xref: /openbmc/linux/mm/swap.c (revision 54a611b6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40 
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45 
46 /* How many pages do we try to swap or page in/out together? */
47 int page_cluster;
48 
49 /* Protecting only lru_rotate.fbatch which requires disabling interrupts */
50 struct lru_rotate {
51 	local_lock_t lock;
52 	struct folio_batch fbatch;
53 };
54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 	.lock = INIT_LOCAL_LOCK(lock),
56 };
57 
58 /*
59  * The following folio batches are grouped together because they are protected
60  * by disabling preemption (and interrupts remain enabled).
61  */
62 struct cpu_fbatches {
63 	local_lock_t lock;
64 	struct folio_batch lru_add;
65 	struct folio_batch lru_deactivate_file;
66 	struct folio_batch lru_deactivate;
67 	struct folio_batch lru_lazyfree;
68 #ifdef CONFIG_SMP
69 	struct folio_batch activate;
70 #endif
71 };
72 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
73 	.lock = INIT_LOCAL_LOCK(lock),
74 };
75 
76 /*
77  * This path almost never happens for VM activity - pages are normally freed
78  * via pagevecs.  But it gets used by networking - and for compound pages.
79  */
80 static void __page_cache_release(struct folio *folio)
81 {
82 	if (folio_test_lru(folio)) {
83 		struct lruvec *lruvec;
84 		unsigned long flags;
85 
86 		lruvec = folio_lruvec_lock_irqsave(folio, &flags);
87 		lruvec_del_folio(lruvec, folio);
88 		__folio_clear_lru_flags(folio);
89 		unlock_page_lruvec_irqrestore(lruvec, flags);
90 	}
91 	/* See comment on folio_test_mlocked in release_pages() */
92 	if (unlikely(folio_test_mlocked(folio))) {
93 		long nr_pages = folio_nr_pages(folio);
94 
95 		__folio_clear_mlocked(folio);
96 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
97 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
98 	}
99 }
100 
101 static void __folio_put_small(struct folio *folio)
102 {
103 	__page_cache_release(folio);
104 	mem_cgroup_uncharge(folio);
105 	free_unref_page(&folio->page, 0);
106 }
107 
108 static void __folio_put_large(struct folio *folio)
109 {
110 	/*
111 	 * __page_cache_release() is supposed to be called for thp, not for
112 	 * hugetlb. This is because hugetlb page does never have PageLRU set
113 	 * (it's never listed to any LRU lists) and no memcg routines should
114 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
115 	 */
116 	if (!folio_test_hugetlb(folio))
117 		__page_cache_release(folio);
118 	destroy_large_folio(folio);
119 }
120 
121 void __folio_put(struct folio *folio)
122 {
123 	if (unlikely(folio_is_zone_device(folio)))
124 		free_zone_device_page(&folio->page);
125 	else if (unlikely(folio_test_large(folio)))
126 		__folio_put_large(folio);
127 	else
128 		__folio_put_small(folio);
129 }
130 EXPORT_SYMBOL(__folio_put);
131 
132 /**
133  * put_pages_list() - release a list of pages
134  * @pages: list of pages threaded on page->lru
135  *
136  * Release a list of pages which are strung together on page.lru.
137  */
138 void put_pages_list(struct list_head *pages)
139 {
140 	struct folio *folio, *next;
141 
142 	list_for_each_entry_safe(folio, next, pages, lru) {
143 		if (!folio_put_testzero(folio)) {
144 			list_del(&folio->lru);
145 			continue;
146 		}
147 		if (folio_test_large(folio)) {
148 			list_del(&folio->lru);
149 			__folio_put_large(folio);
150 			continue;
151 		}
152 		/* LRU flag must be clear because it's passed using the lru */
153 	}
154 
155 	free_unref_page_list(pages);
156 	INIT_LIST_HEAD(pages);
157 }
158 EXPORT_SYMBOL(put_pages_list);
159 
160 /*
161  * get_kernel_pages() - pin kernel pages in memory
162  * @kiov:	An array of struct kvec structures
163  * @nr_segs:	number of segments to pin
164  * @write:	pinning for read/write, currently ignored
165  * @pages:	array that receives pointers to the pages pinned.
166  *		Should be at least nr_segs long.
167  *
168  * Returns number of pages pinned. This may be fewer than the number requested.
169  * If nr_segs is 0 or negative, returns 0.  If no pages were pinned, returns 0.
170  * Each page returned must be released with a put_page() call when it is
171  * finished with.
