xref: /openbmc/linux/mm/swap.c (revision 56bbd862)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 #include <linux/uio.h>
35 #include <linux/hugetlb.h>
36 #include <linux/page_idle.h>
37 
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/pagemap.h>
42 
43 /* How many pages do we try to swap or page in/out together? */
44 int page_cluster;
45 
46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
50 #ifdef CONFIG_SMP
51 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
52 #endif
53 
54 /*
55  * This path almost never happens for VM activity - pages are normally
56  * freed via pagevecs.  But it gets used by networking.
57  */
58 static void __page_cache_release(struct page *page)
59 {
60 	if (PageLRU(page)) {
61 		struct zone *zone = page_zone(page);
62 		struct lruvec *lruvec;
63 		unsigned long flags;
64 
65 		spin_lock_irqsave(zone_lru_lock(zone), flags);
66 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
67 		VM_BUG_ON_PAGE(!PageLRU(page), page);
68 		__ClearPageLRU(page);
69 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
70 		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
71 	}
72 	__ClearPageWaiters(page);
73 	mem_cgroup_uncharge(page);
74 }
75 
76 static void __put_single_page(struct page *page)
77 {
78 	__page_cache_release(page);
79 	free_hot_cold_page(page, false);
80 }
81 
82 static void __put_compound_page(struct page *page)
83 {
84 	compound_page_dtor *dtor;
85 
86 	/*
87 	 * __page_cache_release() is supposed to be called for thp, not for
88 	 * hugetlb. This is because hugetlb page does never have PageLRU set
89 	 * (it's never listed to any LRU lists) and no memcg routines should
90 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
91 	 */
92 	if (!PageHuge(page))
93 		__page_cache_release(page);
94 	dtor = get_compound_page_dtor(page);
95 	(*dtor)(page);
96 }
97 
98 void __put_page(struct page *page)
99 {
100 	if (unlikely(PageCompound(page)))
101 		__put_compound_page(page);
102 	else
103 		__put_single_page(page);
104 }
105 EXPORT_SYMBOL(__put_page);
106 
107 /**
108  * put_pages_list() - release a list of pages
109  * @pages: list of pages threaded on page->lru
110  *
111  * Release a list of pages which are strung together on page.lru.  Currently
112  * used by read_cache_pages() and related error recovery code.
113  */
114 void put_pages_list(struct list_head *pages)
115 {
116 	while (!list_empty(pages)) {
117 		struct page *victim;
118 
119 		victim = list_entry(pages->prev, struct page, lru);
120 		list_del(&victim->lru);
121 		put_page(victim);
122 	}
123 }
124 EXPORT_SYMBOL(put_pages_list);
125 
126 /*
127  * get_kernel_pages() - pin kernel pages in memory
128  * @kiov:	An array of struct kvec structures
129  * @nr_segs:	number of segments to pin
130  * @write:	pinning for read/write, currently ignored
131  * @pages:	array that receives pointers to the pages pinned.
132  *		Should be at least nr_segs long.
133  *
134  * Returns number of pages pinned. This may be fewer than the number
135  * requested. If nr_pages is 0 or negative, returns 0. If no pages
136  * were pinned, returns -errno. Each page returned must be released
137  * with a put_page() call when it is finished with.
138  */
139 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
140 		struct page **pages)
141 {
142 	int seg;
143 
144 	for (seg = 0; seg < nr_segs; seg++) {
145 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
146 			return seg;
147 
148 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
149 		get_page(pages[seg]);
150 	}
151 
152 	return seg;
153 }
154 EXPORT_SYMBOL_GPL(get_kernel_pages);
155 
156 /*
157  * get_kernel_page() - pin a kernel page in memory
158  * @start:	starting kernel address
159  * @write:	pinning for read/write, currently ignored
160  * @pages:	array that receives pointer to the page pinned.
161  *		Must be at least nr_segs long.
162  *
163  * Returns 1 if page is pinned. If the page was not pinned, returns
164  * -errno. The page returned must be released with a put_page() call
165  * when it is finished with.
