xref: /openbmc/linux/mm/swap.c (revision 4800cd83)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 
35 #include "internal.h"
36 
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39 
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 
43 /*
44  * This path almost never happens for VM activity - pages are normally
45  * freed via pagevecs.  But it gets used by networking.
46  */
47 static void __page_cache_release(struct page *page)
48 {
49 	if (PageLRU(page)) {
50 		unsigned long flags;
51 		struct zone *zone = page_zone(page);
52 
53 		spin_lock_irqsave(&zone->lru_lock, flags);
54 		VM_BUG_ON(!PageLRU(page));
55 		__ClearPageLRU(page);
56 		del_page_from_lru(zone, page);
57 		spin_unlock_irqrestore(&zone->lru_lock, flags);
58 	}
59 }
60 
61 static void __put_single_page(struct page *page)
62 {
63 	__page_cache_release(page);
64 	free_hot_cold_page(page, 0);
65 }
66 
67 static void __put_compound_page(struct page *page)
68 {
69 	compound_page_dtor *dtor;
70 
71 	__page_cache_release(page);
72 	dtor = get_compound_page_dtor(page);
73 	(*dtor)(page);
74 }
75 
76 static void put_compound_page(struct page *page)
77 {
78 	if (unlikely(PageTail(page))) {
79 		/* __split_huge_page_refcount can run under us */
80 		struct page *page_head = page->first_page;
81 		smp_rmb();
82 		/*
83 		 * If PageTail is still set after smp_rmb() we can be sure
84 		 * that the page->first_page we read wasn't a dangling pointer.
85 		 * See __split_huge_page_refcount() smp_wmb().
86 		 */
87 		if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
88 			unsigned long flags;
89 			/*
90 			 * Verify that our page_head wasn't converted
91 			 * to a a regular page before we got a
92 			 * reference on it.
93 			 */
94 			if (unlikely(!PageHead(page_head))) {
95 				/* PageHead is cleared after PageTail */
96 				smp_rmb();
97 				VM_BUG_ON(PageTail(page));
98 				goto out_put_head;
99 			}
100 			/*
101 			 * Only run compound_lock on a valid PageHead,
102 			 * after having it pinned with
103 			 * get_page_unless_zero() above.
104 			 */
105 			smp_mb();
106 			/* page_head wasn't a dangling pointer */
107 			flags = compound_lock_irqsave(page_head);
108 			if (unlikely(!PageTail(page))) {
109 				/* __split_huge_page_refcount run before us */
110 				compound_unlock_irqrestore(page_head, flags);
111 				VM_BUG_ON(PageHead(page_head));
112 			out_put_head:
113 				if (put_page_testzero(page_head))
114 					__put_single_page(page_head);
115 			out_put_single:
116 				if (put_page_testzero(page))
117 					__put_single_page(page);
118 				return;
119 			}
120 			VM_BUG_ON(page_head != page->first_page);
121 			/*
122 			 * We can release the refcount taken by
123 			 * get_page_unless_zero now that
124 			 * split_huge_page_refcount is blocked on the
125 			 * compound_lock.
126 			 */
127 			if (put_page_testzero(page_head))
128 				VM_BUG_ON(1);
129 			/* __split_huge_page_refcount will wait now */
130 			VM_BUG_ON(atomic_read(&page->_count) <= 0);
131 			atomic_dec(&page->_count);
132 			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
133 			compound_unlock_irqrestore(page_head, flags);
134 			if (put_page_testzero(page_head)) {
135 				if (PageHead(page_head))
136 					__put_compound_page(page_head);
137 				else
138 					__put_single_page(page_head);
139 			}
140 		} else {
141 			/* page_head is a dangling pointer */
142 			VM_BUG_ON(PageTail(page));
143 			goto out_put_single;
144 		}
145 	} else if (put_page_testzero(page)) {
146 		if (PageHead(page))
147 			__put_compound_page(page);
148 		else
149 			__put_single_page(page);
150 	}
151 }
152 
153 void put_page(struct page *page)
154 {
155 	if (unlikely(PageCompound(page)))
156 		put_compound_page(page);
157 	else if (put_page_testzero(page))
158 		__put_single_page(page);
159 }
160 EXPORT_SYMBOL(put_page);
161 
162 /**
163  * put_pages_list() - release a list of pages
164  * @pages: list of pages threaded on page->lru
165  *
166  * Release a list of pages which are strung together on page.lru.  Currently
167  * used by read_cache_pages() and related error recovery code.
