1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 #include <linux/buffer_head.h> 40 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/pagemap.h> 45 46 /* How many pages do we try to swap or page in/out together? */ 47 int page_cluster; 48 49 /* Protecting only lru_rotate.pvec which requires disabling interrupts */ 50 struct lru_rotate { 51 local_lock_t lock; 52 struct pagevec pvec; 53 }; 54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = { 55 .lock = INIT_LOCAL_LOCK(lock), 56 }; 57 58 /* 59 * The following struct pagevec are grouped together because they are protected 60 * by disabling preemption (and interrupts remain enabled). 61 */ 62 struct lru_pvecs { 63 local_lock_t lock; 64 struct pagevec lru_add; 65 struct pagevec lru_deactivate_file; 66 struct pagevec lru_deactivate; 67 struct pagevec lru_lazyfree; 68 #ifdef CONFIG_SMP 69 struct pagevec activate_page; 70 #endif 71 }; 72 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = { 73 .lock = INIT_LOCAL_LOCK(lock), 74 }; 75 76 /* 77 * This path almost never happens for VM activity - pages are normally 78 * freed via pagevecs. But it gets used by networking. 79 */ 80 static void __page_cache_release(struct page *page) 81 { 82 if (PageLRU(page)) { 83 struct lruvec *lruvec; 84 unsigned long flags; 85 86 lruvec = lock_page_lruvec_irqsave(page, &flags); 87 del_page_from_lru_list(page, lruvec); 88 __clear_page_lru_flags(page); 89 unlock_page_lruvec_irqrestore(lruvec, flags); 90 } 91 __ClearPageWaiters(page); 92 } 93 94 static void __put_single_page(struct page *page) 95 { 96 __page_cache_release(page); 97 mem_cgroup_uncharge(page); 98 free_unref_page(page, 0); 99 } 100 101 static void __put_compound_page(struct page *page) 102 { 103 /* 104 * __page_cache_release() is supposed to be called for thp, not for 105 * hugetlb. This is because hugetlb page does never have PageLRU set 106 * (it's never listed to any LRU lists) and no memcg routines should 107 * be called for hugetlb (it has a separate hugetlb_cgroup.) 108 */ 109 if (!PageHuge(page)) 110 __page_cache_release(page); 111 destroy_compound_page(page); 112 } 113 114 void __put_page(struct page *page) 115 { 116 if (is_zone_device_page(page)) { 117 put_dev_pagemap(page->pgmap); 118 119 /* 120 * The page belongs to the device that created pgmap. Do 121 * not return it to page allocator. 122 */ 123 return; 124 } 125 126 if (unlikely(PageCompound(page))) 127 __put_compound_page(page); 128 else 129 __put_single_page(page); 130 } 131 EXPORT_SYMBOL(__put_page); 132 133 /** 134 * put_pages_list() - release a list of pages 135 * @pages: list of pages threaded on page->lru 136 * 137 * Release a list of pages which are strung together on page.lru. Currently 138 * used by read_cache_pages() and related error recovery code. 139 */ 140 void put_pages_list(struct list_head *pages) 141 { 142 while (!list_empty(pages)) { 143 struct page *victim; 144 145 victim = lru_to_page(pages); 146 list_del(&victim->lru); 147 put_page(victim); 148 } 149 } 150 EXPORT_SYMBOL(put_pages_list); 151 152 /* 153 * get_kernel_pages() - pin kernel pages in memory 154 * @kiov: An array of struct kvec structures 155 * @nr_segs: number of segments to pin 156 * @write: pinning for read/write, currently ignored 157 * @pages: array that receives pointers to the pages pinned. 158 * Should be at least nr_segs long. 159 * 160 * Returns number of pages pinned. This may be fewer than the number 161 * requested. If nr_pages is 0 or negative, returns 0. If no pages 162 * were pinned, returns -errno. Each page returned must be released 163 * with a put_page() call when it is finished with. 164 */ 165 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 166 struct page **pages) 167 { 168 int seg; 169 170 for (seg = 0; seg < nr_segs; seg++) { 171 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 172 return seg; 173 174 pages[seg] = kmap_to_page(kiov[seg].iov_base); 175 get_page(pages[seg]); 176 } 177 178 return seg; 179 } 180 EXPORT_SYMBOL_GPL(get_kernel_pages); 181 182 static void pagevec_lru_move_fn(struct pagevec *pvec, 183 void (*move_fn)(struct page *page, struct lruvec *lruvec)) 184 { 185 int i; 186 struct lruvec *lruvec = NULL; 187 unsigned long flags = 0; 