xref: /openbmc/linux/mm/swap.c (revision 565d76cb)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 
35 #include "internal.h"
36 
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39 
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
43 
44 /*
45  * This path almost never happens for VM activity - pages are normally
46  * freed via pagevecs.  But it gets used by networking.
47  */
48 static void __page_cache_release(struct page *page)
49 {
50 	if (PageLRU(page)) {
51 		unsigned long flags;
52 		struct zone *zone = page_zone(page);
53 
54 		spin_lock_irqsave(&zone->lru_lock, flags);
55 		VM_BUG_ON(!PageLRU(page));
56 		__ClearPageLRU(page);
57 		del_page_from_lru(zone, page);
58 		spin_unlock_irqrestore(&zone->lru_lock, flags);
59 	}
60 }
61 
62 static void __put_single_page(struct page *page)
63 {
64 	__page_cache_release(page);
65 	free_hot_cold_page(page, 0);
66 }
67 
68 static void __put_compound_page(struct page *page)
69 {
70 	compound_page_dtor *dtor;
71 
72 	__page_cache_release(page);
73 	dtor = get_compound_page_dtor(page);
74 	(*dtor)(page);
75 }
76 
77 static void put_compound_page(struct page *page)
78 {
79 	if (unlikely(PageTail(page))) {
80 		/* __split_huge_page_refcount can run under us */
81 		struct page *page_head = page->first_page;
82 		smp_rmb();
83 		/*
84 		 * If PageTail is still set after smp_rmb() we can be sure
85 		 * that the page->first_page we read wasn't a dangling pointer.
86 		 * See __split_huge_page_refcount() smp_wmb().
87 		 */
88 		if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
89 			unsigned long flags;
90 			/*
91 			 * Verify that our page_head wasn't converted
92 			 * to a a regular page before we got a
93 			 * reference on it.
94 			 */
95 			if (unlikely(!PageHead(page_head))) {
96 				/* PageHead is cleared after PageTail */
97 				smp_rmb();
98 				VM_BUG_ON(PageTail(page));
99 				goto out_put_head;
100 			}
101 			/*
102 			 * Only run compound_lock on a valid PageHead,
103 			 * after having it pinned with
104 			 * get_page_unless_zero() above.
105 			 */
106 			smp_mb();
107 			/* page_head wasn't a dangling pointer */
108 			flags = compound_lock_irqsave(page_head);
109 			if (unlikely(!PageTail(page))) {
110 				/* __split_huge_page_refcount run before us */
111 				compound_unlock_irqrestore(page_head, flags);
112 				VM_BUG_ON(PageHead(page_head));
113 			out_put_head:
114 				if (put_page_testzero(page_head))
115 					__put_single_page(page_head);
116 			out_put_single:
117 				if (put_page_testzero(page))
118 					__put_single_page(page);
119 				return;
120 			}
121 			VM_BUG_ON(page_head != page->first_page);
122 			/*
123 			 * We can release the refcount taken by
124 			 * get_page_unless_zero now that
125 			 * split_huge_page_refcount is blocked on the
126 			 * compound_lock.
127 			 */
128 			if (put_page_testzero(page_head))
129 				VM_BUG_ON(1);
130 			/* __split_huge_page_refcount will wait now */
131 			VM_BUG_ON(atomic_read(&page->_count) <= 0);
132 			atomic_dec(&page->_count);
133 			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
134 			compound_unlock_irqrestore(page_head, flags);
135 			if (put_page_testzero(page_head)) {
136 				if (PageHead(page_head))
137 					__put_compound_page(page_head);
138 				else
139 					__put_single_page(page_head);
140 			}
141 		} else {
142 			/* page_head is a dangling pointer */
143 			VM_BUG_ON(PageTail(page));
144 			goto out_put_single;
145 		}
146 	} else if (put_page_testzero(page)) {
147 		if (PageHead(page))
148 			__put_compound_page(page);
149 		else
150 			__put_single_page(page);
151 	}
152 }
153 
154 void put_page(struct page *page)
155 {
156 	if (unlikely(PageCompound(page)))
157 		put_compound_page(page);
158 	else if (put_page_testzero(page))
159 		__put_single_page(page);
160 }
161 EXPORT_SYMBOL(put_page);
162 
163 /**
164  * put_pages_list() - release a list of pages
165  * @pages: list of pages threaded on page->lru
166  *
167  * Release a list of pages which are strung together on page.lru.  Currently
168  * used by read_cache_pages() and related error recovery code.
