xref: /openbmc/linux/mm/swap.c (revision 545e4006)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 
34 /* How many pages do we try to swap or page in/out together? */
35 int page_cluster;
36 
37 static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs);
38 static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs);
39 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
40 
41 /*
42  * This path almost never happens for VM activity - pages are normally
43  * freed via pagevecs.  But it gets used by networking.
44  */
45 static void __page_cache_release(struct page *page)
46 {
47 	if (PageLRU(page)) {
48 		unsigned long flags;
49 		struct zone *zone = page_zone(page);
50 
51 		spin_lock_irqsave(&zone->lru_lock, flags);
52 		VM_BUG_ON(!PageLRU(page));
53 		__ClearPageLRU(page);
54 		del_page_from_lru(zone, page);
55 		spin_unlock_irqrestore(&zone->lru_lock, flags);
56 	}
57 	free_hot_page(page);
58 }
59 
60 static void put_compound_page(struct page *page)
61 {
62 	page = compound_head(page);
63 	if (put_page_testzero(page)) {
64 		compound_page_dtor *dtor;
65 
66 		dtor = get_compound_page_dtor(page);
67 		(*dtor)(page);
68 	}
69 }
70 
71 void put_page(struct page *page)
72 {
73 	if (unlikely(PageCompound(page)))
74 		put_compound_page(page);
75 	else if (put_page_testzero(page))
76 		__page_cache_release(page);
77 }
78 EXPORT_SYMBOL(put_page);
79 
80 /**
81  * put_pages_list() - release a list of pages
82  * @pages: list of pages threaded on page->lru
83  *
84  * Release a list of pages which are strung together on page.lru.  Currently
85  * used by read_cache_pages() and related error recovery code.
86  */
87 void put_pages_list(struct list_head *pages)
88 {
89 	while (!list_empty(pages)) {
90 		struct page *victim;
91 
92 		victim = list_entry(pages->prev, struct page, lru);
93 		list_del(&victim->lru);
94 		page_cache_release(victim);
95 	}
96 }
97 EXPORT_SYMBOL(put_pages_list);
98 
99 /*
100  * pagevec_move_tail() must be called with IRQ disabled.
101  * Otherwise this may cause nasty races.
102  */
103 static void pagevec_move_tail(struct pagevec *pvec)
104 {
105 	int i;
106 	int pgmoved = 0;
107 	struct zone *zone = NULL;
108 
109 	for (i = 0; i < pagevec_count(pvec); i++) {
110 		struct page *page = pvec->pages[i];
111 		struct zone *pagezone = page_zone(page);
112 
113 		if (pagezone != zone) {
114 			if (zone)
115 				spin_unlock(&zone->lru_lock);
116 			zone = pagezone;
117 			spin_lock(&zone->lru_lock);
118 		}
119 		if (PageLRU(page) && !PageActive(page)) {
120 			list_move_tail(&page->lru, &zone->inactive_list);
121 			pgmoved++;
122 		}
123 	}
124 	if (zone)
125 		spin_unlock(&zone->lru_lock);
126 	__count_vm_events(PGROTATED, pgmoved);
127 	release_pages(pvec->pages, pvec->nr, pvec->cold);
128 	pagevec_reinit(pvec);
129 }
130 
131 /*
132  * Writeback is about to end against a page which has been marked for immediate
133  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
134  * inactive list.
135  */
136 void  rotate_reclaimable_page(struct page *page)
137 {
138 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
139 	    PageLRU(page)) {
140 		struct pagevec *pvec;
141 		unsigned long flags;
142 
143 		page_cache_get(page);
144 		local_irq_save(flags);
145 		pvec = &__get_cpu_var(lru_rotate_pvecs);
146 		if (!pagevec_add(pvec, page))
147 			pagevec_move_tail(pvec);
148 		local_irq_restore(flags);
149 	}
150 }
151 
152 /*
153  * FIXME: speed this up?
