1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 #include <linux/buffer_head.h> 40 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/pagemap.h> 45 46 /* How many pages do we try to swap or page in/out together? */ 47 int page_cluster; 48 49 /* Protecting only lru_rotate.pvec which requires disabling interrupts */ 50 struct lru_rotate { 51 local_lock_t lock; 52 struct pagevec pvec; 53 }; 54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = { 55 .lock = INIT_LOCAL_LOCK(lock), 56 }; 57 58 /* 59 * The following struct pagevec are grouped together because they are protected 60 * by disabling preemption (and interrupts remain enabled). 61 */ 62 struct lru_pvecs { 63 local_lock_t lock; 64 struct pagevec lru_add; 65 struct pagevec lru_deactivate_file; 66 struct pagevec lru_deactivate; 67 struct pagevec lru_lazyfree; 68 #ifdef CONFIG_SMP 69 struct pagevec activate_page; 70 #endif 71 }; 72 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = { 73 .lock = INIT_LOCAL_LOCK(lock), 74 }; 75 76 /* 77 * This path almost never happens for VM activity - pages are normally 78 * freed via pagevecs. But it gets used by networking. 79 */ 80 static void __page_cache_release(struct page *page) 81 { 82 if (PageLRU(page)) { 83 struct lruvec *lruvec; 84 unsigned long flags; 85 86 lruvec = lock_page_lruvec_irqsave(page, &flags); 87 del_page_from_lru_list(page, lruvec); 88 __clear_page_lru_flags(page); 89 unlock_page_lruvec_irqrestore(lruvec, flags); 90 } 91 __ClearPageWaiters(page); 92 } 93 94 static void __put_single_page(struct page *page) 95 { 96 __page_cache_release(page); 97 mem_cgroup_uncharge(page); 98 free_unref_page(page); 99 } 100 101 static void __put_compound_page(struct page *page) 102 { 103 /* 104 * __page_cache_release() is supposed to be called for thp, not for 105 * hugetlb. This is because hugetlb page does never have PageLRU set 106 * (it's never listed to any LRU lists) and no memcg routines should 107 * be called for hugetlb (it has a separate hugetlb_cgroup.) 108 */ 109 if (!PageHuge(page)) 110 __page_cache_release(page); 111 destroy_compound_page(page); 112 } 113 114 void __put_page(struct page *page) 115 { 116 if (is_zone_device_page(page)) { 117 put_dev_pagemap(page->pgmap); 118 119 /* 120 * The page belongs to the device that created pgmap. Do 121 * not return it to page allocator. 122 */ 123 return; 124 } 125 126 if (unlikely(PageCompound(page))) 127 __put_compound_page(page); 128 else 129 __put_single_page(page); 130 } 131 EXPORT_SYMBOL(__put_page); 132 133 /** 134 * put_pages_list() - release a list of pages 135 * @pages: list of pages threaded on page->lru 136 * 137 * Release a list of pages which are strung together on page.lru. Currently 138 * used by read_cache_pages() and related error recovery code. 139 */ 140 void put_pages_list(struct list_head *pages) 141 { 142 while (!list_empty(pages)) { 143 struct page *victim; 144 145 victim = lru_to_page(pages); 146 list_del(&victim->lru); 147 put_page(victim); 148 } 149 } 150 EXPORT_SYMBOL(put_pages_list); 151 152 /* 153 * get_kernel_pages() - pin kernel pages in memory 154 * @kiov: An array of struct kvec structures 155 * @nr_segs: number of segments to pin 156 * @write: pinning for read/write, currently ignored 157 * @pages: array that receives pointers to the pages pinned. 158 * Should be at least nr_segs long. 159 * 160 * Returns number of pages pinned. This may be fewer than the number 161 * requested. If nr_pages is 0 or negative, returns 0. If no pages 162 * were pinned, returns -errno. Each page returned must be released 163 * with a put_page() call when it is finished with. 164 */ 165 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 166 struct page **pages) 167 { 168 int seg; 169 170 for (seg = 0; seg < nr_segs; seg++) { 171 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 172 return seg; 173 174 pages[seg] = kmap_to_page(kiov[seg].iov_base); 175 get_page(pages[seg]); 176 } 177 178 return seg; 179 } 180 EXPORT_SYMBOL_GPL(get_kernel_pages); 181 182 /* 183 * get_kernel_page() - pin a kernel page in memory 184 * @start: starting kernel address 185 * @write: pinning for read/write, currently ignored 186 * @pages: array that receives pointer to the page pinned. 