172  */
173 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
174 		struct page **pages)
175 {
176 	int seg;
177 
178 	for (seg = 0; seg < nr_segs; seg++) {
179 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
180 			return seg;
181 
182 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
183 		get_page(pages[seg]);
184 	}
185 
186 	return seg;
187 }
188 EXPORT_SYMBOL_GPL(get_kernel_pages);
189 
190 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
191 
192 static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
193 {
194 	int was_unevictable = folio_test_clear_unevictable(folio);
195 	long nr_pages = folio_nr_pages(folio);
196 
197 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
198 
199 	/*
200 	 * Is an smp_mb__after_atomic() still required here, before
201 	 * folio_evictable() tests the mlocked flag, to rule out the possibility
202 	 * of stranding an evictable folio on an unevictable LRU?  I think
203 	 * not, because __munlock_page() only clears the mlocked flag
204 	 * while the LRU lock is held.
205 	 *
206 	 * (That is not true of __page_cache_release(), and not necessarily
207 	 * true of release_pages(): but those only clear the mlocked flag after
208 	 * folio_put_testzero() has excluded any other users of the folio.)
209 	 */
210 	if (folio_evictable(folio)) {
211 		if (was_unevictable)
212 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
213 	} else {
214 		folio_clear_active(folio);
215 		folio_set_unevictable(folio);
216 		/*
217 		 * folio->mlock_count = !!folio_test_mlocked(folio)?
218 		 * But that leaves __mlock_page() in doubt whether another
219 		 * actor has already counted the mlock or not.  Err on the
220 		 * safe side, underestimate, let page reclaim fix it, rather
221 		 * than leaving a page on the unevictable LRU indefinitely.
222 		 */
223 		folio->mlock_count = 0;
224 		if (!was_unevictable)
225 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
226 	}
227 
228 	lruvec_add_folio(lruvec, folio);
229 	trace_mm_lru_insertion(folio);
230 }
231 
232 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
233 {
234 	int i;
235 	struct lruvec *lruvec = NULL;
236 	unsigned long flags = 0;
237 
238 	for (i = 0; i < folio_batch_count(fbatch); i++) {
239 		struct folio *folio = fbatch->folios[i];
240 
241 		/* block memcg migration while the folio moves between lru */
242 		if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
243 			continue;
244 
245 		lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
246 		move_fn(lruvec, folio);
247 
248 		folio_set_lru(folio);
249 	}
250 
251 	if (lruvec)
252 		unlock_page_lruvec_irqrestore(lruvec, flags);
253 	folios_put(fbatch->folios, folio_batch_count(fbatch));
254 	folio_batch_init(fbatch);
255 }
256 
257 static void folio_batch_add_and_move(struct folio_batch *fbatch,
258 		struct folio *folio, move_fn_t move_fn)
259 {
260 	if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
261 	    !lru_cache_disabled())
262 		return;
263 	folio_batch_move_lru(fbatch, move_fn);
264 }
265 
266 static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
267 {
268 	if (!folio_test_unevictable(folio)) {
269 		lruvec_del_folio(lruvec, folio);
270 		folio_clear_active(folio);
271 		lruvec_add_folio_tail(lruvec, folio);
272 		__count_vm_events(PGROTATED, folio_nr_pages(folio));
273 	}
274 }
275 
276 /*
277  * Writeback is about to end against a folio which has been marked for
278  * immediate reclaim.  If it still appears to be reclaimable, move it
279  * to the tail of the inactive list.
280  *
281  * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
282  */
283 void folio_rotate_reclaimable(struct folio *folio)
284 {
285 	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
286 	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
287 		struct folio_batch *fbatch;
288 		unsigned long flags;
289 
290 		folio_get(folio);
291 		local_lock_irqsave(&lru_rotate.lock, flags);
292 		fbatch = this_cpu_ptr(&lru_rotate.fbatch);
293 		folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
294 		local_unlock_irqrestore(&lru_rotate.lock, flags);
295 	}
296 }
297 
298 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
299 {
300 	do {
301 		unsigned long lrusize;
302 
303 		/*
304 		 * Hold lruvec->lru_lock is safe here, since
305 		 * 1) The pinned lruvec in reclaim, or
306 		 * 2) From a pre-LRU page during refault (which also holds the
307 		 *    rcu lock, so would be safe even if the page was on the LRU
308 		 *    and could move simultaneously to a new lruvec).