166  */
167 int get_kernel_page(unsigned long start, int write, struct page **pages)
168 {
169 	const struct kvec kiov = {
170 		.iov_base = (void *)start,
171 		.iov_len = PAGE_SIZE
172 	};
173 
174 	return get_kernel_pages(&kiov, 1, write, pages);
175 }
176 EXPORT_SYMBOL_GPL(get_kernel_page);
177 
178 static void pagevec_lru_move_fn(struct pagevec *pvec,
179 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
180 	void *arg)
181 {
182 	int i;
183 	struct pglist_data *pgdat = NULL;
184 	struct lruvec *lruvec;
185 	unsigned long flags = 0;
186 
187 	for (i = 0; i < pagevec_count(pvec); i++) {
188 		struct page *page = pvec->pages[i];
189 		struct pglist_data *pagepgdat = page_pgdat(page);
190 
191 		if (pagepgdat != pgdat) {
192 			if (pgdat)
193 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
194 			pgdat = pagepgdat;
195 			spin_lock_irqsave(&pgdat->lru_lock, flags);
196 		}
197 
198 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
199 		(*move_fn)(page, lruvec, arg);
200 	}
201 	if (pgdat)
202 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
203 	release_pages(pvec->pages, pvec->nr, pvec->cold);
204 	pagevec_reinit(pvec);
205 }
206 
207 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
208 				 void *arg)
209 {
210 	int *pgmoved = arg;
211 
212 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
213 		enum lru_list lru = page_lru_base_type(page);
214 		list_move_tail(&page->lru, &lruvec->lists[lru]);
215 		(*pgmoved)++;
216 	}
217 }
218 
219 /*
220  * pagevec_move_tail() must be called with IRQ disabled.
221  * Otherwise this may cause nasty races.
222  */
223 static void pagevec_move_tail(struct pagevec *pvec)
224 {
225 	int pgmoved = 0;
226 
227 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
228 	__count_vm_events(PGROTATED, pgmoved);
229 }
230 
231 /*
232  * Writeback is about to end against a page which has been marked for immediate
233  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
234  * inactive list.
235  */
236 void rotate_reclaimable_page(struct page *page)
237 {
238 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
239 	    !PageUnevictable(page) && PageLRU(page)) {
240 		struct pagevec *pvec;
241 		unsigned long flags;
242 
243 		get_page(page);
244 		local_irq_save(flags);
245 		pvec = this_cpu_ptr(&lru_rotate_pvecs);
246 		if (!pagevec_add(pvec, page) || PageCompound(page))
247 			pagevec_move_tail(pvec);
248 		local_irq_restore(flags);
249 	}
250 }
251 
252 static void update_page_reclaim_stat(struct lruvec *lruvec,
253 				     int file, int rotated)
254 {
255 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
256 
257 	reclaim_stat->recent_scanned[file]++;
258 	if (rotated)
259 		reclaim_stat->recent_rotated[file]++;
260 }
261 
262 static void __activate_page(struct page *page, struct lruvec *lruvec,
263 			    void *arg)
264 {
265 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
266 		int file = page_is_file_cache(page);
267 		int lru = page_lru_base_type(page);
268 
269 		del_page_from_lru_list(page, lruvec, lru);
270 		SetPageActive(page);
271 		lru += LRU_ACTIVE;
272 		add_page_to_lru_list(page, lruvec, lru);
273 		trace_mm_lru_activate(page);
274 
275 		__count_vm_event(PGACTIVATE);
276 		update_page_reclaim_stat(lruvec, file, 1);
277 	}
278 }
279 
280 #ifdef CONFIG_SMP
281 static void activate_page_drain(int cpu)
282 {
283 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
284 
285 	if (pagevec_count(pvec))
286 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
287 }
288 
289 static bool need_activate_page_drain(int cpu)
290 {
291 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
292 }
293 
294 void activate_page(struct page *page)
295 {
296 	page = compound_head(page);
297 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
298 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
299 
300 		get_page(page);
301 		if (!pagevec_add(pvec, page) || PageCompound(page))
302 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
303 		put_cpu_var(activate_page_pvecs);
304 	}
305 }
306 
307 #else
308 static inline void activate_page_drain(int cpu)
309 {
310 }
311 
312 static bool need_activate_page_drain(int cpu)
313 {
314 	return false;
315 }
316 
317 void activate_page(struct page *page)
318 {
319 	struct zone *zone = page_zone(page);
320 
321 	page = compound_head(page);
322 	spin_lock_irq(zone_lru_lock(zone));
323 	__activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
324 	spin_unlock_irq(zone_lru_lock(zone));
325 }
326 #endif
327 
328 static void __lru_cache_activate_page(struct page *page)
329 {
330 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
331 	int i;
332 
333 	/*
334 	 * Search backwards on the optimistic assumption that the page being
335 	 * activated has just been added to this pagevec. Note that only
336 	 * the local pagevec is examined as a !PageLRU page could be in the
337 	 * process of being released, reclaimed, migrated or on a remote
338 	 * pagevec that is currently being drained. Furthermore, marking
339 	 * a remote pagevec's page PageActive potentially hits a race where
340 	 * a page is marked PageActive just after it is added to the inactive
341 	 * list causing accounting errors and BUG_ON checks to trigger.
