xref: /openbmc/linux/mm/swap.c (revision 48cc39c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40 
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45 
46 /* How many pages do we try to swap or page in/out together? */
47 int page_cluster;
48 
49 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
50 struct lru_rotate {
51 	local_lock_t lock;
52 	struct pagevec pvec;
53 };
54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 	.lock = INIT_LOCAL_LOCK(lock),
56 };
57 
58 /*
59  * The following struct pagevec are grouped together because they are protected
60  * by disabling preemption (and interrupts remain enabled).
61  */
62 struct lru_pvecs {
63 	local_lock_t lock;
64 	struct pagevec lru_add;
65 	struct pagevec lru_deactivate_file;
66 	struct pagevec lru_deactivate;
67 	struct pagevec lru_lazyfree;
68 #ifdef CONFIG_SMP
69 	struct pagevec activate_page;
70 #endif
71 };
72 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
73 	.lock = INIT_LOCAL_LOCK(lock),
74 };
75 
76 /*
77  * This path almost never happens for VM activity - pages are normally
78  * freed via pagevecs.  But it gets used by networking.
79  */
80 static void __page_cache_release(struct page *page)
81 {
82 	if (PageLRU(page)) {
83 		struct lruvec *lruvec;
84 		unsigned long flags;
85 
86 		lruvec = lock_page_lruvec_irqsave(page, &flags);
87 		del_page_from_lru_list(page, lruvec);
88 		__clear_page_lru_flags(page);
89 		unlock_page_lruvec_irqrestore(lruvec, flags);
90 	}
91 	__ClearPageWaiters(page);
92 }
93 
94 static void __put_single_page(struct page *page)
95 {
96 	__page_cache_release(page);
97 	mem_cgroup_uncharge(page);
98 	free_unref_page(page, 0);
99 }
100 
101 static void __put_compound_page(struct page *page)
102 {
103 	/*
104 	 * __page_cache_release() is supposed to be called for thp, not for
105 	 * hugetlb. This is because hugetlb page does never have PageLRU set
106 	 * (it's never listed to any LRU lists) and no memcg routines should
107 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
108 	 */
109 	if (!PageHuge(page))
110 		__page_cache_release(page);
111 	destroy_compound_page(page);
112 }
113 
114 void __put_page(struct page *page)
115 {
116 	if (is_zone_device_page(page)) {
117 		put_dev_pagemap(page->pgmap);
118 
119 		/*
120 		 * The page belongs to the device that created pgmap. Do
121 		 * not return it to page allocator.
122 		 */
123 		return;
124 	}
125 
126 	if (unlikely(PageCompound(page)))
127 		__put_compound_page(page);
128 	else
129 		__put_single_page(page);
130 }
131 EXPORT_SYMBOL(__put_page);
132 
133 /**
134  * put_pages_list() - release a list of pages
135  * @pages: list of pages threaded on page->lru
136  *
137  * Release a list of pages which are strung together on page.lru.  Currently
138  * used by read_cache_pages() and related error recovery code.
139  */
140 void put_pages_list(struct list_head *pages)
141 {
142 	while (!list_empty(pages)) {
143 		struct page *victim;
144 
145 		victim = lru_to_page(pages);
146 		list_del(&victim->lru);
147 		put_page(victim);
148 	}
149 }
150 EXPORT_SYMBOL(put_pages_list);
151 
152 /*
153  * get_kernel_pages() - pin kernel pages in memory
154  * @kiov:	An array of struct kvec structures
155  * @nr_segs:	number of segments to pin
156  * @write:	pinning for read/write, currently ignored
157  * @pages:	array that receives pointers to the pages pinned.
158  *		Should be at least nr_segs long.
159  *
160  * Returns number of pages pinned. This may be fewer than the number
161  * requested. If nr_pages is 0 or negative, returns 0. If no pages
162  * were pinned, returns -errno. Each page returned must be released
163  * with a put_page() call when it is finished with.