309 		 */
310 		spin_lock_irq(&lruvec->lru_lock);
311 		/* Record cost event */
312 		if (file)
313 			lruvec->file_cost += nr_pages;
314 		else
315 			lruvec->anon_cost += nr_pages;
316 
317 		/*
318 		 * Decay previous events
319 		 *
320 		 * Because workloads change over time (and to avoid
321 		 * overflow) we keep these statistics as a floating
322 		 * average, which ends up weighing recent refaults
323 		 * more than old ones.
324 		 */
325 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
326 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
327 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
328 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
329 
330 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
331 			lruvec->file_cost /= 2;
332 			lruvec->anon_cost /= 2;
333 		}
334 		spin_unlock_irq(&lruvec->lru_lock);
335 	} while ((lruvec = parent_lruvec(lruvec)));
336 }
337 
338 void lru_note_cost_folio(struct folio *folio)
339 {
340 	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
341 			folio_nr_pages(folio));
342 }
343 
344 static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
345 {
346 	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
347 		long nr_pages = folio_nr_pages(folio);
348 
349 		lruvec_del_folio(lruvec, folio);
350 		folio_set_active(folio);
351 		lruvec_add_folio(lruvec, folio);
352 		trace_mm_lru_activate(folio);
353 
354 		__count_vm_events(PGACTIVATE, nr_pages);
355 		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
356 				     nr_pages);
357 	}
358 }
359 
360 #ifdef CONFIG_SMP
361 static void folio_activate_drain(int cpu)
362 {
363 	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
364 
365 	if (folio_batch_count(fbatch))
366 		folio_batch_move_lru(fbatch, folio_activate_fn);
367 }
368 
369 void folio_activate(struct folio *folio)
370 {
371 	if (folio_test_lru(folio) && !folio_test_active(folio) &&
372 	    !folio_test_unevictable(folio)) {
373 		struct folio_batch *fbatch;
374 
375 		folio_get(folio);
376 		local_lock(&cpu_fbatches.lock);
377 		fbatch = this_cpu_ptr(&cpu_fbatches.activate);
378 		folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
379 		local_unlock(&cpu_fbatches.lock);
380 	}
381 }
382 
383 #else
384 static inline void folio_activate_drain(int cpu)
385 {
386 }
387 
388 void folio_activate(struct folio *folio)
389 {
390 	struct lruvec *lruvec;
391 
392 	if (folio_test_clear_lru(folio)) {
393 		lruvec = folio_lruvec_lock_irq(folio);
394 		folio_activate_fn(lruvec, folio);
395 		unlock_page_lruvec_irq(lruvec);
396 		folio_set_lru(folio);
397 	}
398 }
399 #endif
400 
401 static void __lru_cache_activate_folio(struct folio *folio)
402 {
403 	struct folio_batch *fbatch;
404 	int i;
405 
406 	local_lock(&cpu_fbatches.lock);
407 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
408 
409 	/*
410 	 * Search backwards on the optimistic assumption that the folio being
411 	 * activated has just been added to this batch. Note that only
412 	 * the local batch is examined as a !LRU folio could be in the
413 	 * process of being released, reclaimed, migrated or on a remote
414 	 * batch that is currently being drained. Furthermore, marking
415 	 * a remote batch's folio active potentially hits a race where
416 	 * a folio is marked active just after it is added to the inactive
417 	 * list causing accounting errors and BUG_ON checks to trigger.
418 	 */
419 	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
420 		struct folio *batch_folio = fbatch->folios[i];
421 
422 		if (batch_folio == folio) {
423 			folio_set_active(folio);
424 			break;
425 		}
426 	}
427 
428 	local_unlock(&cpu_fbatches.lock);
429 }
430 
431 #ifdef CONFIG_LRU_GEN
432 static void folio_inc_refs(struct folio *folio)
433 {
434 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
435 
436 	if (folio_test_unevictable(folio))
437 		return;
438 
439 	if (!folio_test_referenced(folio)) {
440 		folio_set_referenced(folio);
441 		return;
442 	}
443 
444 	if (!folio_test_workingset(folio)) {
445 		folio_set_workingset(folio);
446 		return;
447 	}
448 
449 	/* see the comment on MAX_NR_TIERS */
450 	do {
451 		new_flags = old_flags & LRU_REFS_MASK;
452 		if (new_flags == LRU_REFS_MASK)
453 			break;
454 
455 		new_flags += BIT(LRU_REFS_PGOFF);
456 		new_flags |= old_flags & ~LRU_REFS_MASK;
457 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
458 }
459 #else
460 static void folio_inc_refs(struct folio *folio)
461 {
462 }
463 #endif /* CONFIG_LRU_GEN */
464 
465 /*
466  * Mark a page as having seen activity.