154  */
155 void activate_page(struct page *page)
156 {
157 	struct zone *zone = page_zone(page);
158 
159 	spin_lock_irq(&zone->lru_lock);
160 	if (PageLRU(page) && !PageActive(page)) {
161 		del_page_from_inactive_list(zone, page);
162 		SetPageActive(page);
163 		add_page_to_active_list(zone, page);
164 		__count_vm_event(PGACTIVATE);
165 		mem_cgroup_move_lists(page, true);
166 	}
167 	spin_unlock_irq(&zone->lru_lock);
168 }
169 
170 /*
171  * Mark a page as having seen activity.
172  *
173  * inactive,unreferenced	->	inactive,referenced
174  * inactive,referenced		->	active,unreferenced
175  * active,unreferenced		->	active,referenced
176  */
177 void mark_page_accessed(struct page *page)
178 {
179 	if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
180 		activate_page(page);
181 		ClearPageReferenced(page);
182 	} else if (!PageReferenced(page)) {
183 		SetPageReferenced(page);
184 	}
185 }
186 
187 EXPORT_SYMBOL(mark_page_accessed);
188 
189 /**
190  * lru_cache_add: add a page to the page lists
191  * @page: the page to add
192  */
193 void lru_cache_add(struct page *page)
194 {
195 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
196 
197 	page_cache_get(page);
198 	if (!pagevec_add(pvec, page))
199 		__pagevec_lru_add(pvec);
200 	put_cpu_var(lru_add_pvecs);
201 }
202 
203 void lru_cache_add_active(struct page *page)
204 {
205 	struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs);
206 
207 	page_cache_get(page);
208 	if (!pagevec_add(pvec, page))
209 		__pagevec_lru_add_active(pvec);
210 	put_cpu_var(lru_add_active_pvecs);
211 }
212 
213 /*
214  * Drain pages out of the cpu's pagevecs.
215  * Either "cpu" is the current CPU, and preemption has already been
216  * disabled; or "cpu" is being hot-unplugged, and is already dead.
217  */
218 static void drain_cpu_pagevecs(int cpu)
219 {
220 	struct pagevec *pvec;
221 
222 	pvec = &per_cpu(lru_add_pvecs, cpu);
223 	if (pagevec_count(pvec))
224 		__pagevec_lru_add(pvec);
225 
226 	pvec = &per_cpu(lru_add_active_pvecs, cpu);
227 	if (pagevec_count(pvec))
228 		__pagevec_lru_add_active(pvec);
229 
230 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
231 	if (pagevec_count(pvec)) {
232 		unsigned long flags;
233 
234 		/* No harm done if a racing interrupt already did this */
235 		local_irq_save(flags);
236 		pagevec_move_tail(pvec);
237 		local_irq_restore(flags);
238 	}
239 }
240 
241 void lru_add_drain(void)
242 {
243 	drain_cpu_pagevecs(get_cpu());
244 	put_cpu();
245 }
246 
247 #ifdef CONFIG_NUMA
248 static void lru_add_drain_per_cpu(struct work_struct *dummy)
249 {
250 	lru_add_drain();
251 }
252 
253 /*
254  * Returns 0 for success
255  */
256 int lru_add_drain_all(void)
257 {
258 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
259 }
260 
261 #else
262 
263 /*
264  * Returns 0 for success
265  */
266 int lru_add_drain_all(void)
267 {
268 	lru_add_drain();
269 	return 0;
270 }
271 #endif
272 
273 /*
274  * Batched page_cache_release().  Decrement the reference count on all the
275  * passed pages.  If it fell to zero then remove the page from the LRU and
276  * free it.
277  *
278  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
279  * for the remainder of the operation.
280  *
281  * The locking in this function is against shrink_cache(): we recheck the
282  * page count inside the lock to see whether shrink_cache grabbed the page
283  * via the LRU.  If it did, give up: shrink_cache will free it.