164  */
165 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
166 		struct page **pages)
167 {
168 	int seg;
169 
170 	for (seg = 0; seg < nr_segs; seg++) {
171 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
172 			return seg;
173 
174 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
175 		get_page(pages[seg]);
176 	}
177 
178 	return seg;
179 }
180 EXPORT_SYMBOL_GPL(get_kernel_pages);
181 
182 static void pagevec_lru_move_fn(struct pagevec *pvec,
183 	void (*move_fn)(struct page *page, struct lruvec *lruvec))
184 {
185 	int i;
186 	struct lruvec *lruvec = NULL;
187 	unsigned long flags = 0;
188 
189 	for (i = 0; i < pagevec_count(pvec); i++) {
190 		struct page *page = pvec->pages[i];
191 
192 		/* block memcg migration during page moving between lru */
193 		if (!TestClearPageLRU(page))
194 			continue;
195 
196 		lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
197 		(*move_fn)(page, lruvec);
198 
199 		SetPageLRU(page);
200 	}
201 	if (lruvec)
202 		unlock_page_lruvec_irqrestore(lruvec, flags);
203 	release_pages(pvec->pages, pvec->nr);
204 	pagevec_reinit(pvec);
205 }
206 
207 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
208 {
209 	if (!PageUnevictable(page)) {
210 		del_page_from_lru_list(page, lruvec);
211 		ClearPageActive(page);
212 		add_page_to_lru_list_tail(page, lruvec);
213 		__count_vm_events(PGROTATED, thp_nr_pages(page));
214 	}
215 }
216 
217 /* return true if pagevec needs to drain */
218 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
219 {
220 	bool ret = false;
221 
222 	if (!pagevec_add(pvec, page) || PageCompound(page) ||
223 			lru_cache_disabled())
224 		ret = true;
225 
226 	return ret;
227 }
228 
229 /*
230  * Writeback is about to end against a page which has been marked for immediate
231  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
232  * inactive list.
233  *
234  * rotate_reclaimable_page() must disable IRQs, to prevent nasty races.
235  */
236 void rotate_reclaimable_page(struct page *page)
237 {
238 	if (!PageLocked(page) && !PageDirty(page) &&
239 	    !PageUnevictable(page) && PageLRU(page)) {
240 		struct pagevec *pvec;
241 		unsigned long flags;
242 
243 		get_page(page);
244 		local_lock_irqsave(&lru_rotate.lock, flags);
245 		pvec = this_cpu_ptr(&lru_rotate.pvec);
246 		if (pagevec_add_and_need_flush(pvec, page))
247 			pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
248 		local_unlock_irqrestore(&lru_rotate.lock, flags);
249 	}
250 }
251 
252 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
253 {
254 	do {
255 		unsigned long lrusize;
256 
257 		/*
258 		 * Hold lruvec->lru_lock is safe here, since
259 		 * 1) The pinned lruvec in reclaim, or
260 		 * 2) From a pre-LRU page during refault (which also holds the
261 		 *    rcu lock, so would be safe even if the page was on the LRU
262 		 *    and could move simultaneously to a new lruvec).
263 		 */
264 		spin_lock_irq(&lruvec->lru_lock);
265 		/* Record cost event */
266 		if (file)
267 			lruvec->file_cost += nr_pages;
268 		else
269 			lruvec->anon_cost += nr_pages;
270 
271 		/*
272 		 * Decay previous events
273 		 *
274 		 * Because workloads change over time (and to avoid
275 		 * overflow) we keep these statistics as a floating
276 		 * average, which ends up weighing recent refaults
277 		 * more than old ones.
278 		 */
279 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
280 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
281 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
282 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
283 
284 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
285 			lruvec->file_cost /= 2;
286 			lruvec->anon_cost /= 2;
287 		}
288 		spin_unlock_irq(&lruvec->lru_lock);
289 	} while ((lruvec = parent_lruvec(lruvec)));
290 }
291 
292 void lru_note_cost_page(struct page *page)
293 {
294 	lru_note_cost(mem_cgroup_page_lruvec(page),
295 		      page_is_file_lru(page), thp_nr_pages(page));
296 }
297 
298 static void __activate_page(struct page *page, struct lruvec *lruvec)
299 {
300 	if (!PageActive(page) && !PageUnevictable(page)) {
301 		int nr_pages = thp_nr_pages(page);
302 
303 		del_page_from_lru_list(page, lruvec);
304 		SetPageActive(page);
305 		add_page_to_lru_list(page, lruvec);
306 		trace_mm_lru_activate(page);
307 
308 		__count_vm_events(PGACTIVATE, nr_pages);
309 		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
310 				     nr_pages);
311 	}
312 }
313 
314 #ifdef CONFIG_SMP
315 static void activate_page_drain(int cpu)
316 {
317 	struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