168  */
169 void put_pages_list(struct list_head *pages)
170 {
171 	while (!list_empty(pages)) {
172 		struct page *victim;
173 
174 		victim = list_entry(pages->prev, struct page, lru);
175 		list_del(&victim->lru);
176 		page_cache_release(victim);
177 	}
178 }
179 EXPORT_SYMBOL(put_pages_list);
180 
181 /*
182  * pagevec_move_tail() must be called with IRQ disabled.
183  * Otherwise this may cause nasty races.
184  */
185 static void pagevec_move_tail(struct pagevec *pvec)
186 {
187 	int i;
188 	int pgmoved = 0;
189 	struct zone *zone = NULL;
190 
191 	for (i = 0; i < pagevec_count(pvec); i++) {
192 		struct page *page = pvec->pages[i];
193 		struct zone *pagezone = page_zone(page);
194 
195 		if (pagezone != zone) {
196 			if (zone)
197 				spin_unlock(&zone->lru_lock);
198 			zone = pagezone;
199 			spin_lock(&zone->lru_lock);
200 		}
201 		if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
202 			int lru = page_lru_base_type(page);
203 			list_move_tail(&page->lru, &zone->lru[lru].list);
204 			pgmoved++;
205 		}
206 	}
207 	if (zone)
208 		spin_unlock(&zone->lru_lock);
209 	__count_vm_events(PGROTATED, pgmoved);
210 	release_pages(pvec->pages, pvec->nr, pvec->cold);
211 	pagevec_reinit(pvec);
212 }
213 
214 /*
215  * Writeback is about to end against a page which has been marked for immediate
216  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
217  * inactive list.
218  */
219 void  rotate_reclaimable_page(struct page *page)
220 {
221 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
222 	    !PageUnevictable(page) && PageLRU(page)) {
223 		struct pagevec *pvec;
224 		unsigned long flags;
225 
226 		page_cache_get(page);
227 		local_irq_save(flags);
228 		pvec = &__get_cpu_var(lru_rotate_pvecs);
229 		if (!pagevec_add(pvec, page))
230 			pagevec_move_tail(pvec);
231 		local_irq_restore(flags);
232 	}
233 }
234 
235 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
236 				     int file, int rotated)
237 {
238 	struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
239 	struct zone_reclaim_stat *memcg_reclaim_stat;
240 
241 	memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
242 
243 	reclaim_stat->recent_scanned[file]++;
244 	if (rotated)
245 		reclaim_stat->recent_rotated[file]++;
246 
247 	if (!memcg_reclaim_stat)
248 		return;
249 
250 	memcg_reclaim_stat->recent_scanned[file]++;
251 	if (rotated)
252 		memcg_reclaim_stat->recent_rotated[file]++;
253 }
254 
255 /*
256  * FIXME: speed this up?
257  */
258 void activate_page(struct page *page)
259 {
260 	struct zone *zone = page_zone(page);
261 
262 	spin_lock_irq(&zone->lru_lock);
263 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
264 		int file = page_is_file_cache(page);
265 		int lru = page_lru_base_type(page);
266 		del_page_from_lru_list(zone, page, lru);
267 
268 		SetPageActive(page);
269 		lru += LRU_ACTIVE;
270 		add_page_to_lru_list(zone, page, lru);
271 		__count_vm_event(PGACTIVATE);
272 
273 		update_page_reclaim_stat(zone, page, file, 1);
274 	}
275 	spin_unlock_irq(&zone->lru_lock);
276 }
277 
278 /*
279  * Mark a page as having seen activity.