467  *
468  * inactive,unreferenced	->	inactive,referenced
469  * inactive,referenced		->	active,unreferenced
470  * active,unreferenced		->	active,referenced
471  *
472  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
473  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
474  */
475 void folio_mark_accessed(struct folio *folio)
476 {
477 	if (lru_gen_enabled()) {
478 		folio_inc_refs(folio);
479 		return;
480 	}
481 
482 	if (!folio_test_referenced(folio)) {
483 		folio_set_referenced(folio);
484 	} else if (folio_test_unevictable(folio)) {
485 		/*
486 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
487 		 * this list is never rotated or maintained, so marking an
488 		 * unevictable page accessed has no effect.
489 		 */
490 	} else if (!folio_test_active(folio)) {
491 		/*
492 		 * If the folio is on the LRU, queue it for activation via
493 		 * cpu_fbatches.activate. Otherwise, assume the folio is in a
494 		 * folio_batch, mark it active and it'll be moved to the active
495 		 * LRU on the next drain.
496 		 */
497 		if (folio_test_lru(folio))
498 			folio_activate(folio);
499 		else
500 			__lru_cache_activate_folio(folio);
501 		folio_clear_referenced(folio);
502 		workingset_activation(folio);
503 	}
504 	if (folio_test_idle(folio))
505 		folio_clear_idle(folio);
506 }
507 EXPORT_SYMBOL(folio_mark_accessed);
508 
509 /**
510  * folio_add_lru - Add a folio to an LRU list.
511  * @folio: The folio to be added to the LRU.
512  *
513  * Queue the folio for addition to the LRU. The decision on whether
514  * to add the page to the [in]active [file|anon] list is deferred until the
515  * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
516  * have the folio added to the active list using folio_mark_accessed().
517  */
518 void folio_add_lru(struct folio *folio)
519 {
520 	struct folio_batch *fbatch;
521 
522 	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
523 			folio_test_unevictable(folio), folio);
524 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
525 
526 	/* see the comment in lru_gen_add_folio() */
527 	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
528 	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
529 		folio_set_active(folio);
530 
531 	folio_get(folio);
532 	local_lock(&cpu_fbatches.lock);
533 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
534 	folio_batch_add_and_move(fbatch, folio, lru_add_fn);
535 	local_unlock(&cpu_fbatches.lock);
536 }
537 EXPORT_SYMBOL(folio_add_lru);
538 
539 /**
540  * lru_cache_add_inactive_or_unevictable
541  * @page:  the page to be added to LRU
542  * @vma:   vma in which page is mapped for determining reclaimability
543  *
544  * Place @page on the inactive or unevictable LRU list, depending on its
545  * evictability.
546  */
547 void lru_cache_add_inactive_or_unevictable(struct page *page,
548 					 struct vm_area_struct *vma)
549 {
550 	VM_BUG_ON_PAGE(PageLRU(page), page);
551 
552 	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
553 		mlock_new_page(page);
554 	else
555 		lru_cache_add(page);
556 }
557 
558 /*
559  * If the folio cannot be invalidated, it is moved to the
560  * inactive list to speed up its reclaim.  It is moved to the
561  * head of the list, rather than the tail, to give the flusher
562  * threads some time to write it out, as this is much more
563  * effective than the single-page writeout from reclaim.
564  *
565  * If the folio isn't mapped and dirty/writeback, the folio
566  * could be reclaimed asap using the reclaim flag.
567  *
568  * 1. active, mapped folio -> none
569  * 2. active, dirty/writeback folio -> inactive, head, reclaim
570  * 3. inactive, mapped folio -> none
571  * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
572  * 5. inactive, clean -> inactive, tail
573  * 6. Others -> none
574  *
575  * In 4, it moves to the head of the inactive list so the folio is
576  * written out by flusher threads as this is much more efficient
577  * than the single-page writeout from reclaim.
578  */
579 static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
580 {
581 	bool active = folio_test_active(folio);
582 	long nr_pages = folio_nr_pages(folio);
583 
584 	if (folio_test_unevictable(folio))
585 		return;
586 
587 	/* Some processes are using the folio */
588 	if (folio_mapped(folio))
589 		return;
590 
591 	lruvec_del_folio(lruvec, folio);
592 	folio_clear_active(folio);
593 	folio_clear_referenced(folio);
594 
595 	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
596 		/*
597 		 * Setting the reclaim flag could race with
598 		 * folio_end_writeback() and confuse readahead.  But the
599 		 * race window is _really_ small and  it's not a critical
600 		 * problem.