318 
319 	if (pagevec_count(pvec))
320 		pagevec_lru_move_fn(pvec, __activate_page);
321 }
322 
323 static bool need_activate_page_drain(int cpu)
324 {
325 	return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
326 }
327 
328 static void activate_page(struct page *page)
329 {
330 	page = compound_head(page);
331 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
332 		struct pagevec *pvec;
333 
334 		local_lock(&lru_pvecs.lock);
335 		pvec = this_cpu_ptr(&lru_pvecs.activate_page);
336 		get_page(page);
337 		if (pagevec_add_and_need_flush(pvec, page))
338 			pagevec_lru_move_fn(pvec, __activate_page);
339 		local_unlock(&lru_pvecs.lock);
340 	}
341 }
342 
343 #else
344 static inline void activate_page_drain(int cpu)
345 {
346 }
347 
348 static void activate_page(struct page *page)
349 {
350 	struct lruvec *lruvec;
351 
352 	page = compound_head(page);
353 	if (TestClearPageLRU(page)) {
354 		lruvec = lock_page_lruvec_irq(page);
355 		__activate_page(page, lruvec);
356 		unlock_page_lruvec_irq(lruvec);
357 		SetPageLRU(page);
358 	}
359 }
360 #endif
361 
362 static void __lru_cache_activate_page(struct page *page)
363 {
364 	struct pagevec *pvec;
365 	int i;
366 
367 	local_lock(&lru_pvecs.lock);
368 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
369 
370 	/*
371 	 * Search backwards on the optimistic assumption that the page being
372 	 * activated has just been added to this pagevec. Note that only
373 	 * the local pagevec is examined as a !PageLRU page could be in the
374 	 * process of being released, reclaimed, migrated or on a remote
375 	 * pagevec that is currently being drained. Furthermore, marking
376 	 * a remote pagevec's page PageActive potentially hits a race where
377 	 * a page is marked PageActive just after it is added to the inactive
378 	 * list causing accounting errors and BUG_ON checks to trigger.
379 	 */
380 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
381 		struct page *pagevec_page = pvec->pages[i];
382 
383 		if (pagevec_page == page) {
384 			SetPageActive(page);
385 			break;
386 		}
387 	}
388 
389 	local_unlock(&lru_pvecs.lock);
390 }
391 
392 /*
393  * Mark a page as having seen activity.
394  *
395  * inactive,unreferenced	->	inactive,referenced
396  * inactive,referenced		->	active,unreferenced
397  * active,unreferenced		->	active,referenced
398  *
399  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
400  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
401  */
402 void mark_page_accessed(struct page *page)
403 {
404 	page = compound_head(page);
405 
406 	if (!PageReferenced(page)) {
407 		SetPageReferenced(page);
408 	} else if (PageUnevictable(page)) {
409 		/*
410 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
411 		 * this list is never rotated or maintained, so marking an
412 		 * evictable page accessed has no effect.
413 		 */
414 	} else if (!PageActive(page)) {
415 		/*
416 		 * If the page is on the LRU, queue it for activation via
417 		 * lru_pvecs.activate_page. Otherwise, assume the page is on a
418 		 * pagevec, mark it active and it'll be moved to the active
419 		 * LRU on the next drain.
420 		 */
421 		if (PageLRU(page))
422 			activate_page(page);
423 		else
424 			__lru_cache_activate_page(page);
425 		ClearPageReferenced(page);
426 		workingset_activation(page);
427 	}
428 	if (page_is_idle(page))
429 		clear_page_idle(page);
430 }
431 EXPORT_SYMBOL(mark_page_accessed);
432 
433 /**
434  * lru_cache_add - add a page to a page list
435  * @page: the page to be added to the LRU.
436  *
437  * Queue the page for addition to the LRU via pagevec. The decision on whether
438  * to add the page to the [in]active [file|anon] list is deferred until the
439  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
440  * have the page added to the active list using mark_page_accessed().
441  */
442 void lru_cache_add(struct page *page)
443 {
444 	struct pagevec *pvec;
445 
446 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
447 	VM_BUG_ON_PAGE(PageLRU(page), page);
448 
449 	get_page(page);
450 	local_lock(&lru_pvecs.lock);
451 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
452 	if (pagevec_add_and_need_flush(pvec, page))
453 		__pagevec_lru_add(pvec);
454 	local_unlock(&lru_pvecs.lock);
455 }
456 EXPORT_SYMBOL(lru_cache_add);
457 
458 /**
459  * lru_cache_add_inactive_or_unevictable
460  * @page:  the page to be added to LRU
461  * @vma:   vma in which page is mapped for determining reclaimability
462  *
463  * Place @page on the inactive or unevictable LRU list, depending on its
464  * evictability.
