/*
301 		 * Decay previous events
302 		 *
303 		 * Because workloads change over time (and to avoid
304 		 * overflow) we keep these statistics as a floating
305 		 * average, which ends up weighing recent refaults
306 		 * more than old ones.
307 		 */
308 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
309 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
310 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
311 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
312 
313 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
314 			lruvec->file_cost /= 2;
315 			lruvec->anon_cost /= 2;
316 		}
317 		spin_unlock_irq(&lruvec->lru_lock);
318 	} while ((lruvec = parent_lruvec(lruvec)));
319 }
320 
321 void lru_note_cost_refault(struct folio *folio)
322 {
323 	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
324 		      folio_nr_pages(folio), 0);
325 }
326 
327 static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
328 {
329 	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
330 		long nr_pages = folio_nr_pages(folio);
331 
332 		lruvec_del_folio(lruvec, folio);
333 		folio_set_active(folio);
334 		lruvec_add_folio(lruvec, folio);
335 		trace_mm_lru_activate(folio);
336 
337 		__count_vm_events(PGACTIVATE, nr_pages);
338 		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
339 				     nr_pages);
340 	}
341 }
342 
343 #ifdef CONFIG_SMP
344 static void folio_activate_drain(int cpu)
345 {
346 	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
347 
348 	if (folio_batch_count(fbatch))
349 		folio_batch_move_lru(fbatch, folio_activate_fn);
350 }
351 
352 void folio_activate(struct folio *folio)
353 {
354 	if (folio_test_lru(folio) && !folio_test_active(folio) &&
355 	    !folio_test_unevictable(folio)) {
356 		struct folio_batch *fbatch;
357 
358 		folio_get(folio);
359 		local_lock(&cpu_fbatches.lock);
360 		fbatch = this_cpu_ptr(&cpu_fbatches.activate);
361 		folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
362 		local_unlock(&cpu_fbatches.lock);
363 	}
364 }
365 
366 #else
367 static inline void folio_activate_drain(int cpu)
368 {
369 }
370 
371 void folio_activate(struct folio *folio)
372 {
373 	struct lruvec *lruvec;
374 
375 	if (folio_test_clear_lru(folio)) {
376 		lruvec = folio_lruvec_lock_irq(folio);
377 		folio_activate_fn(lruvec, folio);
378 		unlock_page_lruvec_irq(lruvec);
379 		folio_set_lru(folio);
380 	}
381 }
382 #endif
383 
384 static void __lru_cache_activate_folio(struct folio *folio)
385 {
386 	struct folio_batch *fbatch;
387 	int i;
388 
389 	local_lock(&cpu_fbatches.lock);
390 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
391 
392 	/*
393 	 * Search backwards on the optimistic assumption that the folio being
394 	 * activated has just been added to this batch. Note that only
395 	 * the local batch is examined as a !LRU folio could be in the
396 	 * process of being released, reclaimed, migrated or on a remote
397 	 * batch that is currently being drained. Furthermore, marking
398 	 * a remote batch's folio active potentially hits a race where
399 	 * a folio is marked active just after it is added to the inactive
400 	 * list causing accounting errors and BUG_ON checks to trigger.
401 	 */
402 	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
403 		struct folio *batch_folio = fbatch->folios[i];
404 
405 		if (batch_folio == folio) {
406 			folio_set_active(folio);
407 			break;
408 		}
409 	}
410 
411 	local_unlock(&cpu_fbatches.lock);
412 }
413 
414 #ifdef CONFIG_LRU_GEN
415 static void folio_inc_refs(struct folio *folio)
416 {
417 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
418 
419 	if (folio_test_unevictable(folio))
420 		return;
421 
422 	if (!folio_test_referenced(folio)) {
423 		folio_set_referenced(folio);
424 		return;
425 	}
426 
427 	if (!folio_test_workingset(folio)) {
428 		folio_set_workingset(folio);
429 		return;
430 	}
431 
432 	/* see the comment on MAX_NR_TIERS */
433 	do {
434 		new_flags = old_flags & LRU_REFS_MASK;
435 		if (new_flags == LRU_REFS_MASK)
436 			break;
437 
438 		new_flags += BIT(LRU_REFS_PGOFF);
439 		new_flags |= old_flags & ~LRU_REFS_MASK;
440 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
441 }
442 #else
443 static void folio_inc_refs(struct folio *folio)
444 {
445 }
446 #endif /* CONFIG_LRU_GEN */
447 
448 /*
449  * Mark a page as having seen activity.