601 		 */
602 		lruvec_add_folio(lruvec, folio);
603 		folio_set_reclaim(folio);
604 	} else {
605 		/*
606 		 * The folio's writeback ended while it was in the batch.
607 		 * We move that folio to the tail of the inactive list.
608 		 */
609 		lruvec_add_folio_tail(lruvec, folio);
610 		__count_vm_events(PGROTATED, nr_pages);
611 	}
612 
613 	if (active) {
614 		__count_vm_events(PGDEACTIVATE, nr_pages);
615 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
616 				     nr_pages);
617 	}
618 }
619 
620 static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
621 {
622 	if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
623 		long nr_pages = folio_nr_pages(folio);
624 
625 		lruvec_del_folio(lruvec, folio);
626 		folio_clear_active(folio);
627 		folio_clear_referenced(folio);
628 		lruvec_add_folio(lruvec, folio);
629 
630 		__count_vm_events(PGDEACTIVATE, nr_pages);
631 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
632 				     nr_pages);
633 	}
634 }
635 
636 static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
637 {
638 	if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
639 	    !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
640 		long nr_pages = folio_nr_pages(folio);
641 
642 		lruvec_del_folio(lruvec, folio);
643 		folio_clear_active(folio);
644 		folio_clear_referenced(folio);
645 		/*
646 		 * Lazyfree folios are clean anonymous folios.  They have
647 		 * the swapbacked flag cleared, to distinguish them from normal
648 		 * anonymous folios
649 		 */
650 		folio_clear_swapbacked(folio);
651 		lruvec_add_folio(lruvec, folio);
652 
653 		__count_vm_events(PGLAZYFREE, nr_pages);
654 		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
655 				     nr_pages);
656 	}
657 }
658 
659 /*
660  * Drain pages out of the cpu's folio_batch.
661  * Either "cpu" is the current CPU, and preemption has already been
662  * disabled; or "cpu" is being hot-unplugged, and is already dead.
663  */
664 void lru_add_drain_cpu(int cpu)
665 {
666 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
667 	struct folio_batch *fbatch = &fbatches->lru_add;
668 
669 	if (folio_batch_count(fbatch))
670 		folio_batch_move_lru(fbatch, lru_add_fn);
671 
672 	fbatch = &per_cpu(lru_rotate.fbatch, cpu);
673 	/* Disabling interrupts below acts as a compiler barrier. */
674 	if (data_race(folio_batch_count(fbatch))) {
675 		unsigned long flags;
676 
677 		/* No harm done if a racing interrupt already did this */
678 		local_lock_irqsave(&lru_rotate.lock, flags);
679 		folio_batch_move_lru(fbatch, lru_move_tail_fn);
680 		local_unlock_irqrestore(&lru_rotate.lock, flags);
681 	}
682 
683 	fbatch = &fbatches->lru_deactivate_file;
684 	if (folio_batch_count(fbatch))
685 		folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
686 
687 	fbatch = &fbatches->lru_deactivate;
688 	if (folio_batch_count(fbatch))
689 		folio_batch_move_lru(fbatch, lru_deactivate_fn);
690 
691 	fbatch = &fbatches->lru_lazyfree;
692 	if (folio_batch_count(fbatch))
693 		folio_batch_move_lru(fbatch, lru_lazyfree_fn);
694 
695 	folio_activate_drain(cpu);
696 }
697 
698 /**
699  * deactivate_file_folio() - Deactivate a file folio.
700  * @folio: Folio to deactivate.
701  *
702  * This function hints to the VM that @folio is a good reclaim candidate,
703  * for example if its invalidation fails due to the folio being dirty
704  * or under writeback.
705  *
706  * Context: Caller holds a reference on the folio.
707  */
708 void deactivate_file_folio(struct folio *folio)
709 {
710 	struct folio_batch *fbatch;
711 
712 	/* Deactivating an unevictable folio will not accelerate reclaim */
713 	if (folio_test_unevictable(folio))
714 		return;
715 
716 	folio_get(folio);
717 	local_lock(&cpu_fbatches.lock);
718 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
719 	folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
720 	local_unlock(&cpu_fbatches.lock);
721 }
722 
723 /*
724  * deactivate_page - deactivate a page
725  * @page: page to deactivate
726  *
727  * deactivate_page() moves @page to the inactive list if @page was on the active
728  * list and was not an unevictable page.  This is done to accelerate the reclaim
729  * of @page.