187 * Must be at least nr_segs long. 188 * 189 * Returns 1 if page is pinned. If the page was not pinned, returns 190 * -errno. The page returned must be released with a put_page() call 191 * when it is finished with. 192 */ 193 int get_kernel_page(unsigned long start, int write, struct page **pages) 194 { 195 const struct kvec kiov = { 196 .iov_base = (void *)start, 197 .iov_len = PAGE_SIZE 198 }; 199 200 return get_kernel_pages(&kiov, 1, write, pages); 201 } 202 EXPORT_SYMBOL_GPL(get_kernel_page); 203 204 static void pagevec_lru_move_fn(struct pagevec *pvec, 205 void (*move_fn)(struct page *page, struct lruvec *lruvec)) 206 { 207 int i; 208 struct lruvec *lruvec = NULL; 209 unsigned long flags = 0; 210 211 for (i = 0; i < pagevec_count(pvec); i++) { 212 struct page *page = pvec->pages[i]; 213 214 /* block memcg migration during page moving between lru */ 215 if (!TestClearPageLRU(page)) 216 continue; 217 218 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags); 219 (*move_fn)(page, lruvec); 220 221 SetPageLRU(page); 222 } 223 if (lruvec) 224 unlock_page_lruvec_irqrestore(lruvec, flags); 225 release_pages(pvec->pages, pvec->nr); 226 pagevec_reinit(pvec); 227 } 228 229 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec) 230 { 231 if (!PageUnevictable(page)) { 232 del_page_from_lru_list(page, lruvec); 233 ClearPageActive(page); 234 add_page_to_lru_list_tail(page, lruvec); 235 __count_vm_events(PGROTATED, thp_nr_pages(page)); 236 } 237 } 238 239 /* return true if pagevec needs to drain */ 240 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page) 241 { 242 bool ret = false; 243 244 if (!pagevec_add(pvec, page) || PageCompound(page) || 245 lru_cache_disabled()) 246 ret = true; 247 248 return ret; 249 } 250 251 /* 252 * Writeback is about to end against a page which has been marked for immediate 253 * reclaim. If it still appears to be reclaimable, move it to the tail of the 254 * inactive list. 255 * 256 * rotate_reclaimable_page() must disable IRQs, to prevent nasty races. 257 */ 258 void rotate_reclaimable_page(struct page *page) 259 { 260 if (!PageLocked(page) && !PageDirty(page) && 261 !PageUnevictable(page) && PageLRU(page)) { 262 struct pagevec *pvec; 263 unsigned long flags; 264 265 get_page(page); 266 local_lock_irqsave(&lru_rotate.lock, flags); 267 pvec = this_cpu_ptr(&lru_rotate.pvec); 268 if (pagevec_add_and_need_flush(pvec, page)) 269 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); 270 local_unlock_irqrestore(&lru_rotate.lock, flags); 271 } 272 } 273 274 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages) 275 { 276 do { 277 unsigned long lrusize; 278 279 /* 280 * Hold lruvec->lru_lock is safe here, since 281 * 1) The pinned lruvec in reclaim, or 282 * 2) From a pre-LRU page during refault (which also holds the 283 * rcu lock, so would be safe even if the page was on the LRU 284 * and could move simultaneously to a new lruvec). 285 */ 286 spin_lock_irq(&lruvec->lru_lock); 287 /* Record cost event */ 288 if (file) 289 lruvec->file_cost += nr_pages; 290 else 291 lruvec->anon_cost += nr_pages; 292 293 /* 294 * Decay previous events 295 * 296 * Because workloads change over time (and to avoid 297 * overflow) we keep these statistics as a floating 298 * average, which ends up weighing recent refaults 299 * more than old ones. 300 */ 301 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 302 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 303 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 304 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 305 306 