169  */
170 void put_pages_list(struct list_head *pages)
171 {
172 	while (!list_empty(pages)) {
173 		struct page *victim;
174 
175 		victim = list_entry(pages->prev, struct page, lru);
176 		list_del(&victim->lru);
177 		page_cache_release(victim);
178 	}
179 }
180 EXPORT_SYMBOL(put_pages_list);
181 
182 static void pagevec_lru_move_fn(struct pagevec *pvec,
183 				void (*move_fn)(struct page *page, void *arg),
184 				void *arg)
185 {
186 	int i;
187 	struct zone *zone = NULL;
188 	unsigned long flags = 0;
189 
190 	for (i = 0; i < pagevec_count(pvec); i++) {
191 		struct page *page = pvec->pages[i];
192 		struct zone *pagezone = page_zone(page);
193 
194 		if (pagezone != zone) {
195 			if (zone)
196 				spin_unlock_irqrestore(&zone->lru_lock, flags);
197 			zone = pagezone;
198 			spin_lock_irqsave(&zone->lru_lock, flags);
199 		}
200 
201 		(*move_fn)(page, arg);
202 	}
203 	if (zone)
204 		spin_unlock_irqrestore(&zone->lru_lock, flags);
205 	release_pages(pvec->pages, pvec->nr, pvec->cold);
206 	pagevec_reinit(pvec);
207 }
208 
209 static void pagevec_move_tail_fn(struct page *page, void *arg)
210 {
211 	int *pgmoved = arg;
212 	struct zone *zone = page_zone(page);
213 
214 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
215 		enum lru_list lru = page_lru_base_type(page);
216 		list_move_tail(&page->lru, &zone->lru[lru].list);
217 		mem_cgroup_rotate_reclaimable_page(page);
218 		(*pgmoved)++;
219 	}
220 }
221 
222 /*
223  * pagevec_move_tail() must be called with IRQ disabled.
224  * Otherwise this may cause nasty races.
225  */
226 static void pagevec_move_tail(struct pagevec *pvec)
227 {
228 	int pgmoved = 0;
229 
230 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
231 	__count_vm_events(PGROTATED, pgmoved);
232 }
233 
234 /*
235  * Writeback is about to end against a page which has been marked for immediate
236  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
237  * inactive list.
238  */
239 void rotate_reclaimable_page(struct page *page)
240 {
241 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
242 	    !PageUnevictable(page) && PageLRU(page)) {
243 		struct pagevec *pvec;
244 		unsigned long flags;
245 
246 		page_cache_get(page);
247 		local_irq_save(flags);
248 		pvec = &__get_cpu_var(lru_rotate_pvecs);
249 		if (!pagevec_add(pvec, page))
250 			pagevec_move_tail(pvec);
251 		local_irq_restore(flags);
252 	}
253 }
254 
255 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
256 				     int file, int rotated)
257 {
258 	struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
259 	struct zone_reclaim_stat *memcg_reclaim_stat;
260 
261 	memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
262 
263 	reclaim_stat->recent_scanned[file]++;
264 	if (rotated)
265 		reclaim_stat->recent_rotated[file]++;
266 
267 	if (!memcg_reclaim_stat)
268 		return;
269 
270 	memcg_reclaim_stat->recent_scanned[file]++;
271 	if (rotated)
272 		memcg_reclaim_stat->recent_rotated[file]++;
273 }
274 
275 /*
276  * FIXME: speed this up?
277  */
278 void activate_page(struct page *page)
279 {
280 	struct zone *zone = page_zone(page);
281 
282 	spin_lock_irq(&zone->lru_lock);
283 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
284 		int file = page_is_file_cache(page);
285 		int lru = page_lru_base_type(page);
286 		del_page_from_lru_list(zone, page, lru);
287 
288 		SetPageActive(page);
289 		lru += LRU_ACTIVE;
290 		add_page_to_lru_list(zone, page, lru);
291 		__count_vm_event(PGACTIVATE);
292 
293 		update_page_reclaim_stat(zone, page, file, 1);
294 	}
295 	spin_unlock_irq(&zone->lru_lock);
296 }
297 
298 /*
299  * Mark a page as having seen activity.