342 	 */
343 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
344 		struct page *pagevec_page = pvec->pages[i];
345 
346 		if (pagevec_page == page) {
347 			SetPageActive(page);
348 			break;
349 		}
350 	}
351 
352 	put_cpu_var(lru_add_pvec);
353 }
354 
355 /*
356  * Mark a page as having seen activity.
357  *
358  * inactive,unreferenced	->	inactive,referenced
359  * inactive,referenced		->	active,unreferenced
360  * active,unreferenced		->	active,referenced
361  *
362  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
363  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
364  */
365 void mark_page_accessed(struct page *page)
366 {
367 	page = compound_head(page);
368 	if (!PageActive(page) && !PageUnevictable(page) &&
369 			PageReferenced(page)) {
370 
371 		/*
372 		 * If the page is on the LRU, queue it for activation via
373 		 * activate_page_pvecs. Otherwise, assume the page is on a
374 		 * pagevec, mark it active and it'll be moved to the active
375 		 * LRU on the next drain.
376 		 */
377 		if (PageLRU(page))
378 			activate_page(page);
379 		else
380 			__lru_cache_activate_page(page);
381 		ClearPageReferenced(page);
382 		if (page_is_file_cache(page))
383 			workingset_activation(page);
384 	} else if (!PageReferenced(page)) {
385 		SetPageReferenced(page);
386 	}
387 	if (page_is_idle(page))
388 		clear_page_idle(page);
389 }
390 EXPORT_SYMBOL(mark_page_accessed);
391 
392 static void __lru_cache_add(struct page *page)
393 {
394 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
395 
396 	get_page(page);
397 	if (!pagevec_add(pvec, page) || PageCompound(page))
398 		__pagevec_lru_add(pvec);
399 	put_cpu_var(lru_add_pvec);
400 }
401 
402 /**
403  * lru_cache_add: add a page to the page lists
404  * @page: the page to add
405  */
406 void lru_cache_add_anon(struct page *page)
407 {
408 	if (PageActive(page))
409 		ClearPageActive(page);
410 	__lru_cache_add(page);
411 }
412 
413 void lru_cache_add_file(struct page *page)
414 {
415 	if (PageActive(page))
416 		ClearPageActive(page);
417 	__lru_cache_add(page);
418 }
419 EXPORT_SYMBOL(lru_cache_add_file);
420 
421 /**
422  * lru_cache_add - add a page to a page list
423  * @page: the page to be added to the LRU.
424  *
425  * Queue the page for addition to the LRU via pagevec. The decision on whether
426  * to add the page to the [in]active [file|anon] list is deferred until the
427  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
428  * have the page added to the active list using mark_page_accessed().
429  */
430 void lru_cache_add(struct page *page)
431 {
432 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
433 	VM_BUG_ON_PAGE(PageLRU(page), page);
434 	__lru_cache_add(page);
435 }
436 
437 /**
438  * add_page_to_unevictable_list - add a page to the unevictable list
439  * @page:  the page to be added to the unevictable list
440  *
441  * Add page directly to its zone's unevictable list.  To avoid races with
442  * tasks that might be making the page evictable, through eg. munlock,
443  * munmap or exit, while it's not on the lru, we want to add the page
444  * while it's locked or otherwise "invisible" to other tasks.  This is
445  * difficult to do when using the pagevec cache, so bypass that.
