1 /* 2 * linux/mm/swap.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file contains the default values for the operation of the 9 * Linux VM subsystem. Fine-tuning documentation can be found in 10 * Documentation/sysctl/vm.txt. 11 * Started 18.12.91 12 * Swap aging added 23.2.95, Stephen Tweedie. 13 * Buffermem limits added 12.3.98, Rik van Riel. 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/swap.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/pagevec.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/mm_inline.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page() */ 27 #include <linux/percpu_counter.h> 28 #include <linux/percpu.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/backing-dev.h> 32 #include <linux/memcontrol.h> 33 #include <linux/gfp.h> 34 35 #include "internal.h" 36 37 /* How many pages do we try to swap or page in/out together? */ 38 int page_cluster; 39 40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs); 41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); 42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs); 43 44 /* 45 * This path almost never happens for VM activity - pages are normally 46 * freed via pagevecs. But it gets used by networking. 47 */ 48 static void __page_cache_release(struct page *page) 49 { 50 if (PageLRU(page)) { 51 unsigned long flags; 52 struct zone *zone = page_zone(page); 53 54 spin_lock_irqsave(&zone->lru_lock, flags); 55 VM_BUG_ON(!PageLRU(page)); 56 __ClearPageLRU(page); 57 del_page_from_lru(zone, page); 58 spin_unlock_irqrestore(&zone->lru_lock, flags); 59 } 60 } 61 62 static void __put_single_page(struct page *page) 63 { 64 __page_cache_release(page); 65 free_hot_cold_page(page, 0); 66 } 67 68 static void __put_compound_page(struct page *page) 69 { 70 compound_page_dtor *dtor; 71 72 __page_cache_release(page); 73 dtor = get_compound_page_dtor(page); 74 (*dtor)(page); 75 } 76 77 static void put_compound_page(struct page *page) 78 { 79 if (unlikely(PageTail(page))) { 80 /* __split_huge_page_refcount can run under us */ 81 struct page *page_head = page->first_page; 82 smp_rmb(); 83 /* 84 * If PageTail is still set after smp_rmb() we can be sure 85 * that the page->first_page we read wasn't a dangling pointer. 86 * See __split_huge_page_refcount() smp_wmb(). 87 */ 88 if (likely(PageTail(page) && get_page_unless_zero(page_head))) { 89 unsigned long flags; 90 /* 91 * Verify that our page_head wasn't converted 92 * to a a regular page before we got a 93 * reference on it. 94 */ 95 if (unlikely(!PageHead(page_head))) { 96 /* PageHead is cleared after PageTail */ 97 smp_rmb(); 98 VM_BUG_ON(PageTail(page)); 99 goto out_put_head; 100 } 101 /* 102 * Only run compound_lock on a valid PageHead, 103 * after having it pinned with 104 * get_page_unless_zero() above. 105 */ 106 smp_mb(); 107 /* page_head wasn't a dangling pointer */ 108 flags = compound_lock_irqsave(page_head); 109 if (unlikely(!PageTail(page))) { 110 /* __split_huge_page_refcount run before us */ 111 compound_unlock_irqrestore(page_head, flags); 112 VM_BUG_ON(PageHead(page_head)); 113 out_put_head: 114 if (put_page_testzero(page_head)) 115 __put_single_page(page_head); 116 out_put_single: 117 if (put_page_testzero(page)) 118 __put_single_page(page); 119 return; 120 } 121 VM_BUG_ON(page_head != page->first_page); 122 /* 123 * We can release the refcount taken by 124 * get_page_unless_zero now that 125 * split_huge_page_refcount is blocked on the 126 * compound_lock. 127 */ 128 if (put_page_testzero(page_head)) 129 VM_BUG_ON(1); 130 /* __split_huge_page_refcount will wait now */ 131 VM_BUG_ON(atomic_read(&page->_count) <= 0); 132 atomic_dec(&page->_count); 133 VM_BUG_ON(atomic_read(&page_head->_count) <= 0); 134 compound_unlock_irqrestore(page_head, flags); 135 if (put_page_testzero(page_head)) { 136 if (PageHead(page_head)) 137 __put_compound_page(page_head); 138 else 139 __put_single_page(page_head); 140 } 141 } else { 142 /* page_head is a dangling pointer */ 143 VM_BUG_ON(PageTail(page)); 144 goto out_put_single; 145 } 146 } else if (put_page_testzero(page)) { 147 if (PageHead(page)) 148 __put_compound_page(page); 149 else 