188 189 for (i = 0; i < pagevec_count(pvec); i++) { 190 struct page *page = pvec->pages[i]; 191 192 /* block memcg migration during page moving between lru */ 193 if (!TestClearPageLRU(page)) 194 continue; 195 196 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags); 197 (*move_fn)(page, lruvec); 198 199 SetPageLRU(page); 200 } 201 if (lruvec) 202 unlock_page_lruvec_irqrestore(lruvec, flags); 203 release_pages(pvec->pages, pvec->nr); 204 pagevec_reinit(pvec); 205 } 206 207 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec) 208 { 209 if (!PageUnevictable(page)) { 210 del_page_from_lru_list(page, lruvec); 211 ClearPageActive(page); 212 add_page_to_lru_list_tail(page, lruvec); 213 __count_vm_events(PGROTATED, thp_nr_pages(page)); 214 } 215 } 216 217 /* return true if pagevec needs to drain */ 218 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page) 219 { 220 bool ret = false; 221 222 if (!pagevec_add(pvec, page) || PageCompound(page) || 223 lru_cache_disabled()) 224 ret = true; 225 226 return ret; 227 } 228 229 /* 230 * Writeback is about to end against a page which has been marked for immediate 231 * reclaim. If it still appears to be reclaimable, move it to the tail of the 232 * inactive list. 233 * 234 * rotate_reclaimable_page() must disable IRQs, to prevent nasty races. 235 */ 236 void rotate_reclaimable_page(struct page *page) 237 { 238 if (!PageLocked(page) && !PageDirty(page) && 239 !PageUnevictable(page) && PageLRU(page)) { 240 struct pagevec *pvec; 241 unsigned long flags; 242 243 get_page(page); 244 local_lock_irqsave(&lru_rotate.lock, flags); 245 pvec = this_cpu_ptr(&lru_rotate.pvec); 246 if (pagevec_add_and_need_flush(pvec, page)) 247 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); 248 local_unlock_irqrestore(&lru_rotate.lock, flags); 249 } 250 } 251 252 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages) 253 { 254 do { 255 unsigned long lrusize; 256 257 /* 258 * Hold lruvec->lru_lock is safe here, since 259 * 1) The pinned lruvec in reclaim, or 260 * 2) From a pre-LRU page during refault (which also holds the 261 * rcu lock, so would be safe even if the page was on the LRU 262 * and could move simultaneously to a new lruvec). 263 */ 264 spin_lock_irq(&lruvec->lru_lock); 265 /* Record cost event */ 266 if (file) 267 lruvec->file_cost += nr_pages; 268 else 269 lruvec->anon_cost += nr_pages; 270 271 /* 272 * Decay previous events 273 * 274 * Because workloads change over time (and to avoid 275 * overflow) we keep these statistics as a floating 276 * average, which ends up weighing recent refaults 277 * more than old ones. 278 */ 279 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 280 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 281 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 282 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 283 284 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 285 lruvec->file_cost /= 2; 286 lruvec->anon_cost /= 2; 287 } 288 spin_unlock_irq(&lruvec->lru_lock); 289 } while ((lruvec = parent_lruvec(lruvec))); 290 } 291 292 void lru_note_cost_page(struct page *page) 293 { 294 lru_note_cost(mem_cgroup_page_lruvec(page), 295 page_is_file_lru(page), thp_nr_pages(page)); 296 } 297 298 static void __activate_page(struct page *page, struct lruvec *lruvec) 299 { 300 if (!PageActive(page) && !PageUnevictable(page)) { 301 int nr_pages = thp_nr_pages(page); 302 303 del_page_from_lru_list(page, lruvec); 304 SetPageActive(page); 305 add_page_to_lru_list(page, lruvec); 306 trace_mm_lru_activate(page); 307 308 __count_vm_events(PGACTIVATE, nr_pages); 309 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, 310 nr_pages); 311 } 312 } 313 314 #ifdef CONFIG_SMP 315 static void activate_page_drain(int cpu) 316 { 317 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu); 318 319 if (pagevec_count(pvec)) 320 pagevec_lru_move_fn(pvec, __activate_page); 321 } 322 323 static bool need_activate_page_drain(int cpu) 324 { 325 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0; 326 } 327 328 static void activate_page(struct page *page) 329 { 330 page = compound_head(page); 331 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 332 struct pagevec *pvec; 333 334 local_lock(&lru_pvecs.lock); 335 pvec = this_cpu_ptr(&lru_pvecs.activate_page); 336 get_page(page); 337 if (pagevec_add_and_need_flush(pvec, page)) 338 pagevec_lru_move_fn(pvec, __activate_page); 339 local_unlock(&lru_pvecs.lock); 340 } 341 } 342 343 #else 344 static inline void activate_page_drain(int cpu) 345 { 346 } 347 348 static void activate_page(struct page *page) 349 { 350 struct lruvec *lruvec; 351 352 page = compound_head(page); 353 if (TestClearPageLRU(page)) { 354 lruvec = lock_page_lruvec_irq(page); 355 __activate_page(page, lruvec); 356 unlock_page_lruvec_irq(lruvec); 357 SetPageLRU(page); 358 } 359 } 360 #endif 361 362 static void __lru_cache_activate_page(struct page *page) 363 { 364 struct pagevec *pvec; 365 int i; 366 367 local_lock(&lru_pvecs.lock); 368 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 369 370 /* 371 * Search backwards on the optimistic assumption that the page being 372 * activated has just been added to this pagevec. Note that only 373 * the local pagevec is examined as a !PageLRU page could be in the 374 * process of being released, reclaimed, migrated or on a remote 375 * pagevec that is currently being drained. Furthermore, marking 376 * a remote pagevec's page PageActive potentially hits a race where 377 * a page is marked PageActive just after it is added to the inactive 378 * list causing accounting errors and BUG_ON checks to trigger. 379 */ 380 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 381 struct page *pagevec_page = pvec->pages[i]; 382 383 if (pagevec_page == page) { 384 SetPageActive(page); 385 break; 386 } 387 } 388 389 local_unlock(&lru_pvecs.lock); 390 } 391 392 /* 393 * Mark a page as having seen activity. 394 * 395 * inactive,unreferenced -> inactive,referenced 396 * inactive,referenced -> active,unreferenced 397 * active,unreferenced -> active,referenced 398 * 399 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 400 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 401 */ 402 void mark_page_accessed(struct page *page) 403 { 404 page = compound_head(page); 405 406 if (!PageReferenced(page)) { 407 SetPageReferenced(page); 408 } else if (PageUnevictable(page)) { 409 /* 410 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 411 * this list is never rotated or maintained, so marking an 412 * evictable page accessed has no effect. 413 */ 414 } else if (!PageActive(page)) { 415 /* 416 * If the page is on the LRU, queue it for activation via 417 * lru_pvecs.activate_page. Otherwise, assume the page is on a 418 * pagevec, mark it active and it'll be moved to the active 419 * LRU on the next drain. 420 */ 421 if (PageLRU(page)) 422 activate_page(page); 423 else 424 __lru_cache_activate_page(page); 425 ClearPageReferenced(page); 426 workingset_activation(page); 427 } 428 if (page_is_idle(page)) 429 clear_page_idle(page); 430 } 431 EXPORT_SYMBOL(mark_page_accessed); 432 433 /** 434 * lru_cache_add - add a page to a page list 435 * @page: the page to be added to the LRU. 436 * 437 * Queue the page for addition to the LRU via pagevec. The decision on whether 438 * to add the page to the [in]active [file|anon] list is deferred until the 439 * pagevec is drained. This gives a chance for the caller of lru_cache_add() 440 * have the page added to the active list using mark_page_accessed(). 441 */ 442 void lru_cache_add(struct page *page) 443 { 444 struct pagevec *pvec; 445 446 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); 447 VM_BUG_ON_PAGE(PageLRU(page), page); 448 449 get_page(page); 450 local_lock(&lru_pvecs.lock); 451 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 452 if (pagevec_add_and_need_flush(pvec, page)) 453 __pagevec_lru_add(pvec); 454 local_unlock(&lru_pvecs.lock); 455 } 456 EXPORT_SYMBOL(lru_cache_add); 457 458 /** 459 * lru_cache_add_inactive_or_unevictable 460 * @page: the page to be added to LRU 461 * @vma: vma in which page is mapped for determining reclaimability 462 * 463 * Place @page on the inactive or unevictable LRU list, depending on its 464 * evictability. 