446  */
447 void add_page_to_unevictable_list(struct page *page)
448 {
449 	struct pglist_data *pgdat = page_pgdat(page);
450 	struct lruvec *lruvec;
451 
452 	spin_lock_irq(&pgdat->lru_lock);
453 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
454 	ClearPageActive(page);
455 	SetPageUnevictable(page);
456 	SetPageLRU(page);
457 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
458 	spin_unlock_irq(&pgdat->lru_lock);
459 }
460 
461 /**
462  * lru_cache_add_active_or_unevictable
463  * @page:  the page to be added to LRU
464  * @vma:   vma in which page is mapped for determining reclaimability
465  *
466  * Place @page on the active or unevictable LRU list, depending on its
467  * evictability.  Note that if the page is not evictable, it goes
468  * directly back onto it's zone's unevictable list, it does NOT use a
469  * per cpu pagevec.
470  */
471 void lru_cache_add_active_or_unevictable(struct page *page,
472 					 struct vm_area_struct *vma)
473 {
474 	VM_BUG_ON_PAGE(PageLRU(page), page);
475 
476 	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
477 		SetPageActive(page);
478 		lru_cache_add(page);
479 		return;
480 	}
481 
482 	if (!TestSetPageMlocked(page)) {
483 		/*
484 		 * We use the irq-unsafe __mod_zone_page_stat because this
485 		 * counter is not modified from interrupt context, and the pte
486 		 * lock is held(spinlock), which implies preemption disabled.
487 		 */
488 		__mod_zone_page_state(page_zone(page), NR_MLOCK,
489 				    hpage_nr_pages(page));
490 		count_vm_event(UNEVICTABLE_PGMLOCKED);
491 	}
492 	add_page_to_unevictable_list(page);
493 }
494 
495 /*
496  * If the page can not be invalidated, it is moved to the
497  * inactive list to speed up its reclaim.  It is moved to the
498  * head of the list, rather than the tail, to give the flusher
499  * threads some time to write it out, as this is much more
500  * effective than the single-page writeout from reclaim.
501  *
502  * If the page isn't page_mapped and dirty/writeback, the page
503  * could reclaim asap using PG_reclaim.
504  *
505  * 1. active, mapped page -> none
506  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
507  * 3. inactive, mapped page -> none
508  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
509  * 5. inactive, clean -> inactive, tail
510  * 6. Others -> none
511  *
512  * In 4, why it moves inactive's head, the VM expects the page would
513  * be write it out by flusher threads as this is much more effective
514  * than the single-page writeout from reclaim.
515  */
516 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
517 			      void *arg)
518 {
519 	int lru, file;
520 	bool active;
521 
522 	if (!PageLRU(page))
523 		return;
524 
525 	if (PageUnevictable(page))
526 		return;
527 
528 	/* Some processes are using the page */
529 	if (page_mapped(page))
530 		return;
531 
532 	active = PageActive(page);
533 	file = page_is_file_cache(page);
534 	lru = page_lru_base_type(page);
535 
536 	del_page_from_lru_list(page, lruvec, lru + active);
537 	ClearPageActive(page);
538 	ClearPageReferenced(page);
539 	add_page_to_lru_list(page, lruvec, lru);
540 
541 	if (PageWriteback(page) || PageDirty(page)) {
542 		/*
543 		 * PG_reclaim could be raced with end_page_writeback
544 		 * It can make readahead confusing.  But race window
545 		 * is _really_ small and  it's non-critical problem.
546 		 */
547 		SetPageReclaim(page);
548 	} else {
549 		/*
550 		 * The page's writeback ends up during pagevec
551 		 * We moves tha page into tail of inactive.
552 		 */
553 		list_move_tail(&page->lru, &lruvec->lists[lru]);
554 		__count_vm_event(PGROTATED);
555 	}
556 
557 	if (active)
558 		__count_vm_event(PGDEACTIVATE);
559 	update_page_reclaim_stat(lruvec, file, 0);
560 }
561 
562 
563 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
564 			    void *arg)
565 {
566 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
567 		int file = page_is_file_cache(page);
568 		int lru = page_lru_base_type(page);
569 
570 		del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
571 		ClearPageActive(page);
572 		ClearPageReferenced(page);
573 		add_page_to_lru_list(page, lruvec, lru);
574 
575 		__count_vm_event(PGDEACTIVATE);
576 		update_page_reclaim_stat(lruvec, file, 0);
577 	}
578 }
579 
580 /*
581  * Drain pages out of the cpu's pagevecs.