150 __put_single_page(page); 151 } 152 } 153 154 void put_page(struct page *page) 155 { 156 if (unlikely(PageCompound(page))) 157 put_compound_page(page); 158 else if (put_page_testzero(page)) 159 __put_single_page(page); 160 } 161 EXPORT_SYMBOL(put_page); 162 163 /** 164 * put_pages_list() - release a list of pages 165 * @pages: list of pages threaded on page->lru 166 * 167 * Release a list of pages which are strung together on page.lru. Currently 168 * used by read_cache_pages() and related error recovery code. 169 */ 170 void put_pages_list(struct list_head *pages) 171 { 172 while (!list_empty(pages)) { 173 struct page *victim; 174 175 victim = list_entry(pages->prev, struct page, lru); 176 list_del(&victim->lru); 177 page_cache_release(victim); 178 } 179 } 180 EXPORT_SYMBOL(put_pages_list); 181 182 static void pagevec_lru_move_fn(struct pagevec *pvec, 183 void (*move_fn)(struct page *page, void *arg), 184 void *arg) 185 { 186 int i; 187 struct zone *zone = NULL; 188 unsigned long flags = 0; 189 190 for (i = 0; i < pagevec_count(pvec); i++) { 191 struct page *page = pvec->pages[i]; 192 struct zone *pagezone = page_zone(page); 193 194 if (pagezone != zone) { 195 if (zone) 196 spin_unlock_irqrestore(&zone->lru_lock, flags); 197 zone = pagezone; 198 spin_lock_irqsave(&zone->lru_lock, flags); 199 } 200 201 (*move_fn)(page, arg); 202 } 203 if (zone) 204 spin_unlock_irqrestore(&zone->lru_lock, flags); 205 release_pages(pvec->pages, pvec->nr, pvec->cold); 206 pagevec_reinit(pvec); 207 } 208 209 static void pagevec_move_tail_fn(struct page *page, void *arg) 210 { 211 int *pgmoved = arg; 212 struct zone *zone = page_zone(page); 213 214 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 215 enum lru_list lru = page_lru_base_type(page); 216 list_move_tail(&page->lru, &zone->lru[lru].list); 217 mem_cgroup_rotate_reclaimable_page(page); 218 (*pgmoved)++; 219 } 220 } 221 222 /* 223 * pagevec_move_tail() must be called with IRQ disabled. 224 * Otherwise this may cause nasty races. 225 */ 226 static void pagevec_move_tail(struct pagevec *pvec) 227 { 228 int pgmoved = 0; 229 230 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); 231 __count_vm_events(PGROTATED, pgmoved); 232 } 233 234 /* 235 * Writeback is about to end against a page which has been marked for immediate 236 * reclaim. If it still appears to be reclaimable, move it to the tail of the 237 * inactive list. 238 */ 239 void rotate_reclaimable_page(struct page *page) 240 { 241 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && 242 !PageUnevictable(page) && PageLRU(page)) { 243 struct pagevec *pvec; 244 unsigned long flags; 245 246 page_cache_get(page); 247 local_irq_save(flags); 248 pvec = &__get_cpu_var(lru_rotate_pvecs); 249 if (!pagevec_add(pvec, page)) 250 pagevec_move_tail(pvec); 251 local_irq_restore(flags); 252 } 253 } 254 255 static void update_page_reclaim_stat(struct zone *zone, struct page *page, 256 int file, int rotated) 257 { 258 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat; 259 struct zone_reclaim_stat *memcg_reclaim_stat; 260 261 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page); 262 263 reclaim_stat->recent_scanned[file]++; 264 if (rotated) 265 reclaim_stat->recent_rotated[file]++; 266 267 if (!memcg_reclaim_stat) 268 return; 269 270 memcg_reclaim_stat->recent_scanned[file]++; 271 if (rotated) 272 memcg_reclaim_stat->recent_rotated[file]++; 273 } 274 275 /* 276 * FIXME: speed this up? 277 */ 278 void activate_page(struct page *page) 279 { 280 struct zone *zone = page_zone(page); 281 282 spin_lock_irq(&zone->lru_lock); 283 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 284 int file = page_is_file_cache(page); 285 int lru = page_lru_base_type(page); 286 del_page_from_lru_list(zone, page, lru); 287 288 SetPageActive(page); 289 lru += LRU_ACTIVE; 290 add_page_to_lru_list(zone, page, lru); 291 __count_vm_event(PGACTIVATE); 292 293 update_page_reclaim_stat(zone, page, file, 1); 294 } 295 spin_unlock_irq(&zone->lru_lock); 296 } 297 298 /* 299 * Mark a page as having seen activity. 