xref: /openbmc/linux/mm/swap.c (revision 36bccb11)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 
35 #include "internal.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/pagemap.h>
39 
40 /* How many pages do we try to swap or page in/out together? */
41 int page_cluster;
42 
43 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
44 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
45 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
46 
47 /*
48  * This path almost never happens for VM activity - pages are normally
49  * freed via pagevecs.  But it gets used by networking.
50  */
51 static void __page_cache_release(struct page *page)
52 {
53 	if (PageLRU(page)) {
54 		struct zone *zone = page_zone(page);
55 		struct lruvec *lruvec;
56 		unsigned long flags;
57 
58 		spin_lock_irqsave(&zone->lru_lock, flags);
59 		lruvec = mem_cgroup_page_lruvec(page, zone);
60 		VM_BUG_ON_PAGE(!PageLRU(page), page);
61 		__ClearPageLRU(page);
62 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
63 		spin_unlock_irqrestore(&zone->lru_lock, flags);
64 	}
65 }
66 
67 static void __put_single_page(struct page *page)
68 {
69 	__page_cache_release(page);
70 	free_hot_cold_page(page, 0);
71 }
72 
73 static void __put_compound_page(struct page *page)
74 {
75 	compound_page_dtor *dtor;
76 
77 	__page_cache_release(page);
78 	dtor = get_compound_page_dtor(page);
79 	(*dtor)(page);
80 }
81 
82 static void put_compound_page(struct page *page)
83 {
84 	struct page *page_head;
85 
86 	if (likely(!PageTail(page))) {
87 		if (put_page_testzero(page)) {
88 			/*
89 			 * By the time all refcounts have been released
90 			 * split_huge_page cannot run anymore from under us.
91 			 */
92 			if (PageHead(page))
93 				__put_compound_page(page);
94 			else
95 				__put_single_page(page);
96 		}
97 		return;
98 	}
99 
100 	/* __split_huge_page_refcount can run under us */
101 	page_head = compound_head(page);
102 
103 	/*
104 	 * THP can not break up slab pages so avoid taking
105 	 * compound_lock() and skip the tail page refcounting (in
106 	 * _mapcount) too. Slab performs non-atomic bit ops on
107 	 * page->flags for better performance. In particular
108 	 * slab_unlock() in slub used to be a hot path. It is still
109 	 * hot on arches that do not support
110 	 * this_cpu_cmpxchg_double().
111 	 *
112 	 * If "page" is part of a slab or hugetlbfs page it cannot be
113 	 * splitted and the head page cannot change from under us. And
114 	 * if "page" is part of a THP page under splitting, if the
115 	 * head page pointed by the THP tail isn't a THP head anymore,
116 	 * we'll find PageTail clear after smp_rmb() and we'll treat
117 	 * it as a single page.
118 	 */
119 	if (!__compound_tail_refcounted(page_head)) {
120 		/*
121 		 * If "page" is a THP tail, we must read the tail page
122 		 * flags after the head page flags. The
123 		 * split_huge_page side enforces write memory barriers
124 		 * between clearing PageTail and before the head page
125 		 * can be freed and reallocated.
126 		 */
127 		smp_rmb();
128 		if (likely(PageTail(page))) {
129 			/*
130 			 * __split_huge_page_refcount cannot race
131 			 * here.
132 			 */
133 			VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
134 			VM_BUG_ON_PAGE(page_mapcount(page) != 0, page);
135 			if (put_page_testzero(page_head)) {
136 				/*
137 				 * If this is the tail of a slab
138 				 * compound page, the tail pin must
139 				 * not be the last reference held on
140 				 * the page, because the PG_slab
141 				 * cannot be cleared before all tail
142 				 * pins (which skips the _mapcount
143 				 * tail refcounting) have been
144 				 * released. For hugetlbfs the tail
145 				 * pin may be the last reference on
146 				 * the page instead, because
147 				 * PageHeadHuge will not go away until
148 				 * the compound page enters the buddy
149 				 * allocator.
150 				 */
151 				VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
152 				__put_compound_page(page_head);
153 			}
154 			return;
155 		} else
156 			/*
157 			 * __split_huge_page_refcount run before us,
158 			 * "page" was a THP tail. The split page_head
159 			 * has been freed and reallocated as slab or
160 			 * hugetlbfs page of smaller order (only
161 			 * possible if reallocated as slab on x86).