582  * Either "cpu" is the current CPU, and preemption has already been
583  * disabled; or "cpu" is being hot-unplugged, and is already dead.
584  */
585 void lru_add_drain_cpu(int cpu)
586 {
587 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
588 
589 	if (pagevec_count(pvec))
590 		__pagevec_lru_add(pvec);
591 
592 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
593 	if (pagevec_count(pvec)) {
594 		unsigned long flags;
595 
596 		/* No harm done if a racing interrupt already did this */
597 		local_irq_save(flags);
598 		pagevec_move_tail(pvec);
599 		local_irq_restore(flags);
600 	}
601 
602 	pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
603 	if (pagevec_count(pvec))
604 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
605 
606 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
607 	if (pagevec_count(pvec))
608 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
609 
610 	activate_page_drain(cpu);
611 }
612 
613 /**
614  * deactivate_file_page - forcefully deactivate a file page
615  * @page: page to deactivate
616  *
617  * This function hints the VM that @page is a good reclaim candidate,
618  * for example if its invalidation fails due to the page being dirty
619  * or under writeback.
620  */
621 void deactivate_file_page(struct page *page)
622 {
623 	/*
624 	 * In a workload with many unevictable page such as mprotect,
625 	 * unevictable page deactivation for accelerating reclaim is pointless.
626 	 */
627 	if (PageUnevictable(page))
628 		return;
629 
630 	if (likely(get_page_unless_zero(page))) {
631 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
632 
633 		if (!pagevec_add(pvec, page) || PageCompound(page))
634 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
635 		put_cpu_var(lru_deactivate_file_pvecs);
636 	}
637 }
638 
639 /**
640  * deactivate_page - deactivate a page
641  * @page: page to deactivate
642  *
643  * deactivate_page() moves @page to the inactive list if @page was on the active
644  * list and was not an unevictable page.  This is done to accelerate the reclaim
645  * of @page.
646  */
647 void deactivate_page(struct page *page)
648 {
649 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
650 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
651 
652 		get_page(page);
653 		if (!pagevec_add(pvec, page) || PageCompound(page))
654 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
655 		put_cpu_var(lru_deactivate_pvecs);
656 	}
657 }
658 
659 void lru_add_drain(void)
660 {
661 	lru_add_drain_cpu(get_cpu());
662 	put_cpu();
663 }
664 
665 static void lru_add_drain_per_cpu(struct work_struct *dummy)
666 {
667 	lru_add_drain();
668 }
669 
670 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
671 
672 /*
673  * lru_add_drain_wq is used to do lru_add_drain_all() from a WQ_MEM_RECLAIM
674  * workqueue, aiding in getting memory freed.
675  */
676 static struct workqueue_struct *lru_add_drain_wq;
677 
678 static int __init lru_init(void)
679 {
680 	lru_add_drain_wq = alloc_workqueue("lru-add-drain", WQ_MEM_RECLAIM, 0);
681 
682 	if (WARN(!lru_add_drain_wq,
683 		"Failed to create workqueue lru_add_drain_wq"))
684 		return -ENOMEM;
685 
686 	return 0;
687 }
688 early_initcall(lru_init);
689 
690 void lru_add_drain_all(void)
691 {
692 	static DEFINE_MUTEX(lock);
693 	static struct cpumask has_work;
694 	int cpu;
695 
696 	mutex_lock(&lock);
697 	get_online_cpus();
698 	cpumask_clear(&has_work);
699 
700 	for_each_online_cpu(cpu) {
701 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
702 
703 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
704 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
705 		    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
706 		    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
707 		    need_activate_page_drain(cpu)) {
708 			INIT_WORK(work, lru_add_drain_per_cpu);
709 			queue_work_on(cpu, lru_add_drain_wq, work);
710 			cpumask_set_cpu(cpu, &has_work);
711 		}
712 	}
713 
714 	for_each_cpu(cpu, &has_work)
715 		flush_work(&per_cpu(lru_add_drain_work, cpu));
716 
717 	put_online_cpus();
718 	mutex_unlock(&lock);
719 }
720 
721 /**
722  * release_pages - batched put_page()
723  * @pages: array of pages to release
724  * @nr: number of pages
725  * @cold: whether the pages are cache cold
726  *
727  * Decrement the reference count on all the pages in @pages.  If it
728  * fell to zero, remove the page from the LRU and free it.