450  *
451  * inactive,unreferenced	->	inactive,referenced
452  * inactive,referenced		->	active,unreferenced
453  * active,unreferenced		->	active,referenced
454  *
455  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
456  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
457  */
458 void folio_mark_accessed(struct folio *folio)
459 {
460 	if (lru_gen_enabled()) {
461 		folio_inc_refs(folio);
462 		return;
463 	}
464 
465 	if (!folio_test_referenced(folio)) {
466 		folio_set_referenced(folio);
467 	} else if (folio_test_unevictable(folio)) {
468 		/*
469 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
470 		 * this list is never rotated or maintained, so marking an
471 		 * unevictable page accessed has no effect.
472 		 */
473 	} else if (!folio_test_active(folio)) {
474 		/*
475 		 * If the folio is on the LRU, queue it for activation via
476 		 * cpu_fbatches.activate. Otherwise, assume the folio is in a
477 		 * folio_batch, mark it active and it'll be moved to the active
478 		 * LRU on the next drain.
479 		 */
480 		if (folio_test_lru(folio))
481 			folio_activate(folio);
482 		else
483 			__lru_cache_activate_folio(folio);
484 		folio_clear_referenced(folio);
485 		workingset_activation(folio);
486 	}
487 	if (folio_test_idle(folio))
488 		folio_clear_idle(folio);
489 }
490 EXPORT_SYMBOL(folio_mark_accessed);
491 
492 /**
493  * folio_add_lru - Add a folio to an LRU list.
494  * @folio: The folio to be added to the LRU.
495  *
496  * Queue the folio for addition to the LRU. The decision on whether
497  * to add the page to the [in]active [file|anon] list is deferred until the
498  * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
499  * have the folio added to the active list using folio_mark_accessed().
500  */
501 void folio_add_lru(struct folio *folio)
502 {
503 	struct folio_batch *fbatch;
504 
505 	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
506 			folio_test_unevictable(folio), folio);
507 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
508 
509 	/* see the comment in lru_gen_add_folio() */
510 	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
511 	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
512 		folio_set_active(folio);
513 
514 	folio_get(folio);
515 	local_lock(&cpu_fbatches.lock);
516 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
517 	folio_batch_add_and_move(fbatch, folio, lru_add_fn);
518 	local_unlock(&cpu_fbatches.lock);
519 }
520 EXPORT_SYMBOL(folio_add_lru);
521 
522 /**
523  * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
524  * @folio: The folio to be added to the LRU.
525  * @vma: VMA in which the folio is mapped.
526  *
527  * If the VMA is mlocked, @folio is added to the unevictable list.
528  * Otherwise, it is treated the same way as folio_add_lru().
529  */
530 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
531 {
532 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
533 
534 	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
535 		mlock_new_folio(folio);
536 	else
537 		folio_add_lru(folio);
538 }
539 
540 /*
541  * If the folio cannot be invalidated, it is moved to the
542  * inactive list to speed up its reclaim.  It is moved to the
543  * head of the list, rather than the tail, to give the flusher
544  * threads some time to write it out, as this is much more
545  * effective than the single-page writeout from reclaim.
546  *
547  * If the folio isn't mapped and dirty/writeback, the folio
548  * could be reclaimed asap using the reclaim flag.
549  *
550  * 1. active, mapped folio -> none
551  * 2. active, dirty/writeback folio -> inactive, head, reclaim
552  * 3. inactive, mapped folio -> none
553  * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
554  * 5. inactive, clean -> inactive, tail
555  * 6. Others -> none
556  *
557  * In 4, it moves to the head of the inactive list so the folio is
558  * written out by flusher threads as this is much more efficient
559  * than the single-page writeout from reclaim.
560  */
561 static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
562 {
563 	bool active = folio_test_active(folio);
564 	long nr_pages = folio_nr_pages(folio);
565 
566 	if (folio_test_unevictable(folio))
567 		return;
568 
569 	/* Some processes are using the folio */
570 	if (folio_mapped(folio))
571 		return;
572 
573 	lruvec_del_folio(lruvec, folio);
574 	folio_clear_active(folio);
575 	folio_clear_referenced(folio);
576 
577 	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
578 		/*
579 		 * Setting the reclaim flag could race with
580 		 * folio_end_writeback() and confuse readahead.  But the
581 		 * race window is _really_ small and  it's not a critical
582 		 * problem.