465  */
466 void lru_cache_add_inactive_or_unevictable(struct page *page,
467 					 struct vm_area_struct *vma)
468 {
469 	bool unevictable;
470 
471 	VM_BUG_ON_PAGE(PageLRU(page), page);
472 
473 	unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
474 	if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
475 		int nr_pages = thp_nr_pages(page);
476 		/*
477 		 * We use the irq-unsafe __mod_zone_page_state because this
478 		 * counter is not modified from interrupt context, and the pte
479 		 * lock is held(spinlock), which implies preemption disabled.
480 		 */
481 		__mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
482 		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
483 	}
484 	lru_cache_add(page);
485 }
486 
487 /*
488  * If the page can not be invalidated, it is moved to the
489  * inactive list to speed up its reclaim.  It is moved to the
490  * head of the list, rather than the tail, to give the flusher
491  * threads some time to write it out, as this is much more
492  * effective than the single-page writeout from reclaim.
493  *
494  * If the page isn't page_mapped and dirty/writeback, the page
495  * could reclaim asap using PG_reclaim.
496  *
497  * 1. active, mapped page -> none
498  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
499  * 3. inactive, mapped page -> none
500  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
501  * 5. inactive, clean -> inactive, tail
502  * 6. Others -> none
503  *
504  * In 4, why it moves inactive's head, the VM expects the page would
505  * be write it out by flusher threads as this is much more effective
506  * than the single-page writeout from reclaim.
507  */
508 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
509 {
510 	bool active = PageActive(page);
511 	int nr_pages = thp_nr_pages(page);
512 
513 	if (PageUnevictable(page))
514 		return;
515 
516 	/* Some processes are using the page */
517 	if (page_mapped(page))
518 		return;
519 
520 	del_page_from_lru_list(page, lruvec);
521 	ClearPageActive(page);
522 	ClearPageReferenced(page);
523 
524 	if (PageWriteback(page) || PageDirty(page)) {
525 		/*
526 		 * PG_reclaim could be raced with end_page_writeback
527 		 * It can make readahead confusing.  But race window
528 		 * is _really_ small and  it's non-critical problem.
529 		 */
530 		add_page_to_lru_list(page, lruvec);
531 		SetPageReclaim(page);
532 	} else {
533 		/*
534 		 * The page's writeback ends up during pagevec
535 		 * We move that page into tail of inactive.
536 		 */
537 		add_page_to_lru_list_tail(page, lruvec);
538 		__count_vm_events(PGROTATED, nr_pages);
539 	}
540 
541 	if (active) {
542 		__count_vm_events(PGDEACTIVATE, nr_pages);
543 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
544 				     nr_pages);
545 	}
546 }
547 
548 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
549 {
550 	if (PageActive(page) && !PageUnevictable(page)) {
551 		int nr_pages = thp_nr_pages(page);
552 
553 		del_page_from_lru_list(page, lruvec);
554 		ClearPageActive(page);
555 		ClearPageReferenced(page);
556 		add_page_to_lru_list(page, lruvec);
557 
558 		__count_vm_events(PGDEACTIVATE, nr_pages);
559 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
560 				     nr_pages);
561 	}
562 }
563 
564 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
565 {
566 	if (PageAnon(page) && PageSwapBacked(page) &&
567 	    !PageSwapCache(page) && !PageUnevictable(page)) {
568 		int nr_pages = thp_nr_pages(page);
569 
570 		del_page_from_lru_list(page, lruvec);
571 		ClearPageActive(page);
572 		ClearPageReferenced(page);
573 		/*
574 		 * Lazyfree pages are clean anonymous pages.  They have
575 		 * PG_swapbacked flag cleared, to distinguish them from normal
576 		 * anonymous pages
577 		 */
578 		ClearPageSwapBacked(page);
579 		add_page_to_lru_list(page, lruvec);
580 
581 		__count_vm_events(PGLAZYFREE, nr_pages);
582 		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
583 				     nr_pages);
584 	}
585 }
586 
587 /*
588  * Drain pages out of the cpu's pagevecs.
589  * Either "cpu" is the current CPU, and preemption has already been
590  * disabled; or "cpu" is being hot-unplugged, and is already dead.