729  */
730 void release_pages(struct page **pages, int nr, bool cold)
731 {
732 	int i;
733 	LIST_HEAD(pages_to_free);
734 	struct pglist_data *locked_pgdat = NULL;
735 	struct lruvec *lruvec;
736 	unsigned long uninitialized_var(flags);
737 	unsigned int uninitialized_var(lock_batch);
738 
739 	for (i = 0; i < nr; i++) {
740 		struct page *page = pages[i];
741 
742 		/*
743 		 * Make sure the IRQ-safe lock-holding time does not get
744 		 * excessive with a continuous string of pages from the
745 		 * same pgdat. The lock is held only if pgdat != NULL.
746 		 */
747 		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
748 			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
749 			locked_pgdat = NULL;
750 		}
751 
752 		if (is_huge_zero_page(page))
753 			continue;
754 
755 		page = compound_head(page);
756 		if (!put_page_testzero(page))
757 			continue;
758 
759 		if (PageCompound(page)) {
760 			if (locked_pgdat) {
761 				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
762 				locked_pgdat = NULL;
763 			}
764 			__put_compound_page(page);
765 			continue;
766 		}
767 
768 		if (PageLRU(page)) {
769 			struct pglist_data *pgdat = page_pgdat(page);
770 
771 			if (pgdat != locked_pgdat) {
772 				if (locked_pgdat)
773 					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
774 									flags);
775 				lock_batch = 0;
776 				locked_pgdat = pgdat;
777 				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
778 			}
779 
780 			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
781 			VM_BUG_ON_PAGE(!PageLRU(page), page);
782 			__ClearPageLRU(page);
783 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
784 		}
785 
786 		/* Clear Active bit in case of parallel mark_page_accessed */
787 		__ClearPageActive(page);
788 		__ClearPageWaiters(page);
789 
790 		list_add(&page->lru, &pages_to_free);
791 	}
792 	if (locked_pgdat)
793 		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
794 
795 	mem_cgroup_uncharge_list(&pages_to_free);
796 	free_hot_cold_page_list(&pages_to_free, cold);
797 }
798 EXPORT_SYMBOL(release_pages);
799 
800 /*
801  * The pages which we're about to release may be in the deferred lru-addition
802  * queues.  That would prevent them from really being freed right now.  That's
803  * OK from a correctness point of view but is inefficient - those pages may be
804  * cache-warm and we want to give them back to the page allocator ASAP.
805  *
806  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
807  * and __pagevec_lru_add_active() call release_pages() directly to avoid
808  * mutual recursion.
809  */
810 void __pagevec_release(struct pagevec *pvec)
811 {
812 	lru_add_drain();
813 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
814 	pagevec_reinit(pvec);
815 }
816 EXPORT_SYMBOL(__pagevec_release);
817 
818 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
819 /* used by __split_huge_page_refcount() */
820 void lru_add_page_tail(struct page *page, struct page *page_tail,
821 		       struct lruvec *lruvec, struct list_head *list)
822 {
823 	const int file = 0;
824 
825 	VM_BUG_ON_PAGE(!PageHead(page), page);
826 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
827 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
828 	VM_BUG_ON(NR_CPUS != 1 &&
829 		  !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
830 
831 	if (!list)
832 		SetPageLRU(page_tail);
833 
834 	if (likely(PageLRU(page)))
835 		list_add_tail(&page_tail->lru, &page->lru);
836 	else if (list) {
837 		/* page reclaim is reclaiming a huge page */
838 		get_page(page_tail);
839 		list_add_tail(&page_tail->lru, list);
840 	} else {
841 		struct list_head *list_head;
842 		/*
843 		 * Head page has not yet been counted, as an hpage,
844 		 * so we must account for each subpage individually.
845 		 *
846 		 * Use the standard add function to put page_tail on the list,
847 		 * but then correct its position so they all end up in order.