300 * 301 * inactive,unreferenced -> inactive,referenced 302 * inactive,referenced -> active,unreferenced 303 * active,unreferenced -> active,referenced 304 */ 305 void mark_page_accessed(struct page *page) 306 { 307 if (!PageActive(page) && !PageUnevictable(page) && 308 PageReferenced(page) && PageLRU(page)) { 309 activate_page(page); 310 ClearPageReferenced(page); 311 } else if (!PageReferenced(page)) { 312 SetPageReferenced(page); 313 } 314 } 315 316 EXPORT_SYMBOL(mark_page_accessed); 317 318 void __lru_cache_add(struct page *page, enum lru_list lru) 319 { 320 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru]; 321 322 page_cache_get(page); 323 if (!pagevec_add(pvec, page)) 324 ____pagevec_lru_add(pvec, lru); 325 put_cpu_var(lru_add_pvecs); 326 } 327 EXPORT_SYMBOL(__lru_cache_add); 328 329 /** 330 * lru_cache_add_lru - add a page to a page list 331 * @page: the page to be added to the LRU. 332 * @lru: the LRU list to which the page is added. 333 */ 334 void lru_cache_add_lru(struct page *page, enum lru_list lru) 335 { 336 if (PageActive(page)) { 337 VM_BUG_ON(PageUnevictable(page)); 338 ClearPageActive(page); 339 } else if (PageUnevictable(page)) { 340 VM_BUG_ON(PageActive(page)); 341 ClearPageUnevictable(page); 342 } 343 344 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page)); 345 __lru_cache_add(page, lru); 346 } 347 348 /** 349 * add_page_to_unevictable_list - add a page to the unevictable list 350 * @page: the page to be added to the unevictable list 351 * 352 * Add page directly to its zone's unevictable list. To avoid races with 353 * tasks that might be making the page evictable, through eg. munlock, 354 * munmap or exit, while it's not on the lru, we want to add the page 355 * while it's locked or otherwise "invisible" to other tasks. This is 356 * difficult to do when using the pagevec cache, so bypass that. 357 */ 358 void add_page_to_unevictable_list(struct page *page) 359 { 360 struct zone *zone = page_zone(page); 361 362 spin_lock_irq(&zone->lru_lock); 363 SetPageUnevictable(page); 364 SetPageLRU(page); 365 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE); 366 spin_unlock_irq(&zone->lru_lock); 367 } 368 369 /* 370 * If the page can not be invalidated, it is moved to the 371 * inactive list to speed up its reclaim. It is moved to the 372 * head of the list, rather than the tail, to give the flusher 373 * threads some time to write it out, as this is much more 374 * effective than the single-page writeout from reclaim. 375 * 376 * If the page isn't page_mapped and dirty/writeback, the page 377 * could reclaim asap using PG_reclaim. 378 * 379 * 1. active, mapped page -> none 380 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 381 * 3. inactive, mapped page -> none 382 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 383 * 5. inactive, clean -> inactive, tail 384 * 6. Others -> none 385 * 386 * In 4, why it moves inactive's head, the VM expects the page would 387 * be write it out by flusher threads as this is much more effective 388 * than the single-page writeout from reclaim. 389 */ 390 static void lru_deactivate_fn(struct page *page, void *arg) 391 { 392 int lru, file; 393 bool active; 394 struct zone *zone = page_zone(page); 395 396 if (!PageLRU(page)) 397 return; 398 399 /* Some processes are using the page */ 400 if (page_mapped(page)) 401 return; 402 403 active = PageActive(page); 404 405 file = page_is_file_cache(page); 406 lru = page_lru_base_type(page); 407 del_page_from_lru_list(zone, page, lru + active); 408 ClearPageActive(page); 409 ClearPageReferenced(page); 410 add_page_to_lru_list(zone, page, lru); 411 412 if (PageWriteback(page) || PageDirty(page)) { 413 /* 414 * PG_reclaim could be raced with end_page_writeback 415 * It can make readahead confusing. But race window 416 * is _really_ small and it's non-critical problem. 417 */ 418 SetPageReclaim(page); 419 } else { 420 /* 421 * The page's writeback ends up during pagevec 422 * We moves tha page into tail of inactive. 423 */ 424 list_move_tail(&page->lru, &zone->lru[lru].list); 425 mem_cgroup_rotate_reclaimable_page(page); 426 __count_vm_event(PGROTATED); 427 } 428 429 if (active) 430 __count_vm_event(PGDEACTIVATE); 431 update_page_reclaim_stat(zone, page, file, 0); 432 } 433 434 /* 435 * Drain pages out of the cpu's pagevecs. 