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 307 lruvec->file_cost /= 2; 308 lruvec->anon_cost /= 2; 309 } 310 spin_unlock_irq(&lruvec->lru_lock); 311 } while ((lruvec = parent_lruvec(lruvec))); 312 } 313 314 void lru_note_cost_page(struct page *page) 315 { 316 lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)), 317 page_is_file_lru(page), thp_nr_pages(page)); 318 } 319 320 static void __activate_page(struct page *page, struct lruvec *lruvec) 321 { 322 if (!PageActive(page) && !PageUnevictable(page)) { 323 int nr_pages = thp_nr_pages(page); 324 325 del_page_from_lru_list(page, lruvec); 326 SetPageActive(page); 327 add_page_to_lru_list(page, lruvec); 328 trace_mm_lru_activate(page); 329 330 __count_vm_events(PGACTIVATE, nr_pages); 331 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, 332 nr_pages); 333 } 334 } 335 336 #ifdef CONFIG_SMP 337 static void activate_page_drain(int cpu) 338 { 339 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu); 340 341 if (pagevec_count(pvec)) 342 pagevec_lru_move_fn(pvec, __activate_page); 343 } 344 345 static bool need_activate_page_drain(int cpu) 346 { 347 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0; 348 } 349 350 static void activate_page(struct page *page) 351 { 352 page = compound_head(page); 353 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 354 struct pagevec *pvec; 355 356 local_lock(&lru_pvecs.lock); 357 pvec = this_cpu_ptr(&lru_pvecs.activate_page); 358 get_page(page); 359 if (pagevec_add_and_need_flush(pvec, page)) 360 pagevec_lru_move_fn(pvec, __activate_page); 361 local_unlock(&lru_pvecs.lock); 362 } 363 } 364 365 #else 366 static inline void activate_page_drain(int cpu) 367 { 368 } 369 370 static void activate_page(struct page *page) 371 { 372 struct lruvec *lruvec; 373 374 page = compound_head(page); 375 if (TestClearPageLRU(page)) { 376 lruvec = lock_page_lruvec_irq(page); 377 __activate_page(page, lruvec); 378 unlock_page_lruvec_irq(lruvec); 379 SetPageLRU(page); 380 } 381 } 382 #endif 383 384 static void __lru_cache_activate_page(struct page *page) 385 { 386 struct pagevec *pvec; 387 int i; 388 389 local_lock(&lru_pvecs.lock); 390 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 391 392 /* 393 * Search backwards on the optimistic assumption that the page being 394 * activated has just been added to this pagevec. Note that only 395 * the local pagevec is examined as a !PageLRU page could be in the 396 * process of being released, reclaimed, migrated or on a remote 397 * pagevec that is currently being drained. Furthermore, marking 398 * a remote pagevec's page PageActive potentially hits a race where 399 * a page is marked PageActive just after it is added to the inactive 400 * list causing accounting errors and BUG_ON checks to trigger. 401 */ 402 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 403 struct page *pagevec_page = pvec->pages[i]; 404 405 if (pagevec_page == page) { 406 SetPageActive(page); 407 break; 408 } 409 } 410 411 local_unlock(&lru_pvecs.lock); 412 } 413 414 /* 415 * Mark a page as having seen activity. 416 * 417 * inactive,unreferenced -> inactive,referenced 418 * inactive,referenced -> active,unreferenced 419 * active,unreferenced -> active,referenced 420 * 421 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 422 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 423 */ 424 void mark_page_accessed(struct page *page) 425 { 426 page = compound_head(page); 427 428 if (!PageReferenced(page)) { 429 SetPageReferenced(page); 430 } else if (PageUnevictable(page)) { 431 /* 432 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 433 * this list is never rotated or maintained, so marking an 434 * evictable page accessed has no effect. 435 */ 436 } else if (!PageActive(page)) { 437 /* 438 * If the page is on the LRU, queue it for activation via 439 * lru_pvecs.activate_page. Otherwise, assume the page is on a 440 * pagevec, mark it active and it'll be moved to the active 441 * LRU on the next drain. 