284  */
285 void release_pages(struct page **pages, int nr, int cold)
286 {
287 	int i;
288 	struct pagevec pages_to_free;
289 	struct zone *zone = NULL;
290 	unsigned long uninitialized_var(flags);
291 
292 	pagevec_init(&pages_to_free, cold);
293 	for (i = 0; i < nr; i++) {
294 		struct page *page = pages[i];
295 
296 		if (unlikely(PageCompound(page))) {
297 			if (zone) {
298 				spin_unlock_irqrestore(&zone->lru_lock, flags);
299 				zone = NULL;
300 			}
301 			put_compound_page(page);
302 			continue;
303 		}
304 
305 		if (!put_page_testzero(page))
306 			continue;
307 
308 		if (PageLRU(page)) {
309 			struct zone *pagezone = page_zone(page);
310 			if (pagezone != zone) {
311 				if (zone)
312 					spin_unlock_irqrestore(&zone->lru_lock,
313 									flags);
314 				zone = pagezone;
315 				spin_lock_irqsave(&zone->lru_lock, flags);
316 			}
317 			VM_BUG_ON(!PageLRU(page));
318 			__ClearPageLRU(page);
319 			del_page_from_lru(zone, page);
320 		}
321 
322 		if (!pagevec_add(&pages_to_free, page)) {
323 			if (zone) {
324 				spin_unlock_irqrestore(&zone->lru_lock, flags);
325 				zone = NULL;
326 			}
327 			__pagevec_free(&pages_to_free);
328 			pagevec_reinit(&pages_to_free);
329   		}
330 	}
331 	if (zone)
332 		spin_unlock_irqrestore(&zone->lru_lock, flags);
333 
334 	pagevec_free(&pages_to_free);
335 }
336 
337 /*
338  * The pages which we're about to release may be in the deferred lru-addition
339  * queues.  That would prevent them from really being freed right now.  That's
340  * OK from a correctness point of view but is inefficient - those pages may be
341  * cache-warm and we want to give them back to the page allocator ASAP.
342  *
343  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
344  * and __pagevec_lru_add_active() call release_pages() directly to avoid
345  * mutual recursion.
346  */
347 void __pagevec_release(struct pagevec *pvec)
348 {
349 	lru_add_drain();
350 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
351 	pagevec_reinit(pvec);
352 }
353 
354 EXPORT_SYMBOL(__pagevec_release);
355 
356 /*
357  * pagevec_release() for pages which are known to not be on the LRU
358  *
359  * This function reinitialises the caller's pagevec.
360  */
361 void __pagevec_release_nonlru(struct pagevec *pvec)
362 {
363 	int i;
364 	struct pagevec pages_to_free;
365 
366 	pagevec_init(&pages_to_free, pvec->cold);
367 	for (i = 0; i < pagevec_count(pvec); i++) {
368 		struct page *page = pvec->pages[i];
369 
370 		VM_BUG_ON(PageLRU(page));
371 		if (put_page_testzero(page))
372 			pagevec_add(&pages_to_free, page);
373 	}
374 	pagevec_free(&pages_to_free);
375 	pagevec_reinit(pvec);
376 }
377 
378 /*
379  * Add the passed pages to the LRU, then drop the caller's refcount
380  * on them.  Reinitialises the caller's pagevec.
381  */
382 void __pagevec_lru_add(struct pagevec *pvec)
383 {
384 	int i;
385 	struct zone *zone = NULL;
386 
387 	for (i = 0; i < pagevec_count(pvec); i++) {
388 		struct page *page = pvec->pages[i];
389 		struct zone *pagezone = page_zone(page);
390 
391 		if (pagezone != zone) {
392 			if (zone)
393 				spin_unlock_irq(&zone->lru_lock);
394 			zone = pagezone;
395 			spin_lock_irq(&zone->lru_lock);
396 		}
397 		VM_BUG_ON(PageLRU(page));
398 		SetPageLRU(page);
399 		add_page_to_inactive_list(zone, page);
400 	}
401 	if (zone)
402 		spin_unlock_irq(&zone->lru_lock);
403 	release_pages(pvec->pages, pvec->nr, pvec->cold);
404 	pagevec_reinit(pvec);
405 }
406 
407 EXPORT_SYMBOL(__pagevec_lru_add);
408 
409 void __pagevec_lru_add_active(struct pagevec *pvec)
410 {
411 	int i;
412 	struct zone *zone = NULL;
413 
414 	for (i = 0; i < pagevec_count(pvec); i++) {
415 		struct page *page = pvec->pages[i];
416 		struct zone *pagezone = page_zone(page);
417 
418 		if (pagezone != zone) {
419 			if (zone)