583 		 */
584 		lruvec_add_folio(lruvec, folio);
585 		folio_set_reclaim(folio);
586 	} else {
587 		/*
588 		 * The folio's writeback ended while it was in the batch.
589 		 * We move that folio to the tail of the inactive list.
590 		 */
591 		lruvec_add_folio_tail(lruvec, folio);
592 		__count_vm_events(PGROTATED, nr_pages);
593 	}
594 
595 	if (active) {
596 		__count_vm_events(PGDEACTIVATE, nr_pages);
597 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
598 				     nr_pages);
599 	}
600 }
601 
602 static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
603 {
604 	if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
605 		long nr_pages = folio_nr_pages(folio);
606 
607 		lruvec_del_folio(lruvec, folio);
608 		folio_clear_active(folio);
609 		folio_clear_referenced(folio);
610 		lruvec_add_folio(lruvec, folio);
611 
612 		__count_vm_events(PGDEACTIVATE, nr_pages);
613 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
614 				     nr_pages);
615 	}
616 }
617 
618 static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
619 {
620 	if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
621 	    !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
622 		long nr_pages = folio_nr_pages(folio);
623 
624 		lruvec_del_folio(lruvec, folio);
625 		folio_clear_active(folio);
626 		folio_clear_referenced(folio);
627 		/*
628 		 * Lazyfree folios are clean anonymous folios.  They have
629 		 * the swapbacked flag cleared, to distinguish them from normal
630 		 * anonymous folios
631 		 */
632 		folio_clear_swapbacked(folio);
633 		lruvec_add_folio(lruvec, folio);
634 
635 		__count_vm_events(PGLAZYFREE, nr_pages);
636 		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
637 				     nr_pages);
638 	}
639 }
640 
641 /*
642  * Drain pages out of the cpu's folio_batch.
643  * Either "cpu" is the current CPU, and preemption has already been
644  * disabled; or "cpu" is being hot-unplugged, and is already dead.
645  */
646 void lru_add_drain_cpu(int cpu)
647 {
648 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
649 	struct folio_batch *fbatch = &fbatches->lru_add;
650 
651 	if (folio_batch_count(fbatch))
652 		folio_batch_move_lru(fbatch, lru_add_fn);
653 
654 	fbatch = &per_cpu(lru_rotate.fbatch, cpu);
655 	/* Disabling interrupts below acts as a compiler barrier. */
656 	if (data_race(folio_batch_count(fbatch))) {
657 		unsigned long flags;
658 
659 		/* No harm done if a racing interrupt already did this */
660 		local_lock_irqsave(&lru_rotate.lock, flags);
661 		folio_batch_move_lru(fbatch, lru_move_tail_fn);
662 		local_unlock_irqrestore(&lru_rotate.lock, flags);
663 	}
664 
665 	fbatch = &fbatches->lru_deactivate_file;
666 	if (folio_batch_count(fbatch))
667 		folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
668 
669 	fbatch = &fbatches->lru_deactivate;
670 	if (folio_batch_count(fbatch))
671 		folio_batch_move_lru(fbatch, lru_deactivate_fn);
672 
673 	fbatch = &fbatches->lru_lazyfree;
674 	if (folio_batch_count(fbatch))
675 		folio_batch_move_lru(fbatch, lru_lazyfree_fn);
676 
677 	folio_activate_drain(cpu);
678 }
679 
680 /**
681  * deactivate_file_folio() - Deactivate a file folio.
682  * @folio: Folio to deactivate.
683  *
684  * This function hints to the VM that @folio is a good reclaim candidate,
685  * for example if its invalidation fails due to the folio being dirty
686  * or under writeback.
687  *
688  * Context: Caller holds a reference on the folio.
689  */
690 void deactivate_file_folio(struct folio *folio)
691 {
692 	struct folio_batch *fbatch;
693 
694 	/* Deactivating an unevictable folio will not accelerate reclaim */
695 	if (folio_test_unevictable(folio))
696 		return;
697 
698 	folio_get(folio);
699 	local_lock(&cpu_fbatches.lock);
700 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
701 	folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
702 	local_unlock(&cpu_fbatches.lock);
703 }
704 
705 /*
706  * folio_deactivate - deactivate a folio
707  * @folio: folio to deactivate
708  *
709  * folio_deactivate() moves @folio to the inactive list if @folio was on the
710  * active list and was not unevictable. This is done to accelerate the
711  * reclaim of @folio.