300  *
301  * inactive,unreferenced	->	inactive,referenced
302  * inactive,referenced		->	active,unreferenced
303  * active,unreferenced		->	active,referenced
304  */
305 void mark_page_accessed(struct page *page)
306 {
307 	if (!PageActive(page) && !PageUnevictable(page) &&
308 			PageReferenced(page) && PageLRU(page)) {
309 		activate_page(page);
310 		ClearPageReferenced(page);
311 	} else if (!PageReferenced(page)) {
312 		SetPageReferenced(page);
313 	}
314 }
315 
316 EXPORT_SYMBOL(mark_page_accessed);
317 
318 void __lru_cache_add(struct page *page, enum lru_list lru)
319 {
320 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
321 
322 	page_cache_get(page);
323 	if (!pagevec_add(pvec, page))
324 		____pagevec_lru_add(pvec, lru);
325 	put_cpu_var(lru_add_pvecs);
326 }
327 EXPORT_SYMBOL(__lru_cache_add);
328 
329 /**
330  * lru_cache_add_lru - add a page to a page list
331  * @page: the page to be added to the LRU.
332  * @lru: the LRU list to which the page is added.
333  */
334 void lru_cache_add_lru(struct page *page, enum lru_list lru)
335 {
336 	if (PageActive(page)) {
337 		VM_BUG_ON(PageUnevictable(page));
338 		ClearPageActive(page);
339 	} else if (PageUnevictable(page)) {
340 		VM_BUG_ON(PageActive(page));
341 		ClearPageUnevictable(page);
342 	}
343 
344 	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
345 	__lru_cache_add(page, lru);
346 }
347 
348 /**
349  * add_page_to_unevictable_list - add a page to the unevictable list
350  * @page:  the page to be added to the unevictable list
351  *
352  * Add page directly to its zone's unevictable list.  To avoid races with
353  * tasks that might be making the page evictable, through eg. munlock,
354  * munmap or exit, while it's not on the lru, we want to add the page
355  * while it's locked or otherwise "invisible" to other tasks.  This is
356  * difficult to do when using the pagevec cache, so bypass that.
357  */
358 void add_page_to_unevictable_list(struct page *page)
359 {
360 	struct zone *zone = page_zone(page);
361 
362 	spin_lock_irq(&zone->lru_lock);
363 	SetPageUnevictable(page);
364 	SetPageLRU(page);
365 	add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
366 	spin_unlock_irq(&zone->lru_lock);
367 }
368 
369 /*
370  * If the page can not be invalidated, it is moved to the
371  * inactive list to speed up its reclaim.  It is moved to the
372  * head of the list, rather than the tail, to give the flusher
373  * threads some time to write it out, as this is much more
374  * effective than the single-page writeout from reclaim.
375  *
376  * If the page isn't page_mapped and dirty/writeback, the page
377  * could reclaim asap using PG_reclaim.
378  *
379  * 1. active, mapped page -> none
380  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
381  * 3. inactive, mapped page -> none
382  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
383  * 5. inactive, clean -> inactive, tail
384  * 6. Others -> none
385  *
386  * In 4, why it moves inactive's head, the VM expects the page would
387  * be write it out by flusher threads as this is much more effective
388  * than the single-page writeout from reclaim.
389  */
390 static void lru_deactivate_fn(struct page *page, void *arg)
391 {
392 	int lru, file;
393 	bool active;
394 	struct zone *zone = page_zone(page);
395 
396 	if (!PageLRU(page))
397 		return;
398 
399 	/* Some processes are using the page */
400 	if (page_mapped(page))
401 		return;
402 
403 	active = PageActive(page);
404 
405 	file = page_is_file_cache(page);
406 	lru = page_lru_base_type(page);
407 	del_page_from_lru_list(zone, page, lru + active);
408 	ClearPageActive(page);
409 	ClearPageReferenced(page);
410 	add_page_to_lru_list(zone, page, lru);
411 
412 	if (PageWriteback(page) || PageDirty(page)) {
413 		/*
414 		 * PG_reclaim could be raced with end_page_writeback
415 		 * It can make readahead confusing.  But race window
416 		 * is _really_ small and  it's non-critical problem.
417 		 */
418 		SetPageReclaim(page);
419 	} else {
420 		/*
421 		 * The page's writeback ends up during pagevec
422 		 * We moves tha page into tail of inactive.
423 		 */
424 		list_move_tail(&page->lru, &zone->lru[lru].list);
425 		mem_cgroup_rotate_reclaimable_page(page);
426 		__count_vm_event(PGROTATED);
427 	}
428 
429 	if (active)
430 		__count_vm_event(PGDEACTIVATE);
431 	update_page_reclaim_stat(zone, page, file, 0);
432 }
433 
434 /*
435  * Drain pages out of the cpu's pagevecs.
436  * Either "cpu" is the current CPU, and preemption has already been
437  * disabled; or "cpu" is being hot-unplugged, and is already dead.