442 */ 443 if (PageLRU(page)) 444 activate_page(page); 445 else 446 __lru_cache_activate_page(page); 447 ClearPageReferenced(page); 448 workingset_activation(page); 449 } 450 if (page_is_idle(page)) 451 clear_page_idle(page); 452 } 453 EXPORT_SYMBOL(mark_page_accessed); 454 455 /** 456 * lru_cache_add - add a page to a page list 457 * @page: the page to be added to the LRU. 458 * 459 * Queue the page for addition to the LRU via pagevec. The decision on whether 460 * to add the page to the [in]active [file|anon] list is deferred until the 461 * pagevec is drained. This gives a chance for the caller of lru_cache_add() 462 * have the page added to the active list using mark_page_accessed(). 463 */ 464 void lru_cache_add(struct page *page) 465 { 466 struct pagevec *pvec; 467 468 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); 469 VM_BUG_ON_PAGE(PageLRU(page), page); 470 471 get_page(page); 472 local_lock(&lru_pvecs.lock); 473 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 474 if (pagevec_add_and_need_flush(pvec, page)) 475 __pagevec_lru_add(pvec); 476 local_unlock(&lru_pvecs.lock); 477 } 478 EXPORT_SYMBOL(lru_cache_add); 479 480 /** 481 * lru_cache_add_inactive_or_unevictable 482 * @page: the page to be added to LRU 483 * @vma: vma in which page is mapped for determining reclaimability 484 * 485 * Place @page on the inactive or unevictable LRU list, depending on its 486 * evictability. 487 */ 488 void lru_cache_add_inactive_or_unevictable(struct page *page, 489 struct vm_area_struct *vma) 490 { 491 bool unevictable; 492 493 VM_BUG_ON_PAGE(PageLRU(page), page); 494 495 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED; 496 if (unlikely(unevictable) && !TestSetPageMlocked(page)) { 497 int nr_pages = thp_nr_pages(page); 498 /* 499 * We use the irq-unsafe __mod_zone_page_state because this 500 * counter is not modified from interrupt context, and the pte 501 * lock is held(spinlock), which implies preemption disabled. 502 */ 503 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages); 504 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 505 } 506 lru_cache_add(page); 507 } 508 509 /* 510 * If the page can not be invalidated, it is moved to the 511 * inactive list to speed up its reclaim. It is moved to the 512 * head of the list, rather than the tail, to give the flusher 513 * threads some time to write it out, as this is much more 514 * effective than the single-page writeout from reclaim. 515 * 516 * If the page isn't page_mapped and dirty/writeback, the page 517 * could reclaim asap using PG_reclaim. 518 * 519 * 1. active, mapped page -> none 520 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 521 * 3. inactive, mapped page -> none 522 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 523 * 5. inactive, clean -> inactive, tail 524 * 6. Others -> none 525 * 526 * In 4, why it moves inactive's head, the VM expects the page would 527 * be write it out by flusher threads as this is much more effective 528 * than the single-page writeout from reclaim. 529 */ 530 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec) 531 { 532 bool active = PageActive(page); 533 int nr_pages = thp_nr_pages(page); 534 535 if (PageUnevictable(page)) 536 return; 537 538 /* Some processes are using the page */ 539 if (page_mapped(page)) 540 return; 541 542 del_page_from_lru_list(page, lruvec); 543 ClearPageActive(page); 544 ClearPageReferenced(page); 545 546 if (PageWriteback(page) || PageDirty(page)) { 547 /* 548 * PG_reclaim could be raced with end_page_writeback 549 * It can make readahead confusing. But race window 550 * is _really_ small and it's non-critical problem. 551 */ 552 add_page_to_lru_list(page, lruvec); 553 SetPageReclaim(page); 554 } else { 555 /* 556 * The page's writeback ends up during pagevec 557 * We moves tha page into tail of inactive. 