465 */ 466 void lru_cache_add_inactive_or_unevictable(struct page *page, 467 struct vm_area_struct *vma) 468 { 469 bool unevictable; 470 471 VM_BUG_ON_PAGE(PageLRU(page), page); 472 473 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED; 474 if (unlikely(unevictable) && !TestSetPageMlocked(page)) { 475 int nr_pages = thp_nr_pages(page); 476 /* 477 * We use the irq-unsafe __mod_zone_page_state because this 478 * counter is not modified from interrupt context, and the pte 479 * lock is held(spinlock), which implies preemption disabled. 480 */ 481 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages); 482 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 483 } 484 lru_cache_add(page); 485 } 486 487 /* 488 * If the page can not be invalidated, it is moved to the 489 * inactive list to speed up its reclaim. It is moved to the 490 * head of the list, rather than the tail, to give the flusher 491 * threads some time to write it out, as this is much more 492 * effective than the single-page writeout from reclaim. 493 * 494 * If the page isn't page_mapped and dirty/writeback, the page 495 * could reclaim asap using PG_reclaim. 496 * 497 * 1. active, mapped page -> none 498 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 499 * 3. inactive, mapped page -> none 500 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 501 * 5. inactive, clean -> inactive, tail 502 * 6. Others -> none 503 * 504 * In 4, why it moves inactive's head, the VM expects the page would 505 * be write it out by flusher threads as this is much more effective 506 * than the single-page writeout from reclaim. 507 */ 508 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec) 509 { 510 bool active = PageActive(page); 511 int nr_pages = thp_nr_pages(page); 512 513 if (PageUnevictable(page)) 514 return; 515 516 /* Some processes are using the page */ 517 if (page_mapped(page)) 518 return; 519 520 del_page_from_lru_list(page, lruvec); 521 ClearPageActive(page); 522 ClearPageReferenced(page); 523 524 if (PageWriteback(page) || PageDirty(page)) { 525 /* 526 * PG_reclaim could be raced with end_page_writeback 527 * It can make readahead confusing. But race window 528 * is _really_ small and it's non-critical problem. 529 */ 530 add_page_to_lru_list(page, lruvec); 531 SetPageReclaim(page); 532 } else { 533 /* 534 * The page's writeback ends up during pagevec 535 * We move that page into tail of inactive. 536 */ 537 add_page_to_lru_list_tail(page, lruvec); 538 __count_vm_events(PGROTATED, nr_pages); 539 } 540 541 if (active) { 542 __count_vm_events(PGDEACTIVATE, nr_pages); 543 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 544 nr_pages); 545 } 546 } 547 548 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec) 549 { 550 if (PageActive(page) && !PageUnevictable(page)) { 551 int nr_pages = thp_nr_pages(page); 552 553 del_page_from_lru_list(page, lruvec); 554 ClearPageActive(page); 555 ClearPageReferenced(page); 556 add_page_to_lru_list(page, lruvec); 557 558 __count_vm_events(PGDEACTIVATE, nr_pages); 559 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 560 nr_pages); 561 } 562 } 563 564 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec) 565 { 566 if (PageAnon(page) && PageSwapBacked(page) && 567 !PageSwapCache(page) && !PageUnevictable(page)) { 568 int nr_pages = thp_nr_pages(page); 569 570 del_page_from_lru_list(page, lruvec); 571 ClearPageActive(page); 572 ClearPageReferenced(page); 573 /* 574 * Lazyfree pages are clean anonymous pages. They have 575 * PG_swapbacked flag cleared, to distinguish them from normal 576 * anonymous pages 577 */ 578 ClearPageSwapBacked(page); 579 add_page_to_lru_list(page, lruvec); 580 581 __count_vm_events(PGLAZYFREE, nr_pages); 582 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, 583 nr_pages); 584 } 585 } 586 587 /* 588 * Drain pages out of the cpu's pagevecs. 