162 			 */
163 			goto out_put_single;
164 	}
165 
166 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
167 		unsigned long flags;
168 
169 		/*
170 		 * page_head wasn't a dangling pointer but it may not
171 		 * be a head page anymore by the time we obtain the
172 		 * lock. That is ok as long as it can't be freed from
173 		 * under us.
174 		 */
175 		flags = compound_lock_irqsave(page_head);
176 		if (unlikely(!PageTail(page))) {
177 			/* __split_huge_page_refcount run before us */
178 			compound_unlock_irqrestore(page_head, flags);
179 			if (put_page_testzero(page_head)) {
180 				/*
181 				 * The head page may have been freed
182 				 * and reallocated as a compound page
183 				 * of smaller order and then freed
184 				 * again.  All we know is that it
185 				 * cannot have become: a THP page, a
186 				 * compound page of higher order, a
187 				 * tail page.  That is because we
188 				 * still hold the refcount of the
189 				 * split THP tail and page_head was
190 				 * the THP head before the split.
191 				 */
192 				if (PageHead(page_head))
193 					__put_compound_page(page_head);
194 				else
195 					__put_single_page(page_head);
196 			}
197 out_put_single:
198 			if (put_page_testzero(page))
199 				__put_single_page(page);
200 			return;
201 		}
202 		VM_BUG_ON_PAGE(page_head != page->first_page, page);
203 		/*
204 		 * We can release the refcount taken by
205 		 * get_page_unless_zero() now that
206 		 * __split_huge_page_refcount() is blocked on the
207 		 * compound_lock.
208 		 */
209 		if (put_page_testzero(page_head))
210 			VM_BUG_ON_PAGE(1, page_head);
211 		/* __split_huge_page_refcount will wait now */
212 		VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
213 		atomic_dec(&page->_mapcount);
214 		VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
215 		VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
216 		compound_unlock_irqrestore(page_head, flags);
217 
218 		if (put_page_testzero(page_head)) {
219 			if (PageHead(page_head))
220 				__put_compound_page(page_head);
221 			else
222 				__put_single_page(page_head);
223 		}
224 	} else {
225 		/* page_head is a dangling pointer */
226 		VM_BUG_ON_PAGE(PageTail(page), page);
227 		goto out_put_single;
228 	}
229 }
230 
231 void put_page(struct page *page)
232 {
233 	if (unlikely(PageCompound(page)))
234 		put_compound_page(page);
235 	else if (put_page_testzero(page))
236 		__put_single_page(page);
237 }
238 EXPORT_SYMBOL(put_page);
239 
240 /*
241  * This function is exported but must not be called by anything other
242  * than get_page(). It implements the slow path of get_page().
243  */
244 bool __get_page_tail(struct page *page)
245 {
246 	/*
247 	 * This takes care of get_page() if run on a tail page
248 	 * returned by one of the get_user_pages/follow_page variants.
249 	 * get_user_pages/follow_page itself doesn't need the compound
250 	 * lock because it runs __get_page_tail_foll() under the
251 	 * proper PT lock that already serializes against
252 	 * split_huge_page().
253 	 */
254 	unsigned long flags;
255 	bool got;
256 	struct page *page_head = compound_head(page);
257 
258 	/* Ref to put_compound_page() comment. */
259 	if (!__compound_tail_refcounted(page_head)) {
260 		smp_rmb();
261 		if (likely(PageTail(page))) {
262 			/*
263 			 * This is a hugetlbfs page or a slab
264 			 * page. __split_huge_page_refcount
265 			 * cannot race here.
266 			 */
267 			VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
268 			__get_page_tail_foll(page, true);
269 			return true;
270 		} else {
271 			/*
272 			 * __split_huge_page_refcount run
273 			 * before us, "page" was a THP
274 			 * tail. The split page_head has been
275 			 * freed and reallocated as slab or
276 			 * hugetlbfs page of smaller order
277 			 * (only possible if reallocated as
278 			 * slab on x86).