558 */ 559 add_page_to_lru_list_tail(page, lruvec); 560 __count_vm_events(PGROTATED, nr_pages); 561 } 562 563 if (active) { 564 __count_vm_events(PGDEACTIVATE, nr_pages); 565 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 566 nr_pages); 567 } 568 } 569 570 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec) 571 { 572 if (PageActive(page) && !PageUnevictable(page)) { 573 int nr_pages = thp_nr_pages(page); 574 575 del_page_from_lru_list(page, lruvec); 576 ClearPageActive(page); 577 ClearPageReferenced(page); 578 add_page_to_lru_list(page, lruvec); 579 580 __count_vm_events(PGDEACTIVATE, nr_pages); 581 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 582 nr_pages); 583 } 584 } 585 586 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec) 587 { 588 if (PageAnon(page) && PageSwapBacked(page) && 589 !PageSwapCache(page) && !PageUnevictable(page)) { 590 int nr_pages = thp_nr_pages(page); 591 592 del_page_from_lru_list(page, lruvec); 593 ClearPageActive(page); 594 ClearPageReferenced(page); 595 /* 596 * Lazyfree pages are clean anonymous pages. They have 597 * PG_swapbacked flag cleared, to distinguish them from normal 598 * anonymous pages 599 */ 600 ClearPageSwapBacked(page); 601 add_page_to_lru_list(page, lruvec); 602 603 __count_vm_events(PGLAZYFREE, nr_pages); 604 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, 605 nr_pages); 606 } 607 } 608 609 /* 610 * Drain pages out of the cpu's pagevecs. 611 * Either "cpu" is the current CPU, and preemption has already been 612 * disabled; or "cpu" is being hot-unplugged, and is already dead. 613 */ 614 void lru_add_drain_cpu(int cpu) 615 { 616 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu); 617 618 if (pagevec_count(pvec)) 619 __pagevec_lru_add(pvec); 620 621 pvec = &per_cpu(lru_rotate.pvec, cpu); 622 /* Disabling interrupts below acts as a compiler barrier. */ 623 if (data_race(pagevec_count(pvec))) { 624 unsigned long flags; 625 626 /* No harm done if a racing interrupt already did this */ 627 local_lock_irqsave(&lru_rotate.lock, flags); 628 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); 629 local_unlock_irqrestore(&lru_rotate.lock, flags); 630 } 631 632 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu); 633 if (pagevec_count(pvec)) 634 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); 635 636 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu); 637 if (pagevec_count(pvec)) 638 pagevec_lru_move_fn(pvec, lru_deactivate_fn); 639 640 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu); 641 if (pagevec_count(pvec)) 642 pagevec_lru_move_fn(pvec, lru_lazyfree_fn); 643 644 activate_page_drain(cpu); 645 invalidate_bh_lrus_cpu(cpu); 646 } 647 648 /** 649 * deactivate_file_page - forcefully deactivate a file page 650 * @page: page to deactivate 651 * 652 * This function hints the VM that @page is a good reclaim candidate, 653 * for example if its invalidation fails due to the page being dirty 654 * or under writeback. 655 */ 656 void deactivate_file_page(struct page *page) 657 { 658 /* 659 * In a workload with many unevictable page such as mprotect, 660 * unevictable page deactivation for accelerating reclaim is pointless. 661 */ 662 if (PageUnevictable(page)) 663 return; 664 665 if (likely(get_page_unless_zero(page))) { 666 struct pagevec *pvec; 667 668 local_lock(&lru_pvecs.lock); 669 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file); 670 671 if (pagevec_add_and_need_flush(pvec, page)) 672 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); 673 local_unlock(&lru_pvecs.lock); 674 } 675 } 676 677 /* 678 * deactivate_page - deactivate a page 679 * @page: page to deactivate 680 * 681 * deactivate_page() moves @page to the inactive list if @page was on the active 682 * list and was not an unevictable page. This is done to accelerate the reclaim 683 * of @page. 684 */ 685 void deactivate_page(struct page *page) 