589 * Either "cpu" is the current CPU, and preemption has already been 590 * disabled; or "cpu" is being hot-unplugged, and is already dead. 591 */ 592 void lru_add_drain_cpu(int cpu) 593 { 594 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu); 595 596 if (pagevec_count(pvec)) 597 __pagevec_lru_add(pvec); 598 599 pvec = &per_cpu(lru_rotate.pvec, cpu); 600 /* Disabling interrupts below acts as a compiler barrier. */ 601 if (data_race(pagevec_count(pvec))) { 602 unsigned long flags; 603 604 /* No harm done if a racing interrupt already did this */ 605 local_lock_irqsave(&lru_rotate.lock, flags); 606 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); 607 local_unlock_irqrestore(&lru_rotate.lock, flags); 608 } 609 610 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu); 611 if (pagevec_count(pvec)) 612 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); 613 614 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu); 615 if (pagevec_count(pvec)) 616 pagevec_lru_move_fn(pvec, lru_deactivate_fn); 617 618 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu); 619 if (pagevec_count(pvec)) 620 pagevec_lru_move_fn(pvec, lru_lazyfree_fn); 621 622 activate_page_drain(cpu); 623 invalidate_bh_lrus_cpu(cpu); 624 } 625 626 /** 627 * deactivate_file_page - forcefully deactivate a file page 628 * @page: page to deactivate 629 * 630 * This function hints the VM that @page is a good reclaim candidate, 631 * for example if its invalidation fails due to the page being dirty 632 * or under writeback. 633 */ 634 void deactivate_file_page(struct page *page) 635 { 636 /* 637 * In a workload with many unevictable page such as mprotect, 638 * unevictable page deactivation for accelerating reclaim is pointless. 639 */ 640 if (PageUnevictable(page)) 641 return; 642 643 if (likely(get_page_unless_zero(page))) { 644 struct pagevec *pvec; 645 646 local_lock(&lru_pvecs.lock); 647 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file); 648 649 if (pagevec_add_and_need_flush(pvec, page)) 650 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); 651 local_unlock(&lru_pvecs.lock); 652 } 653 } 654 655 /* 656 * deactivate_page - deactivate a page 657 * @page: page to deactivate 658 * 659 * deactivate_page() moves @page to the inactive list if @page was on the active 660 * list and was not an unevictable page. This is done to accelerate the reclaim 661 * of @page. 662 */ 663 void deactivate_page(struct page *page) 664 { 665 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 666 struct pagevec *pvec; 667 668 local_lock(&lru_pvecs.lock); 669 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate); 670 get_page(page); 671 if (pagevec_add_and_need_flush(pvec, page)) 672 pagevec_lru_move_fn(pvec, lru_deactivate_fn); 673 local_unlock(&lru_pvecs.lock); 674 } 675 } 676 677 /** 678 * mark_page_lazyfree - make an anon page lazyfree 679 * @page: page to deactivate 680 * 681 * mark_page_lazyfree() moves @page to the inactive file list. 682 * This is done to accelerate the reclaim of @page. 683 */ 684 void mark_page_lazyfree(struct page *page) 685 { 686 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 687 !PageSwapCache(page) && !PageUnevictable(page)) { 688 struct pagevec *pvec; 689 690 local_lock(&lru_pvecs.lock); 691 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree); 692 get_page(page); 693 if (pagevec_add_and_need_flush(pvec, page)) 694 pagevec_lru_move_fn(pvec, lru_lazyfree_fn); 695 local_unlock(&lru_pvecs.lock); 696 } 697 } 698 699 void lru_add_drain(void) 700 { 701 local_lock(&lru_pvecs.lock); 702 lru_add_drain_cpu(smp_processor_id()); 703 local_unlock(&lru_pvecs.lock); 704 } 705 706 void lru_add_drain_cpu_zone(struct zone *zone) 707 { 708 local_lock(&lru_pvecs.lock); 709 lru_add_drain_cpu(smp_processor_id()); 710 drain_local_pages(zone); 711 local_unlock(&lru_pvecs.lock); 712 } 713 714 #ifdef CONFIG_SMP 715 716 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 717 718 static void lru_add_drain_per_cpu(struct work_struct *dummy) 719 { 720 lru_add_drain(); 721 } 722 723 /* 724 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 725 * kworkers being shut down before our page_alloc_cpu_dead callback is 726 * executed on the offlined cpu. 727 * Calling this function with cpu hotplug locks held can actually lead 728 * to obscure indirect dependencies via WQ context. 729 */ 730 inline void __lru_add_drain_all(bool force_all_cpus) 731 { 732 /* 733 * lru_drain_gen - Global pages generation number 734 * 735 * (A) Definition: global lru_drain_gen = x implies that all generations 736 * 0 < n <= x are already *scheduled* for draining. 