279 			 */
280 			return false;
281 		}
282 	}
283 
284 	got = false;
285 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
286 		/*
287 		 * page_head wasn't a dangling pointer but it
288 		 * may not be a head page anymore by the time
289 		 * we obtain the lock. That is ok as long as it
290 		 * can't be freed from under us.
291 		 */
292 		flags = compound_lock_irqsave(page_head);
293 		/* here __split_huge_page_refcount won't run anymore */
294 		if (likely(PageTail(page))) {
295 			__get_page_tail_foll(page, false);
296 			got = true;
297 		}
298 		compound_unlock_irqrestore(page_head, flags);
299 		if (unlikely(!got))
300 			put_page(page_head);
301 	}
302 	return got;
303 }
304 EXPORT_SYMBOL(__get_page_tail);
305 
306 /**
307  * put_pages_list() - release a list of pages
308  * @pages: list of pages threaded on page->lru
309  *
310  * Release a list of pages which are strung together on page.lru.  Currently
311  * used by read_cache_pages() and related error recovery code.
312  */
313 void put_pages_list(struct list_head *pages)
314 {
315 	while (!list_empty(pages)) {
316 		struct page *victim;
317 
318 		victim = list_entry(pages->prev, struct page, lru);
319 		list_del(&victim->lru);
320 		page_cache_release(victim);
321 	}
322 }
323 EXPORT_SYMBOL(put_pages_list);
324 
325 /*
326  * get_kernel_pages() - pin kernel pages in memory
327  * @kiov:	An array of struct kvec structures
328  * @nr_segs:	number of segments to pin
329  * @write:	pinning for read/write, currently ignored
330  * @pages:	array that receives pointers to the pages pinned.
331  *		Should be at least nr_segs long.
332  *
333  * Returns number of pages pinned. This may be fewer than the number
334  * requested. If nr_pages is 0 or negative, returns 0. If no pages
335  * were pinned, returns -errno. Each page returned must be released
336  * with a put_page() call when it is finished with.
337  */
338 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
339 		struct page **pages)
340 {
341 	int seg;
342 
343 	for (seg = 0; seg < nr_segs; seg++) {
344 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
345 			return seg;
346 
347 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
348 		page_cache_get(pages[seg]);
349 	}
350 
351 	return seg;
352 }
353 EXPORT_SYMBOL_GPL(get_kernel_pages);
354 
355 /*
356  * get_kernel_page() - pin a kernel page in memory
357  * @start:	starting kernel address
358  * @write:	pinning for read/write, currently ignored
359  * @pages:	array that receives pointer to the page pinned.
360  *		Must be at least nr_segs long.
361  *
362  * Returns 1 if page is pinned. If the page was not pinned, returns
363  * -errno. The page returned must be released with a put_page() call
364  * when it is finished with.
365  */
366 int get_kernel_page(unsigned long start, int write, struct page **pages)
367 {
368 	const struct kvec kiov = {
369 		.iov_base = (void *)start,
370 		.iov_len = PAGE_SIZE
371 	};
372 
373 	return get_kernel_pages(&kiov, 1, write, pages);
374 }
375 EXPORT_SYMBOL_GPL(get_kernel_page);
376 
377 static void pagevec_lru_move_fn(struct pagevec *pvec,
378 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
379 	void *arg)
380 {
381 	int i;
382 	struct zone *zone = NULL;
383 	struct lruvec *lruvec;
384 	unsigned long flags = 0;
385 
386 	for (i = 0; i < pagevec_count(pvec); i++) {
387 		struct page *page = pvec->pages[i];
388 		struct zone *pagezone = page_zone(page);
389 
390 		if (pagezone != zone) {
391 			if (zone)
392 				spin_unlock_irqrestore(&zone->lru_lock, flags);
393 			zone = pagezone;
394 			spin_lock_irqsave(&zone->lru_lock, flags);
395 		}
396 
397 		lruvec = mem_cgroup_page_lruvec(page, zone);
398 		(*move_fn)(page, lruvec, arg);
399 	}
400 	if (zone)
401 		spin_unlock_irqrestore(&zone->lru_lock, flags);
402 	release_pages(pvec->pages, pvec->nr, pvec->cold);
403 	pagevec_reinit(pvec);
404 }
405 
406 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
407 				 void *arg)
408 {
409 	int *pgmoved = arg;
410 
411 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
412 		enum lru_list lru = page_lru_base_type(page);
413 		list_move_tail(&page->lru, &lruvec->lists[lru]);
414 		(*pgmoved)++;
415 	}
416 }
417 
418 /*
419  * pagevec_move_tail() must be called with IRQ disabled.