438  */
439 static void drain_cpu_pagevecs(int cpu)
440 {
441 	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
442 	struct pagevec *pvec;
443 	int lru;
444 
445 	for_each_lru(lru) {
446 		pvec = &pvecs[lru - LRU_BASE];
447 		if (pagevec_count(pvec))
448 			____pagevec_lru_add(pvec, lru);
449 	}
450 
451 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
452 	if (pagevec_count(pvec)) {
453 		unsigned long flags;
454 
455 		/* No harm done if a racing interrupt already did this */
456 		local_irq_save(flags);
457 		pagevec_move_tail(pvec);
458 		local_irq_restore(flags);
459 	}
460 
461 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
462 	if (pagevec_count(pvec))
463 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
464 }
465 
466 /**
467  * deactivate_page - forcefully deactivate a page
468  * @page: page to deactivate
469  *
470  * This function hints the VM that @page is a good reclaim candidate,
471  * for example if its invalidation fails due to the page being dirty
472  * or under writeback.
473  */
474 void deactivate_page(struct page *page)
475 {
476 	if (likely(get_page_unless_zero(page))) {
477 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
478 
479 		if (!pagevec_add(pvec, page))
480 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
481 		put_cpu_var(lru_deactivate_pvecs);
482 	}
483 }
484 
485 void lru_add_drain(void)
486 {
487 	drain_cpu_pagevecs(get_cpu());
488 	put_cpu();
489 }
490 
491 static void lru_add_drain_per_cpu(struct work_struct *dummy)
492 {
493 	lru_add_drain();
494 }
495 
496 /*
497  * Returns 0 for success
498  */
499 int lru_add_drain_all(void)
500 {
501 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
502 }
503 
504 /*
505  * Batched page_cache_release().  Decrement the reference count on all the
506  * passed pages.  If it fell to zero then remove the page from the LRU and
507  * free it.
508  *
509  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
510  * for the remainder of the operation.
511  *
512  * The locking in this function is against shrink_inactive_list(): we recheck
513  * the page count inside the lock to see whether shrink_inactive_list()
514  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
515  * will free it.
516  */
517 void release_pages(struct page **pages, int nr, int cold)
518 {
519 	int i;
520 	struct pagevec pages_to_free;
521 	struct zone *zone = NULL;
522 	unsigned long uninitialized_var(flags);
523 
524 	pagevec_init(&pages_to_free, cold);
525 	for (i = 0; i < nr; i++) {
526 		struct page *page = pages[i];
527 
528 		if (unlikely(PageCompound(page))) {
529 			if (zone) {
530 				spin_unlock_irqrestore(&zone->lru_lock, flags);
531 				zone = NULL;
532 			}
533 			put_compound_page(page);
534 			continue;
535 		}
536 
537 		if (!put_page_testzero(page))
538 			continue;
539 
540 		if (PageLRU(page)) {
541 			struct zone *pagezone = page_zone(page);
542 
543 			if (pagezone != zone) {
544 				if (zone)
545 					spin_unlock_irqrestore(&zone->lru_lock,
546 									flags);
547 				zone = pagezone;
548 				spin_lock_irqsave(&zone->lru_lock, flags);
549 			}
550 			VM_BUG_ON(!PageLRU(page));
551 			__ClearPageLRU(page);
552 			del_page_from_lru(zone, page);
553 		}
554 
555 		if (!pagevec_add(&pages_to_free, page)) {
556 			if (zone) {
557 				spin_unlock_irqrestore(&zone->lru_lock, flags);
558 				zone = NULL;
559 			}
560 			__pagevec_free(&pages_to_free);
561 			pagevec_reinit(&pages_to_free);
562   		}
563 	}
564 	if (zone)
565 		spin_unlock_irqrestore(&zone->lru_lock, flags);
566 
567 	pagevec_free(&pages_to_free);
568 }
569 EXPORT_SYMBOL(release_pages);
570 
571 /*
572  * The pages which we're about to release may be in the deferred lru-addition
573  * queues.  That would prevent them from really being freed right now.  That's
574  * OK from a correctness point of view but is inefficient - those pages may be
575  * cache-warm and we want to give them back to the page allocator ASAP.
576  *
577  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
578  * and __pagevec_lru_add_active() call release_pages() directly to avoid
579  * mutual recursion.