591  */
592 void lru_add_drain_cpu(int cpu)
593 {
594 	struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
595 
596 	if (pagevec_count(pvec))
597 		__pagevec_lru_add(pvec);
598 
599 	pvec = &per_cpu(lru_rotate.pvec, cpu);
600 	/* Disabling interrupts below acts as a compiler barrier. */
601 	if (data_race(pagevec_count(pvec))) {
602 		unsigned long flags;
603 
604 		/* No harm done if a racing interrupt already did this */
605 		local_lock_irqsave(&lru_rotate.lock, flags);
606 		pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
607 		local_unlock_irqrestore(&lru_rotate.lock, flags);
608 	}
609 
610 	pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
611 	if (pagevec_count(pvec))
612 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
613 
614 	pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
615 	if (pagevec_count(pvec))
616 		pagevec_lru_move_fn(pvec, lru_deactivate_fn);
617 
618 	pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
619 	if (pagevec_count(pvec))
620 		pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
621 
622 	activate_page_drain(cpu);
623 	invalidate_bh_lrus_cpu(cpu);
624 }
625 
626 /**
627  * deactivate_file_page - forcefully deactivate a file page
628  * @page: page to deactivate
629  *
630  * This function hints the VM that @page is a good reclaim candidate,
631  * for example if its invalidation fails due to the page being dirty
632  * or under writeback.
633  */
634 void deactivate_file_page(struct page *page)
635 {
636 	/*
637 	 * In a workload with many unevictable page such as mprotect,
638 	 * unevictable page deactivation for accelerating reclaim is pointless.
639 	 */
640 	if (PageUnevictable(page))
641 		return;
642 
643 	if (likely(get_page_unless_zero(page))) {
644 		struct pagevec *pvec;
645 
646 		local_lock(&lru_pvecs.lock);
647 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
648 
649 		if (pagevec_add_and_need_flush(pvec, page))
650 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
651 		local_unlock(&lru_pvecs.lock);
652 	}
653 }
654 
655 /*
656  * deactivate_page - deactivate a page
657  * @page: page to deactivate
658  *
659  * deactivate_page() moves @page to the inactive list if @page was on the active
660  * list and was not an unevictable page.  This is done to accelerate the reclaim
661  * of @page.
662  */
663 void deactivate_page(struct page *page)
664 {
665 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
666 		struct pagevec *pvec;
667 
668 		local_lock(&lru_pvecs.lock);
669 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
670 		get_page(page);
671 		if (pagevec_add_and_need_flush(pvec, page))
672 			pagevec_lru_move_fn(pvec, lru_deactivate_fn);
673 		local_unlock(&lru_pvecs.lock);
674 	}
675 }
676 
677 /**
678  * mark_page_lazyfree - make an anon page lazyfree
679  * @page: page to deactivate
680  *
681  * mark_page_lazyfree() moves @page to the inactive file list.
682  * This is done to accelerate the reclaim of @page.
683  */
684 void mark_page_lazyfree(struct page *page)
685 {
686 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
687 	    !PageSwapCache(page) && !PageUnevictable(page)) {
688 		struct pagevec *pvec;
689 
690 		local_lock(&lru_pvecs.lock);
691 		pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
692 		get_page(page);
693 		if (pagevec_add_and_need_flush(pvec, page))
694 			pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
695 		local_unlock(&lru_pvecs.lock);
696 	}
697 }
698 
699 void lru_add_drain(void)
700 {
701 	local_lock(&lru_pvecs.lock);
702 	lru_add_drain_cpu(smp_processor_id());
703 	local_unlock(&lru_pvecs.lock);
704 }
705 
706 void lru_add_drain_cpu_zone(struct zone *zone)
707 {
708 	local_lock(&lru_pvecs.lock);
709 	lru_add_drain_cpu(smp_processor_id());
710 	drain_local_pages(zone);
711 	local_unlock(&lru_pvecs.lock);
712 }
713 
714 #ifdef CONFIG_SMP
715 
716 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
717 
718 static void lru_add_drain_per_cpu(struct work_struct *dummy)
719 {
720 	lru_add_drain();
721 }
722 
723 /*
724  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
725  * kworkers being shut down before our page_alloc_cpu_dead callback is
726  * executed on the offlined cpu.
727  * Calling this function with cpu hotplug locks held can actually lead
728  * to obscure indirect dependencies via WQ context.
729  */
730 inline void __lru_add_drain_all(bool force_all_cpus)
731 {
732 	/*
733 	 * lru_drain_gen - Global pages generation number
734 	 *
735 	 * (A) Definition: global lru_drain_gen = x implies that all generations
736 	 *     0 < n <= x are already *scheduled* for draining.