848 		 */
849 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
850 		list_head = page_tail->lru.prev;
851 		list_move_tail(&page_tail->lru, list_head);
852 	}
853 
854 	if (!PageUnevictable(page))
855 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
856 }
857 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
858 
859 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
860 				 void *arg)
861 {
862 	int file = page_is_file_cache(page);
863 	int active = PageActive(page);
864 	enum lru_list lru = page_lru(page);
865 
866 	VM_BUG_ON_PAGE(PageLRU(page), page);
867 
868 	SetPageLRU(page);
869 	add_page_to_lru_list(page, lruvec, lru);
870 	update_page_reclaim_stat(lruvec, file, active);
871 	trace_mm_lru_insertion(page, lru);
872 }
873 
874 /*
875  * Add the passed pages to the LRU, then drop the caller's refcount
876  * on them.  Reinitialises the caller's pagevec.
877  */
878 void __pagevec_lru_add(struct pagevec *pvec)
879 {
880 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
881 }
882 EXPORT_SYMBOL(__pagevec_lru_add);
883 
884 /**
885  * pagevec_lookup_entries - gang pagecache lookup
886  * @pvec:	Where the resulting entries are placed
887  * @mapping:	The address_space to search
888  * @start:	The starting entry index
889  * @nr_entries:	The maximum number of entries
890  * @indices:	The cache indices corresponding to the entries in @pvec
891  *
892  * pagevec_lookup_entries() will search for and return a group of up
893  * to @nr_entries pages and shadow entries in the mapping.  All
894  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
895  * reference against actual pages in @pvec.
896  *
897  * The search returns a group of mapping-contiguous entries with
898  * ascending indexes.  There may be holes in the indices due to
899  * not-present entries.
900  *
901  * pagevec_lookup_entries() returns the number of entries which were
902  * found.
903  */
904 unsigned pagevec_lookup_entries(struct pagevec *pvec,
905 				struct address_space *mapping,
906 				pgoff_t start, unsigned nr_pages,
907 				pgoff_t *indices)
908 {
909 	pvec->nr = find_get_entries(mapping, start, nr_pages,
910 				    pvec->pages, indices);
911 	return pagevec_count(pvec);
912 }
913 
914 /**
915  * pagevec_remove_exceptionals - pagevec exceptionals pruning
916  * @pvec:	The pagevec to prune
917  *
918  * pagevec_lookup_entries() fills both pages and exceptional radix
919  * tree entries into the pagevec.  This function prunes all
920  * exceptionals from @pvec without leaving holes, so that it can be
921  * passed on to page-only pagevec operations.
922  */
923 void pagevec_remove_exceptionals(struct pagevec *pvec)
924 {
925 	int i, j;
926 
927 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
928 		struct page *page = pvec->pages[i];
929 		if (!radix_tree_exceptional_entry(page))
930 			pvec->pages[j++] = page;
931 	}
932 	pvec->nr = j;
933 }
934 
935 /**
936  * pagevec_lookup - gang pagecache lookup
937  * @pvec:	Where the resulting pages are placed
938  * @mapping:	The address_space to search
939  * @start:	The starting page index
940  * @nr_pages:	The maximum number of pages
941  *
942  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
943  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
944  * reference against the pages in @pvec.
945  *
946  * The search returns a group of mapping-contiguous pages with ascending
947  * indexes.  There may be holes in the indices due to not-present pages.
948  *
949  * pagevec_lookup() returns the number of pages which were found.
950  */
951 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
952 		pgoff_t start, unsigned nr_pages)
953 {
954 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
955 	return pagevec_count(pvec);
956 }
957 EXPORT_SYMBOL(pagevec_lookup);
958 
959 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
960 		pgoff_t *index, int tag, unsigned nr_pages)
961 {
962 	pvec->nr = find_get_pages_tag(mapping, index, tag,
963 					nr_pages, pvec->pages);
964 	return pagevec_count(pvec);
965 }
966 EXPORT_SYMBOL(pagevec_lookup_tag);
967 
968 /*
969  * Perform any setup for the swap system
970  */
971 void __init swap_setup(void)
972 {
973 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
974 #ifdef CONFIG_SWAP
975 	int i;
976 
977 	for (i = 0; i < MAX_SWAPFILES; i++)
978 		spin_lock_init(&swapper_spaces[i].tree_lock);
979 #endif
980 
981 	/* Use a smaller cluster for small-memory machines */
982 	if (megs < 16)
983 		page_cluster = 2;
984 	else
985 		page_cluster = 3;
986 	/*
987 	 * Right now other parts of the system means that we
988 	 * _really_ don't want to cluster much more
989 	 */
990 }
991