730  */
731 void deactivate_page(struct page *page)
732 {
733 	struct folio *folio = page_folio(page);
734 
735 	if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
736 	    (folio_test_active(folio) || lru_gen_enabled())) {
737 		struct folio_batch *fbatch;
738 
739 		folio_get(folio);
740 		local_lock(&cpu_fbatches.lock);
741 		fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
742 		folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
743 		local_unlock(&cpu_fbatches.lock);
744 	}
745 }
746 
747 /**
748  * mark_page_lazyfree - make an anon page lazyfree
749  * @page: page to deactivate
750  *
751  * mark_page_lazyfree() moves @page to the inactive file list.
752  * This is done to accelerate the reclaim of @page.
753  */
754 void mark_page_lazyfree(struct page *page)
755 {
756 	struct folio *folio = page_folio(page);
757 
758 	if (folio_test_lru(folio) && folio_test_anon(folio) &&
759 	    folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
760 	    !folio_test_unevictable(folio)) {
761 		struct folio_batch *fbatch;
762 
763 		folio_get(folio);
764 		local_lock(&cpu_fbatches.lock);
765 		fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
766 		folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
767 		local_unlock(&cpu_fbatches.lock);
768 	}
769 }
770 
771 void lru_add_drain(void)
772 {
773 	local_lock(&cpu_fbatches.lock);
774 	lru_add_drain_cpu(smp_processor_id());
775 	local_unlock(&cpu_fbatches.lock);
776 	mlock_page_drain_local();
777 }
778 
779 /*
780  * It's called from per-cpu workqueue context in SMP case so
781  * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
782  * the same cpu. It shouldn't be a problem in !SMP case since
783  * the core is only one and the locks will disable preemption.
784  */
785 static void lru_add_and_bh_lrus_drain(void)
786 {
787 	local_lock(&cpu_fbatches.lock);
788 	lru_add_drain_cpu(smp_processor_id());
789 	local_unlock(&cpu_fbatches.lock);
790 	invalidate_bh_lrus_cpu();
791 	mlock_page_drain_local();
792 }
793 
794 void lru_add_drain_cpu_zone(struct zone *zone)
795 {
796 	local_lock(&cpu_fbatches.lock);
797 	lru_add_drain_cpu(smp_processor_id());
798 	drain_local_pages(zone);
799 	local_unlock(&cpu_fbatches.lock);
800 	mlock_page_drain_local();
801 }
802 
803 #ifdef CONFIG_SMP
804 
805 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
806 
807 static void lru_add_drain_per_cpu(struct work_struct *dummy)
808 {
809 	lru_add_and_bh_lrus_drain();
810 }
811 
812 static bool cpu_needs_drain(unsigned int cpu)
813 {
814 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
815 
816 	/* Check these in order of likelihood that they're not zero */
817 	return folio_batch_count(&fbatches->lru_add) ||
818 		data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
819 		folio_batch_count(&fbatches->lru_deactivate_file) ||
820 		folio_batch_count(&fbatches->lru_deactivate) ||
821 		folio_batch_count(&fbatches->lru_lazyfree) ||
822 		folio_batch_count(&fbatches->activate) ||
823 		need_mlock_page_drain(cpu) ||
824 		has_bh_in_lru(cpu, NULL);
825 }
826 
827 /*
828  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
829  * kworkers being shut down before our page_alloc_cpu_dead callback is
830  * executed on the offlined cpu.
831  * Calling this function with cpu hotplug locks held can actually lead
832  * to obscure indirect dependencies via WQ context.
833  */
834 static inline void __lru_add_drain_all(bool force_all_cpus)
835 {
836 	/*
837 	 * lru_drain_gen - Global pages generation number
838 	 *
839 	 * (A) Definition: global lru_drain_gen = x implies that all generations
840 	 *     0 < n <= x are already *scheduled* for draining.
841 	 *
842 	 * This is an optimization for the highly-contended use case where a
843 	 * user space workload keeps constantly generating a flow of pages for
844 	 * each CPU.
845 	 */
846 	static unsigned int lru_drain_gen;
847 	static struct cpumask has_work;
848 	static DEFINE_MUTEX(lock);
849 	unsigned cpu, this_gen;
850 
851 	/*
852 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
853 	 * initialized.