686 { 687 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 688 struct pagevec *pvec; 689 690 local_lock(&lru_pvecs.lock); 691 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate); 692 get_page(page); 693 if (pagevec_add_and_need_flush(pvec, page)) 694 pagevec_lru_move_fn(pvec, lru_deactivate_fn); 695 local_unlock(&lru_pvecs.lock); 696 } 697 } 698 699 /** 700 * mark_page_lazyfree - make an anon page lazyfree 701 * @page: page to deactivate 702 * 703 * mark_page_lazyfree() moves @page to the inactive file list. 704 * This is done to accelerate the reclaim of @page. 705 */ 706 void mark_page_lazyfree(struct page *page) 707 { 708 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 709 !PageSwapCache(page) && !PageUnevictable(page)) { 710 struct pagevec *pvec; 711 712 local_lock(&lru_pvecs.lock); 713 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree); 714 get_page(page); 715 if (pagevec_add_and_need_flush(pvec, page)) 716 pagevec_lru_move_fn(pvec, lru_lazyfree_fn); 717 local_unlock(&lru_pvecs.lock); 718 } 719 } 720 721 void lru_add_drain(void) 722 { 723 local_lock(&lru_pvecs.lock); 724 lru_add_drain_cpu(smp_processor_id()); 725 local_unlock(&lru_pvecs.lock); 726 } 727 728 void lru_add_drain_cpu_zone(struct zone *zone) 729 { 730 local_lock(&lru_pvecs.lock); 731 lru_add_drain_cpu(smp_processor_id()); 732 drain_local_pages(zone); 733 local_unlock(&lru_pvecs.lock); 734 } 735 736 #ifdef CONFIG_SMP 737 738 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 739 740 static void lru_add_drain_per_cpu(struct work_struct *dummy) 741 { 742 lru_add_drain(); 743 } 744 745 /* 746 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 747 * kworkers being shut down before our page_alloc_cpu_dead callback is 748 * executed on the offlined cpu. 749 * Calling this function with cpu hotplug locks held can actually lead 750 * to obscure indirect dependencies via WQ context. 751 */ 752 inline void __lru_add_drain_all(bool force_all_cpus) 753 { 754 /* 755 * lru_drain_gen - Global pages generation number 756 * 757 * (A) Definition: global lru_drain_gen = x implies that all generations 758 * 0 < n <= x are already *scheduled* for draining. 759 * 760 * This is an optimization for the highly-contended use case where a 761 * user space workload keeps constantly generating a flow of pages for 762 * each CPU. 763 */ 764 static unsigned int lru_drain_gen; 765 static struct cpumask has_work; 766 static DEFINE_MUTEX(lock); 767 unsigned cpu, this_gen; 768 769 /* 770 * Make sure nobody triggers this path before mm_percpu_wq is fully 771 * initialized. 772 */ 773 if (WARN_ON(!mm_percpu_wq)) 774 return; 775 776 /* 777 * Guarantee pagevec counter stores visible by this CPU are visible to 778 * other CPUs before loading the current drain generation. 779 */ 780 smp_mb(); 781 782 /* 783 * (B) Locally cache global LRU draining generation number 784 * 785 * The read barrier ensures that the counter is loaded before the mutex 786 * is taken. It pairs with smp_mb() inside the mutex critical section 787 * at (D). 788 */ 789 this_gen = smp_load_acquire(&lru_drain_gen); 790 791 mutex_lock(&lock); 792 793 /* 794 * (C) Exit the draining operation if a newer generation, from another 795 * lru_add_drain_all(), was already scheduled for draining. Check (A). 796 */ 797 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) 798 goto done; 799 800 /* 801 * (D) Increment global generation number 802 * 803 * Pairs with smp_load_acquire() at (B), outside of the critical 804 * section. Use a full memory barrier to guarantee that the new global 805 * drain generation number is stored before loading pagevec counters. 806 * 807 * This pairing must be done here, before the for_each_online_cpu loop 808 * below which drains the page vectors. 