420  * Otherwise this may cause nasty races.
421  */
422 static void pagevec_move_tail(struct pagevec *pvec)
423 {
424 	int pgmoved = 0;
425 
426 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
427 	__count_vm_events(PGROTATED, pgmoved);
428 }
429 
430 /*
431  * Writeback is about to end against a page which has been marked for immediate
432  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
433  * inactive list.
434  */
435 void rotate_reclaimable_page(struct page *page)
436 {
437 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
438 	    !PageUnevictable(page) && PageLRU(page)) {
439 		struct pagevec *pvec;
440 		unsigned long flags;
441 
442 		page_cache_get(page);
443 		local_irq_save(flags);
444 		pvec = &__get_cpu_var(lru_rotate_pvecs);
445 		if (!pagevec_add(pvec, page))
446 			pagevec_move_tail(pvec);
447 		local_irq_restore(flags);
448 	}
449 }
450 
451 static void update_page_reclaim_stat(struct lruvec *lruvec,
452 				     int file, int rotated)
453 {
454 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
455 
456 	reclaim_stat->recent_scanned[file]++;
457 	if (rotated)
458 		reclaim_stat->recent_rotated[file]++;
459 }
460 
461 static void __activate_page(struct page *page, struct lruvec *lruvec,
462 			    void *arg)
463 {
464 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
465 		int file = page_is_file_cache(page);
466 		int lru = page_lru_base_type(page);
467 
468 		del_page_from_lru_list(page, lruvec, lru);
469 		SetPageActive(page);
470 		lru += LRU_ACTIVE;
471 		add_page_to_lru_list(page, lruvec, lru);
472 		trace_mm_lru_activate(page, page_to_pfn(page));
473 
474 		__count_vm_event(PGACTIVATE);
475 		update_page_reclaim_stat(lruvec, file, 1);
476 	}
477 }
478 
479 #ifdef CONFIG_SMP
480 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
481 
482 static void activate_page_drain(int cpu)
483 {
484 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
485 
486 	if (pagevec_count(pvec))
487 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
488 }
489 
490 static bool need_activate_page_drain(int cpu)
491 {
492 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
493 }
494 
495 void activate_page(struct page *page)
496 {
497 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
498 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
499 
500 		page_cache_get(page);
501 		if (!pagevec_add(pvec, page))
502 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
503 		put_cpu_var(activate_page_pvecs);
504 	}
505 }
506 
507 #else
508 static inline void activate_page_drain(int cpu)
509 {
510 }
511 
512 static bool need_activate_page_drain(int cpu)
513 {
514 	return false;
515 }
516 
517 void activate_page(struct page *page)
518 {
519 	struct zone *zone = page_zone(page);
520 
521 	spin_lock_irq(&zone->lru_lock);
522 	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
523 	spin_unlock_irq(&zone->lru_lock);
524 }
525 #endif
526 
527 static void __lru_cache_activate_page(struct page *page)
528 {
529 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
530 	int i;
531 
532 	/*
533 	 * Search backwards on the optimistic assumption that the page being
534 	 * activated has just been added to this pagevec. Note that only
535 	 * the local pagevec is examined as a !PageLRU page could be in the
536 	 * process of being released, reclaimed, migrated or on a remote
537 	 * pagevec that is currently being drained. Furthermore, marking
538 	 * a remote pagevec's page PageActive potentially hits a race where
539 	 * a page is marked PageActive just after it is added to the inactive
540 	 * list causing accounting errors and BUG_ON checks to trigger.
541 	 */
542 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
543 		struct page *pagevec_page = pvec->pages[i];
544 
545 		if (pagevec_page == page) {
546 			SetPageActive(page);
547 			break;
548 		}
549 	}
550 
551 	put_cpu_var(lru_add_pvec);
552 }
553 
554 /*
555  * Mark a page as having seen activity.