854 	 */
855 	if (WARN_ON(!mm_percpu_wq))
856 		return;
857 
858 	/*
859 	 * Guarantee folio_batch counter stores visible by this CPU
860 	 * are visible to other CPUs before loading the current drain
861 	 * generation.
862 	 */
863 	smp_mb();
864 
865 	/*
866 	 * (B) Locally cache global LRU draining generation number
867 	 *
868 	 * The read barrier ensures that the counter is loaded before the mutex
869 	 * is taken. It pairs with smp_mb() inside the mutex critical section
870 	 * at (D).
871 	 */
872 	this_gen = smp_load_acquire(&lru_drain_gen);
873 
874 	mutex_lock(&lock);
875 
876 	/*
877 	 * (C) Exit the draining operation if a newer generation, from another
878 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
879 	 */
880 	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
881 		goto done;
882 
883 	/*
884 	 * (D) Increment global generation number
885 	 *
886 	 * Pairs with smp_load_acquire() at (B), outside of the critical
887 	 * section. Use a full memory barrier to guarantee that the
888 	 * new global drain generation number is stored before loading
889 	 * folio_batch counters.
890 	 *
891 	 * This pairing must be done here, before the for_each_online_cpu loop
892 	 * below which drains the page vectors.
893 	 *
894 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
895 	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
896 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
897 	 * along, adds some pages to its per-cpu vectors, then calls
898 	 * lru_add_drain_all().
899 	 *
900 	 * If the paired barrier is done at any later step, e.g. after the
901 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
902 	 * added pages.
903 	 */
904 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
905 	smp_mb();
906 
907 	cpumask_clear(&has_work);
908 	for_each_online_cpu(cpu) {
909 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
910 
911 		if (cpu_needs_drain(cpu)) {
912 			INIT_WORK(work, lru_add_drain_per_cpu);
913 			queue_work_on(cpu, mm_percpu_wq, work);
914 			__cpumask_set_cpu(cpu, &has_work);
915 		}
916 	}
917 
918 	for_each_cpu(cpu, &has_work)
919 		flush_work(&per_cpu(lru_add_drain_work, cpu));
920 
921 done:
922 	mutex_unlock(&lock);
923 }
924 
925 void lru_add_drain_all(void)
926 {
927 	__lru_add_drain_all(false);
928 }
929 #else
930 void lru_add_drain_all(void)
931 {
932 	lru_add_drain();
933 }
934 #endif /* CONFIG_SMP */
935 
936 atomic_t lru_disable_count = ATOMIC_INIT(0);
937 
938 /*
939  * lru_cache_disable() needs to be called before we start compiling
940  * a list of pages to be migrated using isolate_lru_page().
941  * It drains pages on LRU cache and then disable on all cpus until
942  * lru_cache_enable is called.
943  *
944  * Must be paired with a call to lru_cache_enable().
945  */
946 void lru_cache_disable(void)
947 {
948 	atomic_inc(&lru_disable_count);
949 	/*
950 	 * Readers of lru_disable_count are protected by either disabling
951 	 * preemption or rcu_read_lock:
952 	 *
953 	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
954 	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
955 	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
956 	 *
957 	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
958 	 * preempt_disable() regions of code. So any CPU which sees
959 	 * lru_disable_count = 0 will have exited the critical
960 	 * section when synchronize_rcu() returns.
961 	 */
962 	synchronize_rcu_expedited();
963 #ifdef CONFIG_SMP
964 	__lru_add_drain_all(true);
965 #else
966 	lru_add_and_bh_lrus_drain();
967 #endif
968 }
969 
970 /**
971  * release_pages - batched put_page()
972  * @pages: array of pages to release
973  * @nr: number of pages
974  *
975  * Decrement the reference count on all the pages in @pages.  If it
976  * fell to zero, remove the page from the LRU and free it.
977  */
978 void release_pages(struct page **pages, int nr)
979 {
980 	int i;
981 	LIST_HEAD(pages_to_free);
982 	struct lruvec *lruvec = NULL;
983 	unsigned long flags = 0;
984 	unsigned int lock_batch;
985 
986 	for (i = 0; i < nr; i++) {
987 		struct folio *folio = page_folio(pages[i]);
988 
989 		/*
990 		 * Make sure the IRQ-safe lock-holding time does not get
991 		 * excessive with a continuous string of pages from the
992 		 * same lruvec. The lock is held only if lruvec != NULL.