712  */
713 void folio_deactivate(struct folio *folio)
714 {
715 	if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
716 	    (folio_test_active(folio) || lru_gen_enabled())) {
717 		struct folio_batch *fbatch;
718 
719 		folio_get(folio);
720 		local_lock(&cpu_fbatches.lock);
721 		fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
722 		folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
723 		local_unlock(&cpu_fbatches.lock);
724 	}
725 }
726 
727 /**
728  * folio_mark_lazyfree - make an anon folio lazyfree
729  * @folio: folio to deactivate
730  *
731  * folio_mark_lazyfree() moves @folio to the inactive file list.
732  * This is done to accelerate the reclaim of @folio.
733  */
734 void folio_mark_lazyfree(struct folio *folio)
735 {
736 	if (folio_test_lru(folio) && folio_test_anon(folio) &&
737 	    folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
738 	    !folio_test_unevictable(folio)) {
739 		struct folio_batch *fbatch;
740 
741 		folio_get(folio);
742 		local_lock(&cpu_fbatches.lock);
743 		fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
744 		folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
745 		local_unlock(&cpu_fbatches.lock);
746 	}
747 }
748 
749 void lru_add_drain(void)
750 {
751 	local_lock(&cpu_fbatches.lock);
752 	lru_add_drain_cpu(smp_processor_id());
753 	local_unlock(&cpu_fbatches.lock);
754 	mlock_drain_local();
755 }
756 
757 /*
758  * It's called from per-cpu workqueue context in SMP case so
759  * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
760  * the same cpu. It shouldn't be a problem in !SMP case since
761  * the core is only one and the locks will disable preemption.
762  */
763 static void lru_add_and_bh_lrus_drain(void)
764 {
765 	local_lock(&cpu_fbatches.lock);
766 	lru_add_drain_cpu(smp_processor_id());
767 	local_unlock(&cpu_fbatches.lock);
768 	invalidate_bh_lrus_cpu();
769 	mlock_drain_local();
770 }
771 
772 void lru_add_drain_cpu_zone(struct zone *zone)
773 {
774 	local_lock(&cpu_fbatches.lock);
775 	lru_add_drain_cpu(smp_processor_id());
776 	drain_local_pages(zone);
777 	local_unlock(&cpu_fbatches.lock);
778 	mlock_drain_local();
779 }
780 
781 #ifdef CONFIG_SMP
782 
783 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
784 
785 static void lru_add_drain_per_cpu(struct work_struct *dummy)
786 {
787 	lru_add_and_bh_lrus_drain();
788 }
789 
790 static bool cpu_needs_drain(unsigned int cpu)
791 {
792 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
793 
794 	/* Check these in order of likelihood that they're not zero */
795 	return folio_batch_count(&fbatches->lru_add) ||
796 		data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
797 		folio_batch_count(&fbatches->lru_deactivate_file) ||
798 		folio_batch_count(&fbatches->lru_deactivate) ||
799 		folio_batch_count(&fbatches->lru_lazyfree) ||
800 		folio_batch_count(&fbatches->activate) ||
801 		need_mlock_drain(cpu) ||
802 		has_bh_in_lru(cpu, NULL);
803 }
804 
805 /*
806  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
807  * kworkers being shut down before our page_alloc_cpu_dead callback is
808  * executed on the offlined cpu.
809  * Calling this function with cpu hotplug locks held can actually lead
810  * to obscure indirect dependencies via WQ context.
811  */
812 static inline void __lru_add_drain_all(bool force_all_cpus)
813 {
814 	/*
815 	 * lru_drain_gen - Global pages generation number
816 	 *
817 	 * (A) Definition: global lru_drain_gen = x implies that all generations
818 	 *     0 < n <= x are already *scheduled* for draining.
819 	 *
820 	 * This is an optimization for the highly-contended use case where a
821 	 * user space workload keeps constantly generating a flow of pages for
822 	 * each CPU.
823 	 */
824 	static unsigned int lru_drain_gen;
825 	static struct cpumask has_work;
826 	static DEFINE_MUTEX(lock);
827 	unsigned cpu, this_gen;
828 
829 	/*
830 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
831 	 * initialized.
832 	 */
833 	if (WARN_ON(!mm_percpu_wq))
834 		return;
835 
836 	/*
837 	 * Guarantee folio_batch counter stores visible by this CPU
838 	 * are visible to other CPUs before loading the current drain
839 	 * generation.