737 * 738 * This is an optimization for the highly-contended use case where a 739 * user space workload keeps constantly generating a flow of pages for 740 * each CPU. 741 */ 742 static unsigned int lru_drain_gen; 743 static struct cpumask has_work; 744 static DEFINE_MUTEX(lock); 745 unsigned cpu, this_gen; 746 747 /* 748 * Make sure nobody triggers this path before mm_percpu_wq is fully 749 * initialized. 750 */ 751 if (WARN_ON(!mm_percpu_wq)) 752 return; 753 754 /* 755 * Guarantee pagevec counter stores visible by this CPU are visible to 756 * other CPUs before loading the current drain generation. 757 */ 758 smp_mb(); 759 760 /* 761 * (B) Locally cache global LRU draining generation number 762 * 763 * The read barrier ensures that the counter is loaded before the mutex 764 * is taken. It pairs with smp_mb() inside the mutex critical section 765 * at (D). 766 */ 767 this_gen = smp_load_acquire(&lru_drain_gen); 768 769 mutex_lock(&lock); 770 771 /* 772 * (C) Exit the draining operation if a newer generation, from another 773 * lru_add_drain_all(), was already scheduled for draining. Check (A). 774 */ 775 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) 776 goto done; 777 778 /* 779 * (D) Increment global generation number 780 * 781 * Pairs with smp_load_acquire() at (B), outside of the critical 782 * section. Use a full memory barrier to guarantee that the new global 783 * drain generation number is stored before loading pagevec counters. 784 * 785 * This pairing must be done here, before the for_each_online_cpu loop 786 * below which drains the page vectors. 787 * 788 * Let x, y, and z represent some system CPU numbers, where x < y < z. 789 * Assume CPU #z is in the middle of the for_each_online_cpu loop 790 * below and has already reached CPU #y's per-cpu data. CPU #x comes 791 * along, adds some pages to its per-cpu vectors, then calls 792 * lru_add_drain_all(). 793 * 794 * If the paired barrier is done at any later step, e.g. after the 795 * loop, CPU #x will just exit at (C) and miss flushing out all of its 796 * added pages. 797 */ 798 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 799 smp_mb(); 800 801 cpumask_clear(&has_work); 802 for_each_online_cpu(cpu) { 803 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 804 805 if (force_all_cpus || 806 pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) || 807 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) || 808 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) || 809 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) || 810 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) || 811 need_activate_page_drain(cpu) || 812 has_bh_in_lru(cpu, NULL)) { 813 INIT_WORK(work, lru_add_drain_per_cpu); 814 queue_work_on(cpu, mm_percpu_wq, work); 815 __cpumask_set_cpu(cpu, &has_work); 816 } 817 } 818 819 for_each_cpu(cpu, &has_work) 820 flush_work(&per_cpu(lru_add_drain_work, cpu)); 821 822 done: 823 mutex_unlock(&lock); 824 } 825 826 void lru_add_drain_all(void) 827 { 828 __lru_add_drain_all(false); 829 } 830 #else 831 void lru_add_drain_all(void) 832 { 833 lru_add_drain(); 834 } 835 #endif /* CONFIG_SMP */ 836 837 atomic_t lru_disable_count = ATOMIC_INIT(0); 838 839 /* 840 * lru_cache_disable() needs to be called before we start compiling 841 * a list of pages to be migrated using isolate_lru_page(). 842 * It drains pages on LRU cache and then disable on all cpus until 843 * lru_cache_enable is called. 844 * 845 * Must be paired with a call to lru_cache_enable(). 846 */ 847 void lru_cache_disable(void) 848 { 849 atomic_inc(&lru_disable_count); 850 #ifdef CONFIG_SMP 851 /* 852 * lru_add_drain_all in the force mode will schedule draining on 853 * all online CPUs so any calls of lru_cache_disabled wrapped by 854 * local_lock or preemption disabled would be ordered by that. 855 * The atomic operation doesn't need to have stronger ordering 856 * requirements because that is enforeced by the scheduling 857 * guarantees. 