420 				spin_unlock_irq(&zone->lru_lock);
421 			zone = pagezone;
422 			spin_lock_irq(&zone->lru_lock);
423 		}
424 		VM_BUG_ON(PageLRU(page));
425 		SetPageLRU(page);
426 		VM_BUG_ON(PageActive(page));
427 		SetPageActive(page);
428 		add_page_to_active_list(zone, page);
429 	}
430 	if (zone)
431 		spin_unlock_irq(&zone->lru_lock);
432 	release_pages(pvec->pages, pvec->nr, pvec->cold);
433 	pagevec_reinit(pvec);
434 }
435 
436 /*
437  * Try to drop buffers from the pages in a pagevec
438  */
439 void pagevec_strip(struct pagevec *pvec)
440 {
441 	int i;
442 
443 	for (i = 0; i < pagevec_count(pvec); i++) {
444 		struct page *page = pvec->pages[i];
445 
446 		if (PagePrivate(page) && !TestSetPageLocked(page)) {
447 			if (PagePrivate(page))
448 				try_to_release_page(page, 0);
449 			unlock_page(page);
450 		}
451 	}
452 }
453 
454 /**
455  * pagevec_lookup - gang pagecache lookup
456  * @pvec:	Where the resulting pages are placed
457  * @mapping:	The address_space to search
458  * @start:	The starting page index
459  * @nr_pages:	The maximum number of pages
460  *
461  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
462  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
463  * reference against the pages in @pvec.
464  *
465  * The search returns a group of mapping-contiguous pages with ascending
466  * indexes.  There may be holes in the indices due to not-present pages.
467  *
468  * pagevec_lookup() returns the number of pages which were found.
469  */
470 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
471 		pgoff_t start, unsigned nr_pages)
472 {
473 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
474 	return pagevec_count(pvec);
475 }
476 
477 EXPORT_SYMBOL(pagevec_lookup);
478 
479 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
480 		pgoff_t *index, int tag, unsigned nr_pages)
481 {
482 	pvec->nr = find_get_pages_tag(mapping, index, tag,
483 					nr_pages, pvec->pages);
484 	return pagevec_count(pvec);
485 }
486 
487 EXPORT_SYMBOL(pagevec_lookup_tag);
488 
489 #ifdef CONFIG_SMP
490 /*
491  * We tolerate a little inaccuracy to avoid ping-ponging the counter between
492  * CPUs
493  */
494 #define ACCT_THRESHOLD	max(16, NR_CPUS * 2)
495 
496 static DEFINE_PER_CPU(long, committed_space);
497 
498 void vm_acct_memory(long pages)
499 {
500 	long *local;
501 
502 	preempt_disable();
503 	local = &__get_cpu_var(committed_space);
504 	*local += pages;
505 	if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
506 		atomic_long_add(*local, &vm_committed_space);
507 		*local = 0;
508 	}
509 	preempt_enable();
510 }
511 
512 #ifdef CONFIG_HOTPLUG_CPU
513 
514 /* Drop the CPU's cached committed space back into the central pool. */
515 static int cpu_swap_callback(struct notifier_block *nfb,
516 			     unsigned long action,
517 			     void *hcpu)
518 {
519 	long *committed;
520 
521 	committed = &per_cpu(committed_space, (long)hcpu);
522 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
523 		atomic_long_add(*committed, &vm_committed_space);
524 		*committed = 0;
525 		drain_cpu_pagevecs((long)hcpu);
526 	}
527 	return NOTIFY_OK;
528 }
529 #endif /* CONFIG_HOTPLUG_CPU */
530 #endif /* CONFIG_SMP */
531 
532 /*
533  * Perform any setup for the swap system
534  */
535 void __init swap_setup(void)
536 {
537 	unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
538 
539 #ifdef CONFIG_SWAP
540 	bdi_init(swapper_space.backing_dev_info);
541 #endif
542 
543 	/* Use a smaller cluster for small-memory machines */
544 	if (megs < 16)
545 		page_cluster = 2;
546 	else
547 		page_cluster = 3;
548 	/*
549 	 * Right now other parts of the system means that we
550 	 * _really_ don't want to cluster much more
551 	 */
552 #ifdef CONFIG_HOTPLUG_CPU
553 	hotcpu_notifier(cpu_swap_callback, 0);
554 #endif
555 }
556