580  */
581 void __pagevec_release(struct pagevec *pvec)
582 {
583 	lru_add_drain();
584 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
585 	pagevec_reinit(pvec);
586 }
587 
588 EXPORT_SYMBOL(__pagevec_release);
589 
590 /* used by __split_huge_page_refcount() */
591 void lru_add_page_tail(struct zone* zone,
592 		       struct page *page, struct page *page_tail)
593 {
594 	int active;
595 	enum lru_list lru;
596 	const int file = 0;
597 	struct list_head *head;
598 
599 	VM_BUG_ON(!PageHead(page));
600 	VM_BUG_ON(PageCompound(page_tail));
601 	VM_BUG_ON(PageLRU(page_tail));
602 	VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
603 
604 	SetPageLRU(page_tail);
605 
606 	if (page_evictable(page_tail, NULL)) {
607 		if (PageActive(page)) {
608 			SetPageActive(page_tail);
609 			active = 1;
610 			lru = LRU_ACTIVE_ANON;
611 		} else {
612 			active = 0;
613 			lru = LRU_INACTIVE_ANON;
614 		}
615 		update_page_reclaim_stat(zone, page_tail, file, active);
616 		if (likely(PageLRU(page)))
617 			head = page->lru.prev;
618 		else
619 			head = &zone->lru[lru].list;
620 		__add_page_to_lru_list(zone, page_tail, lru, head);
621 	} else {
622 		SetPageUnevictable(page_tail);
623 		add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
624 	}
625 }
626 
627 static void ____pagevec_lru_add_fn(struct page *page, void *arg)
628 {
629 	enum lru_list lru = (enum lru_list)arg;
630 	struct zone *zone = page_zone(page);
631 	int file = is_file_lru(lru);
632 	int active = is_active_lru(lru);
633 
634 	VM_BUG_ON(PageActive(page));
635 	VM_BUG_ON(PageUnevictable(page));
636 	VM_BUG_ON(PageLRU(page));
637 
638 	SetPageLRU(page);
639 	if (active)
640 		SetPageActive(page);
641 	update_page_reclaim_stat(zone, page, file, active);
642 	add_page_to_lru_list(zone, page, lru);
643 }
644 
645 /*
646  * Add the passed pages to the LRU, then drop the caller's refcount
647  * on them.  Reinitialises the caller's pagevec.
648  */
649 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
650 {
651 	VM_BUG_ON(is_unevictable_lru(lru));
652 
653 	pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
654 }
655 
656 EXPORT_SYMBOL(____pagevec_lru_add);
657 
658 /*
659  * Try to drop buffers from the pages in a pagevec
660  */
661 void pagevec_strip(struct pagevec *pvec)
662 {
663 	int i;
664 
665 	for (i = 0; i < pagevec_count(pvec); i++) {
666 		struct page *page = pvec->pages[i];
667 
668 		if (page_has_private(page) && trylock_page(page)) {
669 			if (page_has_private(page))
670 				try_to_release_page(page, 0);
671 			unlock_page(page);
672 		}
673 	}
674 }
675 
676 /**
677  * pagevec_lookup - gang pagecache lookup
678  * @pvec:	Where the resulting pages are placed
679  * @mapping:	The address_space to search
680  * @start:	The starting page index
681  * @nr_pages:	The maximum number of pages
682  *
683  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
684  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
685  * reference against the pages in @pvec.
686  *
687  * The search returns a group of mapping-contiguous pages with ascending
688  * indexes.  There may be holes in the indices due to not-present pages.
689  *
690  * pagevec_lookup() returns the number of pages which were found.
691  */
692 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
693 		pgoff_t start, unsigned nr_pages)
694 {
695 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
696 	return pagevec_count(pvec);
697 }
698 
699 EXPORT_SYMBOL(pagevec_lookup);
700 
701 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
702 		pgoff_t *index, int tag, unsigned nr_pages)
703 {
704 	pvec->nr = find_get_pages_tag(mapping, index, tag,
705 					nr_pages, pvec->pages);
706 	return pagevec_count(pvec);
707 }
708 
709 EXPORT_SYMBOL(pagevec_lookup_tag);
710 
711 /*
712  * Perform any setup for the swap system
713  */
714 void __init swap_setup(void)
715 {
716 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
717 
718 #ifdef CONFIG_SWAP
719 	bdi_init(swapper_space.backing_dev_info);
720 #endif
721 
722 	/* Use a smaller cluster for small-memory machines */
723 	if (megs < 16)
724 		page_cluster = 2;
725 	else
726 		page_cluster = 3;
727 	/*
728 	 * Right now other parts of the system means that we
729 	 * _really_ don't want to cluster much more
730 	 */
731 }
732