737 	 *
738 	 * This is an optimization for the highly-contended use case where a
739 	 * user space workload keeps constantly generating a flow of pages for
740 	 * each CPU.
741 	 */
742 	static unsigned int lru_drain_gen;
743 	static struct cpumask has_work;
744 	static DEFINE_MUTEX(lock);
745 	unsigned cpu, this_gen;
746 
747 	/*
748 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
749 	 * initialized.
750 	 */
751 	if (WARN_ON(!mm_percpu_wq))
752 		return;
753 
754 	/*
755 	 * Guarantee pagevec counter stores visible by this CPU are visible to
756 	 * other CPUs before loading the current drain generation.
757 	 */
758 	smp_mb();
759 
760 	/*
761 	 * (B) Locally cache global LRU draining generation number
762 	 *
763 	 * The read barrier ensures that the counter is loaded before the mutex
764 	 * is taken. It pairs with smp_mb() inside the mutex critical section
765 	 * at (D).
766 	 */
767 	this_gen = smp_load_acquire(&lru_drain_gen);
768 
769 	mutex_lock(&lock);
770 
771 	/*
772 	 * (C) Exit the draining operation if a newer generation, from another
773 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
774 	 */
775 	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
776 		goto done;
777 
778 	/*
779 	 * (D) Increment global generation number
780 	 *
781 	 * Pairs with smp_load_acquire() at (B), outside of the critical
782 	 * section. Use a full memory barrier to guarantee that the new global
783 	 * drain generation number is stored before loading pagevec counters.
784 	 *
785 	 * This pairing must be done here, before the for_each_online_cpu loop
786 	 * below which drains the page vectors.
787 	 *
788 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
789 	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
790 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
791 	 * along, adds some pages to its per-cpu vectors, then calls
792 	 * lru_add_drain_all().
793 	 *
794 	 * If the paired barrier is done at any later step, e.g. after the
795 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
796 	 * added pages.
797 	 */
798 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
799 	smp_mb();
800 
801 	cpumask_clear(&has_work);
802 	for_each_online_cpu(cpu) {
803 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
804 
805 		if (force_all_cpus ||
806 		    pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
807 		    data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
808 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
809 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
810 		    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
811 		    need_activate_page_drain(cpu) ||
812 		    has_bh_in_lru(cpu, NULL)) {
813 			INIT_WORK(work, lru_add_drain_per_cpu);
814 			queue_work_on(cpu, mm_percpu_wq, work);
815 			__cpumask_set_cpu(cpu, &has_work);
816 		}
817 	}
818 
819 	for_each_cpu(cpu, &has_work)
820 		flush_work(&per_cpu(lru_add_drain_work, cpu));
821 
822 done:
823 	mutex_unlock(&lock);
824 }
825 
826 void lru_add_drain_all(void)
827 {
828 	__lru_add_drain_all(false);
829 }
830 #else
831 void lru_add_drain_all(void)
832 {
833 	lru_add_drain();
834 }
835 #endif /* CONFIG_SMP */
836 
837 atomic_t lru_disable_count = ATOMIC_INIT(0);
838 
839 /*
840  * lru_cache_disable() needs to be called before we start compiling
841  * a list of pages to be migrated using isolate_lru_page().
842  * It drains pages on LRU cache and then disable on all cpus until
843  * lru_cache_enable is called.
844  *
845  * Must be paired with a call to lru_cache_enable().
846  */
847 void lru_cache_disable(void)
848 {
849 	atomic_inc(&lru_disable_count);
850 #ifdef CONFIG_SMP
851 	/*
852 	 * lru_add_drain_all in the force mode will schedule draining on
853 	 * all online CPUs so any calls of lru_cache_disabled wrapped by
854 	 * local_lock or preemption disabled would be ordered by that.
855 	 * The atomic operation doesn't need to have stronger ordering
856 	 * requirements because that is enforeced by the scheduling
857 	 * guarantees.
858 	 */
859 	__lru_add_drain_all(true);
860 #else
861 	lru_add_drain();
862 #endif
863 }
864 
865 /**
866  * release_pages - batched put_page()
867  * @pages: array of pages to release
868  * @nr: number of pages
869  *
870  * Decrement the reference count on all the pages in @pages.  If it
871  * fell to zero, remove the page from the LRU and free it.