280  *
281  * inactive,unreferenced	->	inactive,referenced
282  * inactive,referenced		->	active,unreferenced
283  * active,unreferenced		->	active,referenced
284  */
285 void mark_page_accessed(struct page *page)
286 {
287 	if (!PageActive(page) && !PageUnevictable(page) &&
288 			PageReferenced(page) && PageLRU(page)) {
289 		activate_page(page);
290 		ClearPageReferenced(page);
291 	} else if (!PageReferenced(page)) {
292 		SetPageReferenced(page);
293 	}
294 }
295 
296 EXPORT_SYMBOL(mark_page_accessed);
297 
298 void __lru_cache_add(struct page *page, enum lru_list lru)
299 {
300 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
301 
302 	page_cache_get(page);
303 	if (!pagevec_add(pvec, page))
304 		____pagevec_lru_add(pvec, lru);
305 	put_cpu_var(lru_add_pvecs);
306 }
307 EXPORT_SYMBOL(__lru_cache_add);
308 
309 /**
310  * lru_cache_add_lru - add a page to a page list
311  * @page: the page to be added to the LRU.
312  * @lru: the LRU list to which the page is added.
313  */
314 void lru_cache_add_lru(struct page *page, enum lru_list lru)
315 {
316 	if (PageActive(page)) {
317 		VM_BUG_ON(PageUnevictable(page));
318 		ClearPageActive(page);
319 	} else if (PageUnevictable(page)) {
320 		VM_BUG_ON(PageActive(page));
321 		ClearPageUnevictable(page);
322 	}
323 
324 	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
325 	__lru_cache_add(page, lru);
326 }
327 
328 /**
329  * add_page_to_unevictable_list - add a page to the unevictable list
330  * @page:  the page to be added to the unevictable list
331  *
332  * Add page directly to its zone's unevictable list.  To avoid races with
333  * tasks that might be making the page evictable, through eg. munlock,
334  * munmap or exit, while it's not on the lru, we want to add the page
335  * while it's locked or otherwise "invisible" to other tasks.  This is
336  * difficult to do when using the pagevec cache, so bypass that.
337  */
338 void add_page_to_unevictable_list(struct page *page)
339 {
340 	struct zone *zone = page_zone(page);
341 
342 	spin_lock_irq(&zone->lru_lock);
343 	SetPageUnevictable(page);
344 	SetPageLRU(page);
345 	add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
346 	spin_unlock_irq(&zone->lru_lock);
347 }
348 
349 /*
350  * Drain pages out of the cpu's pagevecs.
351  * Either "cpu" is the current CPU, and preemption has already been
352  * disabled; or "cpu" is being hot-unplugged, and is already dead.
353  */
354 static void drain_cpu_pagevecs(int cpu)
355 {
356 	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
357 	struct pagevec *pvec;
358 	int lru;
359 
360 	for_each_lru(lru) {
361 		pvec = &pvecs[lru - LRU_BASE];
362 		if (pagevec_count(pvec))
363 			____pagevec_lru_add(pvec, lru);
364 	}
365 
366 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
367 	if (pagevec_count(pvec)) {
368 		unsigned long flags;
369 
370 		/* No harm done if a racing interrupt already did this */
371 		local_irq_save(flags);
372 		pagevec_move_tail(pvec);
373 		local_irq_restore(flags);
374 	}
375 }
376 
377 void lru_add_drain(void)
378 {
379 	drain_cpu_pagevecs(get_cpu());
380 	put_cpu();
381 }
382 
383 static void lru_add_drain_per_cpu(struct work_struct *dummy)
384 {
385 	lru_add_drain();
386 }
387 
388 /*
389  * Returns 0 for success
390  */
391 int lru_add_drain_all(void)
392 {
393 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
394 }
395 
396 /*
397  * Batched page_cache_release().  Decrement the reference count on all the
398  * passed pages.  If it fell to zero then remove the page from the LRU and
399  * free it.