993 		 */
994 		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
995 			unlock_page_lruvec_irqrestore(lruvec, flags);
996 			lruvec = NULL;
997 		}
998 
999 		if (is_huge_zero_page(&folio->page))
1000 			continue;
1001 
1002 		if (folio_is_zone_device(folio)) {
1003 			if (lruvec) {
1004 				unlock_page_lruvec_irqrestore(lruvec, flags);
1005 				lruvec = NULL;
1006 			}
1007 			if (put_devmap_managed_page(&folio->page))
1008 				continue;
1009 			if (folio_put_testzero(folio))
1010 				free_zone_device_page(&folio->page);
1011 			continue;
1012 		}
1013 
1014 		if (!folio_put_testzero(folio))
1015 			continue;
1016 
1017 		if (folio_test_large(folio)) {
1018 			if (lruvec) {
1019 				unlock_page_lruvec_irqrestore(lruvec, flags);
1020 				lruvec = NULL;
1021 			}
1022 			__folio_put_large(folio);
1023 			continue;
1024 		}
1025 
1026 		if (folio_test_lru(folio)) {
1027 			struct lruvec *prev_lruvec = lruvec;
1028 
1029 			lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
1030 									&flags);
1031 			if (prev_lruvec != lruvec)
1032 				lock_batch = 0;
1033 
1034 			lruvec_del_folio(lruvec, folio);
1035 			__folio_clear_lru_flags(folio);
1036 		}
1037 
1038 		/*
1039 		 * In rare cases, when truncation or holepunching raced with
1040 		 * munlock after VM_LOCKED was cleared, Mlocked may still be
1041 		 * found set here.  This does not indicate a problem, unless
1042 		 * "unevictable_pgs_cleared" appears worryingly large.
1043 		 */
1044 		if (unlikely(folio_test_mlocked(folio))) {
1045 			__folio_clear_mlocked(folio);
1046 			zone_stat_sub_folio(folio, NR_MLOCK);
1047 			count_vm_event(UNEVICTABLE_PGCLEARED);
1048 		}
1049 
1050 		list_add(&folio->lru, &pages_to_free);
1051 	}
1052 	if (lruvec)
1053 		unlock_page_lruvec_irqrestore(lruvec, flags);
1054 
1055 	mem_cgroup_uncharge_list(&pages_to_free);
1056 	free_unref_page_list(&pages_to_free);
1057 }
1058 EXPORT_SYMBOL(release_pages);
1059 
1060 /*
1061  * The pages which we're about to release may be in the deferred lru-addition
1062  * queues.  That would prevent them from really being freed right now.  That's
1063  * OK from a correctness point of view but is inefficient - those pages may be
1064  * cache-warm and we want to give them back to the page allocator ASAP.
1065  *
1066  * So __pagevec_release() will drain those queues here.
1067  * folio_batch_move_lru() calls folios_put() directly to avoid
1068  * mutual recursion.
1069  */
1070 void __pagevec_release(struct pagevec *pvec)
1071 {
1072 	if (!pvec->percpu_pvec_drained) {
1073 		lru_add_drain();
1074 		pvec->percpu_pvec_drained = true;
1075 	}
1076 	release_pages(pvec->pages, pagevec_count(pvec));
1077 	pagevec_reinit(pvec);
1078 }
1079 EXPORT_SYMBOL(__pagevec_release);
1080 
1081 /**
1082  * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1083  * @fbatch: The batch to prune
1084  *
1085  * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1086  * entries.  This function prunes all the non-folio entries from @fbatch
1087  * without leaving holes, so that it can be passed on to folio-only batch
1088  * operations.
1089  */
1090 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1091 {
1092 	unsigned int i, j;
1093 
1094 	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1095 		struct folio *folio = fbatch->folios[i];
1096 		if (!xa_is_value(folio))
1097 			fbatch->folios[j++] = folio;
1098 	}
1099 	fbatch->nr = j;
1100 }
1101 
1102 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1103 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1104 		xa_mark_t tag)
1105 {
1106 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1107 					PAGEVEC_SIZE, pvec->pages);
1108 	return pagevec_count(pvec);
1109 }
1110 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1111 
1112 /*
1113  * Perform any setup for the swap system
1114  */
1115 void __init swap_setup(void)
1116 {
1117 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1118 
1119 	/* Use a smaller cluster for small-memory machines */
1120 	if (megs < 16)
1121 		page_cluster = 2;
1122 	else
1123 		page_cluster = 3;
1124 	/*
1125 	 * Right now other parts of the system means that we
1126 	 * _really_ don't want to cluster much more
1127 	 */
1128 }
1129