556  *
557  * inactive,unreferenced	->	inactive,referenced
558  * inactive,referenced		->	active,unreferenced
559  * active,unreferenced		->	active,referenced
560  */
561 void mark_page_accessed(struct page *page)
562 {
563 	if (!PageActive(page) && !PageUnevictable(page) &&
564 			PageReferenced(page)) {
565 
566 		/*
567 		 * If the page is on the LRU, queue it for activation via
568 		 * activate_page_pvecs. Otherwise, assume the page is on a
569 		 * pagevec, mark it active and it'll be moved to the active
570 		 * LRU on the next drain.
571 		 */
572 		if (PageLRU(page))
573 			activate_page(page);
574 		else
575 			__lru_cache_activate_page(page);
576 		ClearPageReferenced(page);
577 		if (page_is_file_cache(page))
578 			workingset_activation(page);
579 	} else if (!PageReferenced(page)) {
580 		SetPageReferenced(page);
581 	}
582 }
583 EXPORT_SYMBOL(mark_page_accessed);
584 
585 /*
586  * Queue the page for addition to the LRU via pagevec. The decision on whether
587  * to add the page to the [in]active [file|anon] list is deferred until the
588  * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
589  * have the page added to the active list using mark_page_accessed().
590  */
591 void __lru_cache_add(struct page *page)
592 {
593 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
594 
595 	page_cache_get(page);
596 	if (!pagevec_space(pvec))
597 		__pagevec_lru_add(pvec);
598 	pagevec_add(pvec, page);
599 	put_cpu_var(lru_add_pvec);
600 }
601 EXPORT_SYMBOL(__lru_cache_add);
602 
603 /**
604  * lru_cache_add - add a page to a page list
605  * @page: the page to be added to the LRU.
606  */
607 void lru_cache_add(struct page *page)
608 {
609 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
610 	VM_BUG_ON_PAGE(PageLRU(page), page);
611 	__lru_cache_add(page);
612 }
613 
614 /**
615  * add_page_to_unevictable_list - add a page to the unevictable list
616  * @page:  the page to be added to the unevictable list
617  *
618  * Add page directly to its zone's unevictable list.  To avoid races with
619  * tasks that might be making the page evictable, through eg. munlock,
620  * munmap or exit, while it's not on the lru, we want to add the page
621  * while it's locked or otherwise "invisible" to other tasks.  This is
622  * difficult to do when using the pagevec cache, so bypass that.
623  */
624 void add_page_to_unevictable_list(struct page *page)
625 {
626 	struct zone *zone = page_zone(page);
627 	struct lruvec *lruvec;
628 
629 	spin_lock_irq(&zone->lru_lock);
630 	lruvec = mem_cgroup_page_lruvec(page, zone);
631 	ClearPageActive(page);
632 	SetPageUnevictable(page);
633 	SetPageLRU(page);
634 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
635 	spin_unlock_irq(&zone->lru_lock);
636 }
637 
638 /*
639  * If the page can not be invalidated, it is moved to the
640  * inactive list to speed up its reclaim.  It is moved to the
641  * head of the list, rather than the tail, to give the flusher
642  * threads some time to write it out, as this is much more
643  * effective than the single-page writeout from reclaim.
644  *
645  * If the page isn't page_mapped and dirty/writeback, the page
646  * could reclaim asap using PG_reclaim.
647  *
648  * 1. active, mapped page -> none
649  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
650  * 3. inactive, mapped page -> none
651  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
652  * 5. inactive, clean -> inactive, tail
653  * 6. Others -> none
654  *
655  * In 4, why it moves inactive's head, the VM expects the page would
656  * be write it out by flusher threads as this is much more effective
657  * than the single-page writeout from reclaim.