872  */
873 void release_pages(struct page **pages, int nr)
874 {
875 	int i;
876 	LIST_HEAD(pages_to_free);
877 	struct lruvec *lruvec = NULL;
878 	unsigned long flags;
879 	unsigned int lock_batch;
880 
881 	for (i = 0; i < nr; i++) {
882 		struct page *page = pages[i];
883 
884 		/*
885 		 * Make sure the IRQ-safe lock-holding time does not get
886 		 * excessive with a continuous string of pages from the
887 		 * same lruvec. The lock is held only if lruvec != NULL.
888 		 */
889 		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
890 			unlock_page_lruvec_irqrestore(lruvec, flags);
891 			lruvec = NULL;
892 		}
893 
894 		page = compound_head(page);
895 		if (is_huge_zero_page(page))
896 			continue;
897 
898 		if (is_zone_device_page(page)) {
899 			if (lruvec) {
900 				unlock_page_lruvec_irqrestore(lruvec, flags);
901 				lruvec = NULL;
902 			}
903 			/*
904 			 * ZONE_DEVICE pages that return 'false' from
905 			 * page_is_devmap_managed() do not require special
906 			 * processing, and instead, expect a call to
907 			 * put_page_testzero().
908 			 */
909 			if (page_is_devmap_managed(page)) {
910 				put_devmap_managed_page(page);
911 				continue;
912 			}
913 			if (put_page_testzero(page))
914 				put_dev_pagemap(page->pgmap);
915 			continue;
916 		}
917 
918 		if (!put_page_testzero(page))
919 			continue;
920 
921 		if (PageCompound(page)) {
922 			if (lruvec) {
923 				unlock_page_lruvec_irqrestore(lruvec, flags);
924 				lruvec = NULL;
925 			}
926 			__put_compound_page(page);
927 			continue;
928 		}
929 
930 		if (PageLRU(page)) {
931 			struct lruvec *prev_lruvec = lruvec;
932 
933 			lruvec = relock_page_lruvec_irqsave(page, lruvec,
934 									&flags);
935 			if (prev_lruvec != lruvec)
936 				lock_batch = 0;
937 
938 			del_page_from_lru_list(page, lruvec);
939 			__clear_page_lru_flags(page);
940 		}
941 
942 		__ClearPageWaiters(page);
943 
944 		list_add(&page->lru, &pages_to_free);
945 	}
946 	if (lruvec)
947 		unlock_page_lruvec_irqrestore(lruvec, flags);
948 
949 	mem_cgroup_uncharge_list(&pages_to_free);
950 	free_unref_page_list(&pages_to_free);
951 }
952 EXPORT_SYMBOL(release_pages);
953 
954 /*
955  * The pages which we're about to release may be in the deferred lru-addition
956  * queues.  That would prevent them from really being freed right now.  That's
957  * OK from a correctness point of view but is inefficient - those pages may be
958  * cache-warm and we want to give them back to the page allocator ASAP.
959  *
960  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
961  * and __pagevec_lru_add_active() call release_pages() directly to avoid
962  * mutual recursion.
963  */
964 void __pagevec_release(struct pagevec *pvec)
965 {
966 	if (!pvec->percpu_pvec_drained) {
967 		lru_add_drain();
968 		pvec->percpu_pvec_drained = true;
969 	}
970 	release_pages(pvec->pages, pagevec_count(pvec));
971 	pagevec_reinit(pvec);
972 }
973 EXPORT_SYMBOL(__pagevec_release);
974 
975 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
976 {
977 	int was_unevictable = TestClearPageUnevictable(page);
978 	int nr_pages = thp_nr_pages(page);
979 
980 	VM_BUG_ON_PAGE(PageLRU(page), page);
981 
982 	/*
983 	 * Page becomes evictable in two ways:
984 	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
985 	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
986 	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
987 	 *   b) do PageLRU check before lock [clear_page_mlock]
988 	 *
989 	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
990 	 * following strict ordering:
991 	 *
992 	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
993 	 *
994 	 * SetPageLRU()				TestClearPageMlocked()
995 	 * smp_mb() // explicit ordering	// above provides strict
996 	 *					// ordering
997 	 * PageMlocked()			PageLRU()
998 	 *
999 	 *
1000 	 * if '#1' does not observe setting of PG_lru by '#0' and fails
1001 	 * isolation, the explicit barrier will make sure that page_evictable
1002 	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1003 	 * can be reordered after PageMlocked check and can make '#1' to fail
1004 	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1005 	 * looking at the same page) and the evictable page will be stranded
1006 	 * in an unevictable LRU.