840 	 */
841 	smp_mb();
842 
843 	/*
844 	 * (B) Locally cache global LRU draining generation number
845 	 *
846 	 * The read barrier ensures that the counter is loaded before the mutex
847 	 * is taken. It pairs with smp_mb() inside the mutex critical section
848 	 * at (D).
849 	 */
850 	this_gen = smp_load_acquire(&lru_drain_gen);
851 
852 	mutex_lock(&lock);
853 
854 	/*
855 	 * (C) Exit the draining operation if a newer generation, from another
856 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
857 	 */
858 	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
859 		goto done;
860 
861 	/*
862 	 * (D) Increment global generation number
863 	 *
864 	 * Pairs with smp_load_acquire() at (B), outside of the critical
865 	 * section. Use a full memory barrier to guarantee that the
866 	 * new global drain generation number is stored before loading
867 	 * folio_batch counters.
868 	 *
869 	 * This pairing must be done here, before the for_each_online_cpu loop
870 	 * below which drains the page vectors.
871 	 *
872 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
873 	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
874 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
875 	 * along, adds some pages to its per-cpu vectors, then calls
876 	 * lru_add_drain_all().
877 	 *
878 	 * If the paired barrier is done at any later step, e.g. after the
879 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
880 	 * added pages.
881 	 */
882 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
883 	smp_mb();
884 
885 	cpumask_clear(&has_work);
886 	for_each_online_cpu(cpu) {
887 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
888 
889 		if (cpu_needs_drain(cpu)) {
890 			INIT_WORK(work, lru_add_drain_per_cpu);
891 			queue_work_on(cpu, mm_percpu_wq, work);
892 			__cpumask_set_cpu(cpu, &has_work);
893 		}
894 	}
895 
896 	for_each_cpu(cpu, &has_work)
897 		flush_work(&per_cpu(lru_add_drain_work, cpu));
898 
899 done:
900 	mutex_unlock(&lock);
901 }
902 
903 void lru_add_drain_all(void)
904 {
905 	__lru_add_drain_all(false);
906 }
907 #else
908 void lru_add_drain_all(void)
909 {
910 	lru_add_drain();
911 }
912 #endif /* CONFIG_SMP */
913 
914 atomic_t lru_disable_count = ATOMIC_INIT(0);
915 
916 /*
917  * lru_cache_disable() needs to be called before we start compiling
918  * a list of pages to be migrated using isolate_lru_page().
919  * It drains pages on LRU cache and then disable on all cpus until
920  * lru_cache_enable is called.
921  *
922  * Must be paired with a call to lru_cache_enable().
923  */
924 void lru_cache_disable(void)
925 {
926 	atomic_inc(&lru_disable_count);
927 	/*
928 	 * Readers of lru_disable_count are protected by either disabling
929 	 * preemption or rcu_read_lock:
930 	 *
931 	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
932 	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
933 	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
934 	 *
935 	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
936 	 * preempt_disable() regions of code. So any CPU which sees
937 	 * lru_disable_count = 0 will have exited the critical
938 	 * section when synchronize_rcu() returns.
939 	 */
940 	synchronize_rcu_expedited();
941 #ifdef CONFIG_SMP
942 	__lru_add_drain_all(true);
943 #else
944 	lru_add_and_bh_lrus_drain();
945 #endif
946 }
947 
948 /**
949  * release_pages - batched put_page()
950  * @arg: array of pages to release
951  * @nr: number of pages
952  *
953  * Decrement the reference count on all the pages in @arg.  If it
954  * fell to zero, remove the page from the LRU and free it.
955  *
956  * Note that the argument can be an array of pages, encoded pages,
957  * or folio pointers. We ignore any encoded bits, and turn any of
958  * them into just a folio that gets free'd.
959  */
960 void release_pages(release_pages_arg arg, int nr)
961 {
962 	int i;
963 	struct encoded_page **encoded = arg.encoded_pages;
964 	LIST_HEAD(pages_to_free);
965 	struct lruvec *lruvec = NULL;
966 	unsigned long flags = 0;
967 	unsigned int lock_batch;
968 
969 	for (i = 0; i < nr; i++) {
970 		struct folio *folio;
971 
972 		/* Turn any of the argument types into a folio */
973 		folio = page_folio(encoded_page_ptr(encoded[i]));
974 
975 		/*
976 		 * Make sure the IRQ-safe lock-holding time does not get
977 		 * excessive with a continuous string of pages from the
978 		 * same lruvec. The lock is held only if lruvec != NULL.