658  */
659 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
660 			      void *arg)
661 {
662 	int lru, file;
663 	bool active;
664 
665 	if (!PageLRU(page))
666 		return;
667 
668 	if (PageUnevictable(page))
669 		return;
670 
671 	/* Some processes are using the page */
672 	if (page_mapped(page))
673 		return;
674 
675 	active = PageActive(page);
676 	file = page_is_file_cache(page);
677 	lru = page_lru_base_type(page);
678 
679 	del_page_from_lru_list(page, lruvec, lru + active);
680 	ClearPageActive(page);
681 	ClearPageReferenced(page);
682 	add_page_to_lru_list(page, lruvec, lru);
683 
684 	if (PageWriteback(page) || PageDirty(page)) {
685 		/*
686 		 * PG_reclaim could be raced with end_page_writeback
687 		 * It can make readahead confusing.  But race window
688 		 * is _really_ small and  it's non-critical problem.
689 		 */
690 		SetPageReclaim(page);
691 	} else {
692 		/*
693 		 * The page's writeback ends up during pagevec
694 		 * We moves tha page into tail of inactive.
695 		 */
696 		list_move_tail(&page->lru, &lruvec->lists[lru]);
697 		__count_vm_event(PGROTATED);
698 	}
699 
700 	if (active)
701 		__count_vm_event(PGDEACTIVATE);
702 	update_page_reclaim_stat(lruvec, file, 0);
703 }
704 
705 /*
706  * Drain pages out of the cpu's pagevecs.
707  * Either "cpu" is the current CPU, and preemption has already been
708  * disabled; or "cpu" is being hot-unplugged, and is already dead.
709  */
710 void lru_add_drain_cpu(int cpu)
711 {
712 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
713 
714 	if (pagevec_count(pvec))
715 		__pagevec_lru_add(pvec);
716 
717 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
718 	if (pagevec_count(pvec)) {
719 		unsigned long flags;
720 
721 		/* No harm done if a racing interrupt already did this */
722 		local_irq_save(flags);
723 		pagevec_move_tail(pvec);
724 		local_irq_restore(flags);
725 	}
726 
727 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
728 	if (pagevec_count(pvec))
729 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
730 
731 	activate_page_drain(cpu);
732 }
733 
734 /**
735  * deactivate_page - forcefully deactivate a page
736  * @page: page to deactivate
737  *
738  * This function hints the VM that @page is a good reclaim candidate,
739  * for example if its invalidation fails due to the page being dirty
740  * or under writeback.
741  */
742 void deactivate_page(struct page *page)
743 {
744 	/*
745 	 * In a workload with many unevictable page such as mprotect, unevictable
746 	 * page deactivation for accelerating reclaim is pointless.
747 	 */
748 	if (PageUnevictable(page))
749 		return;
750 
751 	if (likely(get_page_unless_zero(page))) {
752 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
753 
754 		if (!pagevec_add(pvec, page))
755 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
756 		put_cpu_var(lru_deactivate_pvecs);
757 	}
758 }
759 
760 void lru_add_drain(void)
761 {
762 	lru_add_drain_cpu(get_cpu());
763 	put_cpu();
764 }
765 
766 static void lru_add_drain_per_cpu(struct work_struct *dummy)
767 {
768 	lru_add_drain();
769 }
770 
771 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
772 
773 void lru_add_drain_all(void)
774 {
775 	static DEFINE_MUTEX(lock);
776 	static struct cpumask has_work;
777 	int cpu;
778 
779 	mutex_lock(&lock);
780 	get_online_cpus();
781 	cpumask_clear(&has_work);
782 
783 	for_each_online_cpu(cpu) {
784 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
785 
786 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
787 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
788 		    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
789 		    need_activate_page_drain(cpu)) {
790 			INIT_WORK(work, lru_add_drain_per_cpu);
791 			schedule_work_on(cpu, work);
792 			cpumask_set_cpu(cpu, &has_work);
793 		}
794 	}
795 
796 	for_each_cpu(cpu, &has_work)
797 		flush_work(&per_cpu(lru_add_drain_work, cpu));
798 
799 	put_online_cpus();
800 	mutex_unlock(&lock);
801 }
802 
803 /*
804  * Batched page_cache_release().  Decrement the reference count on all the
805  * passed pages.  If it fell to zero then remove the page from the LRU and
806  * free it.
807  *
808  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
809  * for the remainder of the operation.
810  *
811  * The locking in this function is against shrink_inactive_list(): we recheck
812  * the page count inside the lock to see whether shrink_inactive_list()
813  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
814  * will free it.