436 * Either "cpu" is the current CPU, and preemption has already been 437 * disabled; or "cpu" is being hot-unplugged, and is already dead. 438 */ 439 static void drain_cpu_pagevecs(int cpu) 440 { 441 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu); 442 struct pagevec *pvec; 443 int lru; 444 445 for_each_lru(lru) { 446 pvec = &pvecs[lru - LRU_BASE]; 447 if (pagevec_count(pvec)) 448 ____pagevec_lru_add(pvec, lru); 449 } 450 451 pvec = &per_cpu(lru_rotate_pvecs, cpu); 452 if (pagevec_count(pvec)) { 453 unsigned long flags; 454 455 /* No harm done if a racing interrupt already did this */ 456 local_irq_save(flags); 457 pagevec_move_tail(pvec); 458 local_irq_restore(flags); 459 } 460 461 pvec = &per_cpu(lru_deactivate_pvecs, cpu); 462 if (pagevec_count(pvec)) 463 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 464 } 465 466 /** 467 * deactivate_page - forcefully deactivate a page 468 * @page: page to deactivate 469 * 470 * This function hints the VM that @page is a good reclaim candidate, 471 * for example if its invalidation fails due to the page being dirty 472 * or under writeback. 473 */ 474 void deactivate_page(struct page *page) 475 { 476 if (likely(get_page_unless_zero(page))) { 477 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs); 478 479 if (!pagevec_add(pvec, page)) 480 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 481 put_cpu_var(lru_deactivate_pvecs); 482 } 483 } 484 485 void lru_add_drain(void) 486 { 487 drain_cpu_pagevecs(get_cpu()); 488 put_cpu(); 489 } 490 491 static void lru_add_drain_per_cpu(struct work_struct *dummy) 492 { 493 lru_add_drain(); 494 } 495 496 /* 497 * Returns 0 for success 498 */ 499 int lru_add_drain_all(void) 500 { 501 return schedule_on_each_cpu(lru_add_drain_per_cpu); 502 } 503 504 /* 505 * Batched page_cache_release(). Decrement the reference count on all the 506 * passed pages. If it fell to zero then remove the page from the LRU and 507 * free it. 508 * 509 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it 510 * for the remainder of the operation. 511 * 512 * The locking in this function is against shrink_inactive_list(): we recheck 513 * the page count inside the lock to see whether shrink_inactive_list() 514 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list() 515 * will free it. 516 */ 517 void release_pages(struct page **pages, int nr, int cold) 518 { 519 int i; 520 struct pagevec pages_to_free; 521 struct zone *zone = NULL; 522 unsigned long uninitialized_var(flags); 523 524 pagevec_init(&pages_to_free, cold); 525 for (i = 0; i < nr; i++) { 526 struct page *page = pages[i]; 527 528 if (unlikely(PageCompound(page))) { 529 if (zone) { 530 spin_unlock_irqrestore(&zone->lru_lock, flags); 531 zone = NULL; 532 } 533 put_compound_page(page); 534 continue; 535 } 536 537 if (!put_page_testzero(page)) 538 continue; 539 540 if (PageLRU(page)) { 541 struct zone *pagezone = page_zone(page); 542 543 if (pagezone != zone) { 544 if (zone) 545 spin_unlock_irqrestore(&zone->lru_lock, 546 flags); 547 zone = pagezone; 548 spin_lock_irqsave(&zone->lru_lock, flags); 549 } 550 VM_BUG_ON(!PageLRU(page)); 551 __ClearPageLRU(page); 552 del_page_from_lru(zone, page); 553 } 554 555 if (!pagevec_add(&pages_to_free, page)) { 556 if (zone) { 557 spin_unlock_irqrestore(&zone->lru_lock, flags); 558 zone = NULL; 559 } 560 __pagevec_free(&pages_to_free); 561 pagevec_reinit(&pages_to_free); 562 } 563 } 564 if (zone) 565 spin_unlock_irqrestore(&zone->lru_lock, flags); 566 567 pagevec_free(&pages_to_free); 568 } 569 EXPORT_SYMBOL(release_pages); 570 571 /* 572 * The pages which we're about to release may be in the deferred lru-addition 573 * queues. That would prevent them from really being freed right now. That's 574 * OK from a correctness point of view but is inefficient - those pages may be 575 * cache-warm and we want to give them back to the page allocator ASAP. 576 * 577 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 578 * and __pagevec_lru_add_active() call release_pages() directly to avoid 579 * mutual recursion. 