1007 	 */
1008 	SetPageLRU(page);
1009 	smp_mb__after_atomic();
1010 
1011 	if (page_evictable(page)) {
1012 		if (was_unevictable)
1013 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1014 	} else {
1015 		ClearPageActive(page);
1016 		SetPageUnevictable(page);
1017 		if (!was_unevictable)
1018 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1019 	}
1020 
1021 	add_page_to_lru_list(page, lruvec);
1022 	trace_mm_lru_insertion(page);
1023 }
1024 
1025 /*
1026  * Add the passed pages to the LRU, then drop the caller's refcount
1027  * on them.  Reinitialises the caller's pagevec.
1028  */
1029 void __pagevec_lru_add(struct pagevec *pvec)
1030 {
1031 	int i;
1032 	struct lruvec *lruvec = NULL;
1033 	unsigned long flags = 0;
1034 
1035 	for (i = 0; i < pagevec_count(pvec); i++) {
1036 		struct page *page = pvec->pages[i];
1037 
1038 		lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
1039 		__pagevec_lru_add_fn(page, lruvec);
1040 	}
1041 	if (lruvec)
1042 		unlock_page_lruvec_irqrestore(lruvec, flags);
1043 	release_pages(pvec->pages, pvec->nr);
1044 	pagevec_reinit(pvec);
1045 }
1046 
1047 /**
1048  * pagevec_remove_exceptionals - pagevec exceptionals pruning
1049  * @pvec:	The pagevec to prune
1050  *
1051  * find_get_entries() fills both pages and XArray value entries (aka
1052  * exceptional entries) into the pagevec.  This function prunes all
1053  * exceptionals from @pvec without leaving holes, so that it can be
1054  * passed on to page-only pagevec operations.
1055  */
1056 void pagevec_remove_exceptionals(struct pagevec *pvec)
1057 {
1058 	int i, j;
1059 
1060 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1061 		struct page *page = pvec->pages[i];
1062 		if (!xa_is_value(page))
1063 			pvec->pages[j++] = page;
1064 	}
1065 	pvec->nr = j;
1066 }
1067 
1068 /**
1069  * pagevec_lookup_range - gang pagecache lookup
1070  * @pvec:	Where the resulting pages are placed
1071  * @mapping:	The address_space to search
1072  * @start:	The starting page index
1073  * @end:	The final page index
1074  *
1075  * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1076  * pages in the mapping starting from index @start and upto index @end
1077  * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1078  * reference against the pages in @pvec.
1079  *
1080  * The search returns a group of mapping-contiguous pages with ascending
1081  * indexes.  There may be holes in the indices due to not-present pages. We
1082  * also update @start to index the next page for the traversal.
1083  *
1084  * pagevec_lookup_range() returns the number of pages which were found. If this
1085  * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1086  * reached.
1087  */
1088 unsigned pagevec_lookup_range(struct pagevec *pvec,
1089 		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1090 {
1091 	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1092 					pvec->pages);
1093 	return pagevec_count(pvec);
1094 }
1095 EXPORT_SYMBOL(pagevec_lookup_range);
1096 
1097 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1098 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1099 		xa_mark_t tag)
1100 {
1101 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1102 					PAGEVEC_SIZE, pvec->pages);
1103 	return pagevec_count(pvec);
1104 }
1105 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1106 
1107 /*
1108  * Perform any setup for the swap system
1109  */
1110 void __init swap_setup(void)
1111 {
1112 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1113 
1114 	/* Use a smaller cluster for small-memory machines */
1115 	if (megs < 16)
1116 		page_cluster = 2;
1117 	else
1118 		page_cluster = 3;
1119 	/*
1120 	 * Right now other parts of the system means that we
1121 	 * _really_ don't want to cluster much more
1122 	 */
1123 }
1124 
1125 #ifdef CONFIG_DEV_PAGEMAP_OPS
1126 void put_devmap_managed_page(struct page *page)
1127 {
1128 	int count;
1129 
1130 	if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1131 		return;
1132 
1133 	count = page_ref_dec_return(page);
1134 
1135 	/*
1136 	 * devmap page refcounts are 1-based, rather than 0-based: if
1137 	 * refcount is 1, then the page is free and the refcount is
1138 	 * stable because nobody holds a reference on the page.
1139 	 */
1140 	if (count == 1)
1141 		free_devmap_managed_page(page);
1142 	else if (!count)
1143 		__put_page(page);
1144 }
1145 EXPORT_SYMBOL(put_devmap_managed_page);
1146 #endif
1147