815  */
816 void release_pages(struct page **pages, int nr, int cold)
817 {
818 	int i;
819 	LIST_HEAD(pages_to_free);
820 	struct zone *zone = NULL;
821 	struct lruvec *lruvec;
822 	unsigned long uninitialized_var(flags);
823 
824 	for (i = 0; i < nr; i++) {
825 		struct page *page = pages[i];
826 
827 		if (unlikely(PageCompound(page))) {
828 			if (zone) {
829 				spin_unlock_irqrestore(&zone->lru_lock, flags);
830 				zone = NULL;
831 			}
832 			put_compound_page(page);
833 			continue;
834 		}
835 
836 		if (!put_page_testzero(page))
837 			continue;
838 
839 		if (PageLRU(page)) {
840 			struct zone *pagezone = page_zone(page);
841 
842 			if (pagezone != zone) {
843 				if (zone)
844 					spin_unlock_irqrestore(&zone->lru_lock,
845 									flags);
846 				zone = pagezone;
847 				spin_lock_irqsave(&zone->lru_lock, flags);
848 			}
849 
850 			lruvec = mem_cgroup_page_lruvec(page, zone);
851 			VM_BUG_ON_PAGE(!PageLRU(page), page);
852 			__ClearPageLRU(page);
853 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
854 		}
855 
856 		/* Clear Active bit in case of parallel mark_page_accessed */
857 		ClearPageActive(page);
858 
859 		list_add(&page->lru, &pages_to_free);
860 	}
861 	if (zone)
862 		spin_unlock_irqrestore(&zone->lru_lock, flags);
863 
864 	free_hot_cold_page_list(&pages_to_free, cold);
865 }
866 EXPORT_SYMBOL(release_pages);
867 
868 /*
869  * The pages which we're about to release may be in the deferred lru-addition
870  * queues.  That would prevent them from really being freed right now.  That's
871  * OK from a correctness point of view but is inefficient - those pages may be
872  * cache-warm and we want to give them back to the page allocator ASAP.
873  *
874  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
875  * and __pagevec_lru_add_active() call release_pages() directly to avoid
876  * mutual recursion.
877  */
878 void __pagevec_release(struct pagevec *pvec)
879 {
880 	lru_add_drain();
881 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
882 	pagevec_reinit(pvec);
883 }
884 EXPORT_SYMBOL(__pagevec_release);
885 
886 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
887 /* used by __split_huge_page_refcount() */
888 void lru_add_page_tail(struct page *page, struct page *page_tail,
889 		       struct lruvec *lruvec, struct list_head *list)
890 {
891 	const int file = 0;
892 
893 	VM_BUG_ON_PAGE(!PageHead(page), page);
894 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
895 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
896 	VM_BUG_ON(NR_CPUS != 1 &&
897 		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
898 
899 	if (!list)
900 		SetPageLRU(page_tail);
901 
902 	if (likely(PageLRU(page)))
903 		list_add_tail(&page_tail->lru, &page->lru);
904 	else if (list) {
905 		/* page reclaim is reclaiming a huge page */
906 		get_page(page_tail);
907 		list_add_tail(&page_tail->lru, list);
908 	} else {
909 		struct list_head *list_head;
910 		/*
911 		 * Head page has not yet been counted, as an hpage,
912 		 * so we must account for each subpage individually.
913 		 *
914 		 * Use the standard add function to put page_tail on the list,
915 		 * but then correct its position so they all end up in order.
916 		 */
917 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
918 		list_head = page_tail->lru.prev;
919 		list_move_tail(&page_tail->lru, list_head);
920 	}
921 
922 	if (!PageUnevictable(page))
923 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
924 }
925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
926 
927 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
928 				 void *arg)
929 {
930 	int file = page_is_file_cache(page);
931 	int active = PageActive(page);
932 	enum lru_list lru = page_lru(page);
933 
934 	VM_BUG_ON_PAGE(PageLRU(page), page);
935 
936 	SetPageLRU(page);
937 	add_page_to_lru_list(page, lruvec, lru);
938 	update_page_reclaim_stat(lruvec, file, active);
939 	trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
940 }
941 
942 /*
943  * Add the passed pages to the LRU, then drop the caller's refcount
944  * on them.  Reinitialises the caller's pagevec.