580 */ 581 void __pagevec_release(struct pagevec *pvec) 582 { 583 lru_add_drain(); 584 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); 585 pagevec_reinit(pvec); 586 } 587 588 EXPORT_SYMBOL(__pagevec_release); 589 590 /* used by __split_huge_page_refcount() */ 591 void lru_add_page_tail(struct zone* zone, 592 struct page *page, struct page *page_tail) 593 { 594 int active; 595 enum lru_list lru; 596 const int file = 0; 597 struct list_head *head; 598 599 VM_BUG_ON(!PageHead(page)); 600 VM_BUG_ON(PageCompound(page_tail)); 601 VM_BUG_ON(PageLRU(page_tail)); 602 VM_BUG_ON(!spin_is_locked(&zone->lru_lock)); 603 604 SetPageLRU(page_tail); 605 606 if (page_evictable(page_tail, NULL)) { 607 if (PageActive(page)) { 608 SetPageActive(page_tail); 609 active = 1; 610 lru = LRU_ACTIVE_ANON; 611 } else { 612 active = 0; 613 lru = LRU_INACTIVE_ANON; 614 } 615 update_page_reclaim_stat(zone, page_tail, file, active); 616 if (likely(PageLRU(page))) 617 head = page->lru.prev; 618 else 619 head = &zone->lru[lru].list; 620 __add_page_to_lru_list(zone, page_tail, lru, head); 621 } else { 622 SetPageUnevictable(page_tail); 623 add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE); 624 } 625 } 626 627 static void ____pagevec_lru_add_fn(struct page *page, void *arg) 628 { 629 enum lru_list lru = (enum lru_list)arg; 630 struct zone *zone = page_zone(page); 631 int file = is_file_lru(lru); 632 int active = is_active_lru(lru); 633 634 VM_BUG_ON(PageActive(page)); 635 VM_BUG_ON(PageUnevictable(page)); 636 VM_BUG_ON(PageLRU(page)); 637 638 SetPageLRU(page); 639 if (active) 640 SetPageActive(page); 641 update_page_reclaim_stat(zone, page, file, active); 642 add_page_to_lru_list(zone, page, lru); 643 } 644 645 /* 646 * Add the passed pages to the LRU, then drop the caller's refcount 647 * on them. Reinitialises the caller's pagevec. 648 */ 649 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru) 650 { 651 VM_BUG_ON(is_unevictable_lru(lru)); 652 653 pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru); 654 } 655 656 EXPORT_SYMBOL(____pagevec_lru_add); 657 658 /* 659 * Try to drop buffers from the pages in a pagevec 660 */ 661 void pagevec_strip(struct pagevec *pvec) 662 { 663 int i; 664 665 for (i = 0; i < pagevec_count(pvec); i++) { 666 struct page *page = pvec->pages[i]; 667 668 if (page_has_private(page) && trylock_page(page)) { 669 if (page_has_private(page)) 670 try_to_release_page(page, 0); 671 unlock_page(page); 672 } 673 } 674 } 675 676 /** 677 * pagevec_lookup - gang pagecache lookup 678 * @pvec: Where the resulting pages are placed 679 * @mapping: The address_space to search 680 * @start: The starting page index 681 * @nr_pages: The maximum number of pages 682 * 683 * pagevec_lookup() will search for and return a group of up to @nr_pages pages 684 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a 685 * reference against the pages in @pvec. 686 * 687 * The search returns a group of mapping-contiguous pages with ascending 688 * indexes. There may be holes in the indices due to not-present pages. 689 * 690 * pagevec_lookup() returns the number of pages which were found. 691 */ 692 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, 693 pgoff_t start, unsigned nr_pages) 694 { 695 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); 696 return pagevec_count(pvec); 697 } 698 699 EXPORT_SYMBOL(pagevec_lookup); 700 701 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, 702 pgoff_t *index, int tag, unsigned nr_pages) 703 { 704 pvec->nr = find_get_pages_tag(mapping, index, tag, 705 nr_pages, pvec->pages); 706 return pagevec_count(pvec); 707 } 708 709 EXPORT_SYMBOL(pagevec_lookup_tag); 710 711 /* 712 * Perform any setup for the swap system 713 */ 714 void __init swap_setup(void) 715 { 716 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); 717 718 #ifdef CONFIG_SWAP 719 bdi_init(swapper_space.backing_dev_info); 720 #endif 721 722 /* Use a smaller cluster for small-memory machines */ 723 if (megs < 16) 724 page_cluster = 2; 725 else 726 page_cluster = 3; 727 /* 728 * Right now other parts of the system means that we 729 * _really_ don't want to cluster much more 730 */ 731 } 732