858 */ 859 __lru_add_drain_all(true); 860 #else 861 lru_add_drain(); 862 #endif 863 } 864 865 /** 866 * release_pages - batched put_page() 867 * @pages: array of pages to release 868 * @nr: number of pages 869 * 870 * Decrement the reference count on all the pages in @pages. If it 871 * fell to zero, remove the page from the LRU and free it. 872 */ 873 void release_pages(struct page **pages, int nr) 874 { 875 int i; 876 LIST_HEAD(pages_to_free); 877 struct lruvec *lruvec = NULL; 878 unsigned long flags; 879 unsigned int lock_batch; 880 881 for (i = 0; i < nr; i++) { 882 struct page *page = pages[i]; 883 884 /* 885 * Make sure the IRQ-safe lock-holding time does not get 886 * excessive with a continuous string of pages from the 887 * same lruvec. The lock is held only if lruvec != NULL. 888 */ 889 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) { 890 unlock_page_lruvec_irqrestore(lruvec, flags); 891 lruvec = NULL; 892 } 893 894 page = compound_head(page); 895 if (is_huge_zero_page(page)) 896 continue; 897 898 if (is_zone_device_page(page)) { 899 if (lruvec) { 900 unlock_page_lruvec_irqrestore(lruvec, flags); 901 lruvec = NULL; 902 } 903 /* 904 * ZONE_DEVICE pages that return 'false' from 905 * page_is_devmap_managed() do not require special 906 * processing, and instead, expect a call to 907 * put_page_testzero(). 908 */ 909 if (page_is_devmap_managed(page)) { 910 put_devmap_managed_page(page); 911 continue; 912 } 913 if (put_page_testzero(page)) 914 put_dev_pagemap(page->pgmap); 915 continue; 916 } 917 918 if (!put_page_testzero(page)) 919 continue; 920 921 if (PageCompound(page)) { 922 if (lruvec) { 923 unlock_page_lruvec_irqrestore(lruvec, flags); 924 lruvec = NULL; 925 } 926 __put_compound_page(page); 927 continue; 928 } 929 930 if (PageLRU(page)) { 931 struct lruvec *prev_lruvec = lruvec; 932 933 lruvec = relock_page_lruvec_irqsave(page, lruvec, 934 &flags); 935 if (prev_lruvec != lruvec) 936 lock_batch = 0; 937 938 del_page_from_lru_list(page, lruvec); 939 __clear_page_lru_flags(page); 940 } 941 942 __ClearPageWaiters(page); 943 944 list_add(&page->lru, &pages_to_free); 945 } 946 if (lruvec) 947 unlock_page_lruvec_irqrestore(lruvec, flags); 948 949 mem_cgroup_uncharge_list(&pages_to_free); 950 free_unref_page_list(&pages_to_free); 951 } 952 EXPORT_SYMBOL(release_pages); 953 954 /* 955 * The pages which we're about to release may be in the deferred lru-addition 956 * queues. That would prevent them from really being freed right now. That's 957 * OK from a correctness point of view but is inefficient - those pages may be 958 * cache-warm and we want to give them back to the page allocator ASAP. 959 * 960 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 961 * and __pagevec_lru_add_active() call release_pages() directly to avoid 962 * mutual recursion. 963 */ 964 void __pagevec_release(struct pagevec *pvec) 965 { 966 if (!pvec->percpu_pvec_drained) { 967 lru_add_drain(); 968 pvec->percpu_pvec_drained = true; 969 } 970 release_pages(pvec->pages, pagevec_count(pvec)); 971 pagevec_reinit(pvec); 972 } 973 EXPORT_SYMBOL(__pagevec_release); 974 975 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec) 976 { 977 int was_unevictable = TestClearPageUnevictable(page); 978 int nr_pages = thp_nr_pages(page); 979 980 VM_BUG_ON_PAGE(PageLRU(page), page); 981 982 /* 983 * Page becomes evictable in two ways: 984 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()]. 985 * 2) Before acquiring LRU lock to put the page to correct LRU and then 986 * a) do PageLRU check with lock [check_move_unevictable_pages] 987 * b) do PageLRU check before lock [clear_page_mlock] 988 * 989 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need 990 * following strict ordering: 991 * 992 * #0: __pagevec_lru_add_fn #1: clear_page_mlock 993 * 994 * SetPageLRU() TestClearPageMlocked() 995 * smp_mb() // explicit ordering // above provides strict 996 * // ordering 997 * PageMlocked() PageLRU() 998 * 999 * 1000 * if '#1' does not observe setting of PG_lru by '#0' and fails 1001 * isolation, the explicit barrier will make sure that page_evictable 1002 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU 1003 * can be reordered after PageMlocked check and can make '#1' to fail 1004 * the isolation of the page whose Mlocked bit is cleared (#0 is also 1005 * looking at the same page) and the evictable page will be stranded 1006 * in an unevictable LRU. 1007 */ 1008 SetPageLRU(page); 1009 smp_mb__after_atomic(); 1010 1011 if (page_evictable(page)) { 1012 if (was_unevictable) 1013 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 1014 } else { 1015 ClearPageActive(page); 1016 SetPageUnevictable(page); 1017 if (!was_unevictable) 1018 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 1019 } 1020 1021 add_page_to_lru_list(page, lruvec); 1022 trace_mm_lru_insertion(page); 1023 } 1024 1025 /* 1026 * Add the passed pages to the LRU, then drop the caller's refcount 1027 * on them. Reinitialises the caller's pagevec. 