945  */
946 void __pagevec_lru_add(struct pagevec *pvec)
947 {
948 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
949 }
950 EXPORT_SYMBOL(__pagevec_lru_add);
951 
952 /**
953  * pagevec_lookup_entries - gang pagecache lookup
954  * @pvec:	Where the resulting entries are placed
955  * @mapping:	The address_space to search
956  * @start:	The starting entry index
957  * @nr_entries:	The maximum number of entries
958  * @indices:	The cache indices corresponding to the entries in @pvec
959  *
960  * pagevec_lookup_entries() will search for and return a group of up
961  * to @nr_entries pages and shadow entries in the mapping.  All
962  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
963  * reference against actual pages in @pvec.
964  *
965  * The search returns a group of mapping-contiguous entries with
966  * ascending indexes.  There may be holes in the indices due to
967  * not-present entries.
968  *
969  * pagevec_lookup_entries() returns the number of entries which were
970  * found.
971  */
972 unsigned pagevec_lookup_entries(struct pagevec *pvec,
973 				struct address_space *mapping,
974 				pgoff_t start, unsigned nr_pages,
975 				pgoff_t *indices)
976 {
977 	pvec->nr = find_get_entries(mapping, start, nr_pages,
978 				    pvec->pages, indices);
979 	return pagevec_count(pvec);
980 }
981 
982 /**
983  * pagevec_remove_exceptionals - pagevec exceptionals pruning
984  * @pvec:	The pagevec to prune
985  *
986  * pagevec_lookup_entries() fills both pages and exceptional radix
987  * tree entries into the pagevec.  This function prunes all
988  * exceptionals from @pvec without leaving holes, so that it can be
989  * passed on to page-only pagevec operations.
990  */
991 void pagevec_remove_exceptionals(struct pagevec *pvec)
992 {
993 	int i, j;
994 
995 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
996 		struct page *page = pvec->pages[i];
997 		if (!radix_tree_exceptional_entry(page))
998 			pvec->pages[j++] = page;
999 	}
1000 	pvec->nr = j;
1001 }
1002 
1003 /**
1004  * pagevec_lookup - gang pagecache lookup
1005  * @pvec:	Where the resulting pages are placed
1006  * @mapping:	The address_space to search
1007  * @start:	The starting page index
1008  * @nr_pages:	The maximum number of pages
1009  *
1010  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1011  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
1012  * reference against the pages in @pvec.
1013  *
1014  * The search returns a group of mapping-contiguous pages with ascending
1015  * indexes.  There may be holes in the indices due to not-present pages.
1016  *
1017  * pagevec_lookup() returns the number of pages which were found.
1018  */
1019 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
1020 		pgoff_t start, unsigned nr_pages)
1021 {
1022 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
1023 	return pagevec_count(pvec);
1024 }
1025 EXPORT_SYMBOL(pagevec_lookup);
1026 
1027 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
1028 		pgoff_t *index, int tag, unsigned nr_pages)
1029 {
1030 	pvec->nr = find_get_pages_tag(mapping, index, tag,
1031 					nr_pages, pvec->pages);
1032 	return pagevec_count(pvec);
1033 }
1034 EXPORT_SYMBOL(pagevec_lookup_tag);
1035 
1036 /*
1037  * Perform any setup for the swap system
1038  */
1039 void __init swap_setup(void)
1040 {
1041 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1042 #ifdef CONFIG_SWAP
1043 	int i;
1044 
1045 	if (bdi_init(swapper_spaces[0].backing_dev_info))
1046 		panic("Failed to init swap bdi");
1047 	for (i = 0; i < MAX_SWAPFILES; i++) {
1048 		spin_lock_init(&swapper_spaces[i].tree_lock);
1049 		INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
1050 	}
1051 #endif
1052 
1053 	/* Use a smaller cluster for small-memory machines */
1054 	if (megs < 16)
1055 		page_cluster = 2;
1056 	else
1057 		page_cluster = 3;
1058 	/*
1059 	 * Right now other parts of the system means that we
1060 	 * _really_ don't want to cluster much more
1061 	 */
1062 }
1063