400  *
401  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
402  * for the remainder of the operation.
403  *
404  * The locking in this function is against shrink_inactive_list(): we recheck
405  * the page count inside the lock to see whether shrink_inactive_list()
406  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
407  * will free it.
408  */
409 void release_pages(struct page **pages, int nr, int cold)
410 {
411 	int i;
412 	struct pagevec pages_to_free;
413 	struct zone *zone = NULL;
414 	unsigned long uninitialized_var(flags);
415 
416 	pagevec_init(&pages_to_free, cold);
417 	for (i = 0; i < nr; i++) {
418 		struct page *page = pages[i];
419 
420 		if (unlikely(PageCompound(page))) {
421 			if (zone) {
422 				spin_unlock_irqrestore(&zone->lru_lock, flags);
423 				zone = NULL;
424 			}
425 			put_compound_page(page);
426 			continue;
427 		}
428 
429 		if (!put_page_testzero(page))
430 			continue;
431 
432 		if (PageLRU(page)) {
433 			struct zone *pagezone = page_zone(page);
434 
435 			if (pagezone != zone) {
436 				if (zone)
437 					spin_unlock_irqrestore(&zone->lru_lock,
438 									flags);
439 				zone = pagezone;
440 				spin_lock_irqsave(&zone->lru_lock, flags);
441 			}
442 			VM_BUG_ON(!PageLRU(page));
443 			__ClearPageLRU(page);
444 			del_page_from_lru(zone, page);
445 		}
446 
447 		if (!pagevec_add(&pages_to_free, page)) {
448 			if (zone) {
449 				spin_unlock_irqrestore(&zone->lru_lock, flags);
450 				zone = NULL;
451 			}
452 			__pagevec_free(&pages_to_free);
453 			pagevec_reinit(&pages_to_free);
454   		}
455 	}
456 	if (zone)
457 		spin_unlock_irqrestore(&zone->lru_lock, flags);
458 
459 	pagevec_free(&pages_to_free);
460 }
461 EXPORT_SYMBOL(release_pages);
462 
463 /*
464  * The pages which we're about to release may be in the deferred lru-addition
465  * queues.  That would prevent them from really being freed right now.  That's
466  * OK from a correctness point of view but is inefficient - those pages may be
467  * cache-warm and we want to give them back to the page allocator ASAP.
468  *
469  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
470  * and __pagevec_lru_add_active() call release_pages() directly to avoid
471  * mutual recursion.
472  */
473 void __pagevec_release(struct pagevec *pvec)
474 {
475 	lru_add_drain();
476 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
477 	pagevec_reinit(pvec);
478 }
479 
480 EXPORT_SYMBOL(__pagevec_release);
481 
482 /* used by __split_huge_page_refcount() */
483 void lru_add_page_tail(struct zone* zone,
484 		       struct page *page, struct page *page_tail)
485 {
486 	int active;
487 	enum lru_list lru;
488 	const int file = 0;
489 	struct list_head *head;
490 
491 	VM_BUG_ON(!PageHead(page));
492 	VM_BUG_ON(PageCompound(page_tail));
493 	VM_BUG_ON(PageLRU(page_tail));
494 	VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
495 
496 	SetPageLRU(page_tail);
497 
498 	if (page_evictable(page_tail, NULL)) {
499 		if (PageActive(page)) {
500 			SetPageActive(page_tail);
501 			active = 1;
502 			lru = LRU_ACTIVE_ANON;
503 		} else {
504 			active = 0;
505 			lru = LRU_INACTIVE_ANON;
506 		}
507 		update_page_reclaim_stat(zone, page_tail, file, active);
508 		if (likely(PageLRU(page)))
509 			head = page->lru.prev;
510 		else
511 			head = &zone->lru[lru].list;
512 		__add_page_to_lru_list(zone, page_tail, lru, head);
513 	} else {
514 		SetPageUnevictable(page_tail);
515 		add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
516 	}
517 }
518 
519 /*
520  * Add the passed pages to the LRU, then drop the caller's refcount
521  * on them.  Reinitialises the caller's pagevec.