979 		 */
980 		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
981 			unlock_page_lruvec_irqrestore(lruvec, flags);
982 			lruvec = NULL;
983 		}
984 
985 		if (is_huge_zero_page(&folio->page))
986 			continue;
987 
988 		if (folio_is_zone_device(folio)) {
989 			if (lruvec) {
990 				unlock_page_lruvec_irqrestore(lruvec, flags);
991 				lruvec = NULL;
992 			}
993 			if (put_devmap_managed_page(&folio->page))
994 				continue;
995 			if (folio_put_testzero(folio))
996 				free_zone_device_page(&folio->page);
997 			continue;
998 		}
999 
1000 		if (!folio_put_testzero(folio))
1001 			continue;
1002 
1003 		if (folio_test_large(folio)) {
1004 			if (lruvec) {
1005 				unlock_page_lruvec_irqrestore(lruvec, flags);
1006 				lruvec = NULL;
1007 			}
1008 			__folio_put_large(folio);
1009 			continue;
1010 		}
1011 
1012 		if (folio_test_lru(folio)) {
1013 			struct lruvec *prev_lruvec = lruvec;
1014 
1015 			lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
1016 									&flags);
1017 			if (prev_lruvec != lruvec)
1018 				lock_batch = 0;
1019 
1020 			lruvec_del_folio(lruvec, folio);
1021 			__folio_clear_lru_flags(folio);
1022 		}
1023 
1024 		/*
1025 		 * In rare cases, when truncation or holepunching raced with
1026 		 * munlock after VM_LOCKED was cleared, Mlocked may still be
1027 		 * found set here.  This does not indicate a problem, unless
1028 		 * "unevictable_pgs_cleared" appears worryingly large.
1029 		 */
1030 		if (unlikely(folio_test_mlocked(folio))) {
1031 			__folio_clear_mlocked(folio);
1032 			zone_stat_sub_folio(folio, NR_MLOCK);
1033 			count_vm_event(UNEVICTABLE_PGCLEARED);
1034 		}
1035 
1036 		list_add(&folio->lru, &pages_to_free);
1037 	}
1038 	if (lruvec)
1039 		unlock_page_lruvec_irqrestore(lruvec, flags);
1040 
1041 	mem_cgroup_uncharge_list(&pages_to_free);
1042 	free_unref_page_list(&pages_to_free);
1043 }
1044 EXPORT_SYMBOL(release_pages);
1045 
1046 /*
1047  * The folios which we're about to release may be in the deferred lru-addition
1048  * queues.  That would prevent them from really being freed right now.  That's
1049  * OK from a correctness point of view but is inefficient - those folios may be
1050  * cache-warm and we want to give them back to the page allocator ASAP.
1051  *
1052  * So __folio_batch_release() will drain those queues here.
1053  * folio_batch_move_lru() calls folios_put() directly to avoid
1054  * mutual recursion.
1055  */
1056 void __folio_batch_release(struct folio_batch *fbatch)
1057 {
1058 	if (!fbatch->percpu_pvec_drained) {
1059 		lru_add_drain();
1060 		fbatch->percpu_pvec_drained = true;
1061 	}
1062 	release_pages(fbatch->folios, folio_batch_count(fbatch));
1063 	folio_batch_reinit(fbatch);
1064 }
1065 EXPORT_SYMBOL(__folio_batch_release);
1066 
1067 /**
1068  * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1069  * @fbatch: The batch to prune
1070  *
1071  * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1072  * entries.  This function prunes all the non-folio entries from @fbatch
1073  * without leaving holes, so that it can be passed on to folio-only batch
1074  * operations.
1075  */
1076 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1077 {
1078 	unsigned int i, j;
1079 
1080 	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1081 		struct folio *folio = fbatch->folios[i];
1082 		if (!xa_is_value(folio))
1083 			fbatch->folios[j++] = folio;
1084 	}
1085 	fbatch->nr = j;
1086 }
1087 
1088 /*
1089  * Perform any setup for the swap system
1090  */
1091 void __init swap_setup(void)
1092 {
1093 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1094 
1095 	/* Use a smaller cluster for small-memory machines */
1096 	if (megs < 16)
1097 		page_cluster = 2;
1098 	else
1099 		page_cluster = 3;
1100 	/*
1101 	 * Right now other parts of the system means that we
1102 	 * _really_ don't want to cluster much more
1103 	 */
1104 }
1105