1028 */ 1029 void __pagevec_lru_add(struct pagevec *pvec) 1030 { 1031 int i; 1032 struct lruvec *lruvec = NULL; 1033 unsigned long flags = 0; 1034 1035 for (i = 0; i < pagevec_count(pvec); i++) { 1036 struct page *page = pvec->pages[i]; 1037 1038 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags); 1039 __pagevec_lru_add_fn(page, lruvec); 1040 } 1041 if (lruvec) 1042 unlock_page_lruvec_irqrestore(lruvec, flags); 1043 release_pages(pvec->pages, pvec->nr); 1044 pagevec_reinit(pvec); 1045 } 1046 1047 /** 1048 * pagevec_remove_exceptionals - pagevec exceptionals pruning 1049 * @pvec: The pagevec to prune 1050 * 1051 * find_get_entries() fills both pages and XArray value entries (aka 1052 * exceptional entries) into the pagevec. This function prunes all 1053 * exceptionals from @pvec without leaving holes, so that it can be 1054 * passed on to page-only pagevec operations. 1055 */ 1056 void pagevec_remove_exceptionals(struct pagevec *pvec) 1057 { 1058 int i, j; 1059 1060 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 1061 struct page *page = pvec->pages[i]; 1062 if (!xa_is_value(page)) 1063 pvec->pages[j++] = page; 1064 } 1065 pvec->nr = j; 1066 } 1067 1068 /** 1069 * pagevec_lookup_range - gang pagecache lookup 1070 * @pvec: Where the resulting pages are placed 1071 * @mapping: The address_space to search 1072 * @start: The starting page index 1073 * @end: The final page index 1074 * 1075 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE 1076 * pages in the mapping starting from index @start and upto index @end 1077 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a 1078 * reference against the pages in @pvec. 1079 * 1080 * The search returns a group of mapping-contiguous pages with ascending 1081 * indexes. There may be holes in the indices due to not-present pages. We 1082 * also update @start to index the next page for the traversal. 1083 * 1084 * pagevec_lookup_range() returns the number of pages which were found. If this 1085 * number is smaller than PAGEVEC_SIZE, the end of specified range has been 1086 * reached. 1087 */ 1088 unsigned pagevec_lookup_range(struct pagevec *pvec, 1089 struct address_space *mapping, pgoff_t *start, pgoff_t end) 1090 { 1091 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE, 1092 pvec->pages); 1093 return pagevec_count(pvec); 1094 } 1095 EXPORT_SYMBOL(pagevec_lookup_range); 1096 1097 unsigned pagevec_lookup_range_tag(struct pagevec *pvec, 1098 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1099 xa_mark_t tag) 1100 { 1101 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1102 PAGEVEC_SIZE, pvec->pages); 1103 return pagevec_count(pvec); 1104 } 1105 EXPORT_SYMBOL(pagevec_lookup_range_tag); 1106 1107 /* 1108 * Perform any setup for the swap system 1109 */ 1110 void __init swap_setup(void) 1111 { 1112 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1113 1114 /* Use a smaller cluster for small-memory machines */ 1115 if (megs < 16) 1116 page_cluster = 2; 1117 else 1118 page_cluster = 3; 1119 /* 1120 * Right now other parts of the system means that we 1121 * _really_ don't want to cluster much more 1122 */ 1123 } 1124 1125 #ifdef CONFIG_DEV_PAGEMAP_OPS 1126 void put_devmap_managed_page(struct page *page) 1127 { 1128 int count; 1129 1130 if (WARN_ON_ONCE(!page_is_devmap_managed(page))) 1131 return; 1132 1133 count = page_ref_dec_return(page); 1134 1135 /* 1136 * devmap page refcounts are 1-based, rather than 0-based: if 1137 * refcount is 1, then the page is free and the refcount is 1138 * stable because nobody holds a reference on the page. 1139 */ 1140 if (count == 1) 1141 free_devmap_managed_page(page); 1142 else if (!count) 1143 __put_page(page); 1144 } 1145 EXPORT_SYMBOL(put_devmap_managed_page); 1146 #endif 1147