522  */
523 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
524 {
525 	int i;
526 	struct zone *zone = NULL;
527 
528 	VM_BUG_ON(is_unevictable_lru(lru));
529 
530 	for (i = 0; i < pagevec_count(pvec); i++) {
531 		struct page *page = pvec->pages[i];
532 		struct zone *pagezone = page_zone(page);
533 		int file;
534 		int active;
535 
536 		if (pagezone != zone) {
537 			if (zone)
538 				spin_unlock_irq(&zone->lru_lock);
539 			zone = pagezone;
540 			spin_lock_irq(&zone->lru_lock);
541 		}
542 		VM_BUG_ON(PageActive(page));
543 		VM_BUG_ON(PageUnevictable(page));
544 		VM_BUG_ON(PageLRU(page));
545 		SetPageLRU(page);
546 		active = is_active_lru(lru);
547 		file = is_file_lru(lru);
548 		if (active)
549 			SetPageActive(page);
550 		update_page_reclaim_stat(zone, page, file, active);
551 		add_page_to_lru_list(zone, page, lru);
552 	}
553 	if (zone)
554 		spin_unlock_irq(&zone->lru_lock);
555 	release_pages(pvec->pages, pvec->nr, pvec->cold);
556 	pagevec_reinit(pvec);
557 }
558 
559 EXPORT_SYMBOL(____pagevec_lru_add);
560 
561 /*
562  * Try to drop buffers from the pages in a pagevec
563  */
564 void pagevec_strip(struct pagevec *pvec)
565 {
566 	int i;
567 
568 	for (i = 0; i < pagevec_count(pvec); i++) {
569 		struct page *page = pvec->pages[i];
570 
571 		if (page_has_private(page) && trylock_page(page)) {
572 			if (page_has_private(page))
573 				try_to_release_page(page, 0);
574 			unlock_page(page);
575 		}
576 	}
577 }
578 
579 /**
580  * pagevec_lookup - gang pagecache lookup
581  * @pvec:	Where the resulting pages are placed
582  * @mapping:	The address_space to search
583  * @start:	The starting page index
584  * @nr_pages:	The maximum number of pages
585  *
586  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
587  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
588  * reference against the pages in @pvec.
589  *
590  * The search returns a group of mapping-contiguous pages with ascending
591  * indexes.  There may be holes in the indices due to not-present pages.
592  *
593  * pagevec_lookup() returns the number of pages which were found.
594  */
595 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
596 		pgoff_t start, unsigned nr_pages)
597 {
598 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
599 	return pagevec_count(pvec);
600 }
601 
602 EXPORT_SYMBOL(pagevec_lookup);
603 
604 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
605 		pgoff_t *index, int tag, unsigned nr_pages)
606 {
607 	pvec->nr = find_get_pages_tag(mapping, index, tag,
608 					nr_pages, pvec->pages);
609 	return pagevec_count(pvec);
610 }
611 
612 EXPORT_SYMBOL(pagevec_lookup_tag);
613 
614 /*
615  * Perform any setup for the swap system
616  */
617 void __init swap_setup(void)
618 {
619 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
620 
621 #ifdef CONFIG_SWAP
622 	bdi_init(swapper_space.backing_dev_info);
623 #endif
624 
625 	/* Use a smaller cluster for small-memory machines */
626 	if (megs < 16)
627 		page_cluster = 2;
628 	else
629 		page_cluster = 3;
630 	/*
631 	 * Right now other parts of the system means that we
632 	 * _really_ don't want to cluster much more
633 	 */
634 }
635