809 * 810 * Let x, y, and z represent some system CPU numbers, where x < y < z. 811 * Assume CPU #z is in the middle of the for_each_online_cpu loop 812 * below and has already reached CPU #y's per-cpu data. CPU #x comes 813 * along, adds some pages to its per-cpu vectors, then calls 814 * lru_add_drain_all(). 815 * 816 * If the paired barrier is done at any later step, e.g. after the 817 * loop, CPU #x will just exit at (C) and miss flushing out all of its 818 * added pages. 819 */ 820 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 821 smp_mb(); 822 823 cpumask_clear(&has_work); 824 for_each_online_cpu(cpu) { 825 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 826 827 if (force_all_cpus || 828 pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) || 829 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) || 830 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) || 831 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) || 832 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) || 833 need_activate_page_drain(cpu) || 834 has_bh_in_lru(cpu, NULL)) { 835 INIT_WORK(work, lru_add_drain_per_cpu); 836 queue_work_on(cpu, mm_percpu_wq, work); 837 __cpumask_set_cpu(cpu, &has_work); 838 } 839 } 840 841 for_each_cpu(cpu, &has_work) 842 flush_work(&per_cpu(lru_add_drain_work, cpu)); 843 844 done: 845 mutex_unlock(&lock); 846 } 847 848 void lru_add_drain_all(void) 849 { 850 __lru_add_drain_all(false); 851 } 852 #else 853 void lru_add_drain_all(void) 854 { 855 lru_add_drain(); 856 } 857 #endif /* CONFIG_SMP */ 858 859 atomic_t lru_disable_count = ATOMIC_INIT(0); 860 861 /* 862 * lru_cache_disable() needs to be called before we start compiling 863 * a list of pages to be migrated using isolate_lru_page(). 864 * It drains pages on LRU cache and then disable on all cpus until 865 * lru_cache_enable is called. 866 * 867 * Must be paired with a call to lru_cache_enable(). 868 */ 869 void lru_cache_disable(void) 870 { 871 atomic_inc(&lru_disable_count); 872 #ifdef CONFIG_SMP 873 /* 874 * lru_add_drain_all in the force mode will schedule draining on 875 * all online CPUs so any calls of lru_cache_disabled wrapped by 876 * local_lock or preemption disabled would be ordered by that. 877 * The atomic operation doesn't need to have stronger ordering 878 * requirements because that is enforeced by the scheduling 879 * guarantees. 880 */ 881 __lru_add_drain_all(true); 882 #else 883 lru_add_drain(); 884 #endif 885 } 886 887 /** 888 * release_pages - batched put_page() 889 * @pages: array of pages to release 890 * @nr: number of pages 891 * 892 * Decrement the reference count on all the pages in @pages. If it 893 * fell to zero, remove the page from the LRU and free it. 894 */ 895 void release_pages(struct page **pages, int nr) 896 { 897 int i; 898 LIST_HEAD(pages_to_free); 899 struct lruvec *lruvec = NULL; 900 unsigned long flags; 901 unsigned int lock_batch; 902 903 for (i = 0; i < nr; i++) { 904 struct page *page = pages[i]; 905 906 /* 907 * Make sure the IRQ-safe lock-holding time does not get 908 * excessive with a continuous string of pages from the 909 * same lruvec. The lock is held only if lruvec != NULL. 910 */ 911 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) { 912 unlock_page_lruvec_irqrestore(lruvec, flags); 913 lruvec = NULL; 914 } 915 916 page = compound_head(page); 917 if (is_huge_zero_page(page)) 918 continue; 919 920 if (is_zone_device_page(page)) { 921 if (lruvec) { 922 unlock_page_lruvec_irqrestore(lruvec, flags); 923 lruvec = NULL; 924 } 925 /* 926 * ZONE_DEVICE pages that return 'false' from 927 * page_is_devmap_managed() do not require special 928 * processing, and instead, expect a call to 929 * put_page_testzero(). 930 */ 931 if (page_is_devmap_managed(page)) { 932 put_devmap_managed_page(page); 933 continue; 934 } 935 if (put_page_testzero(page)) 936 put_dev_pagemap(page->pgmap); 937 continue; 938 } 939 940 if (!put_page_testzero(page)) 941 continue; 942 943 if (PageCompound(page)) { 944 if (lruvec) { 945 unlock_page_lruvec_irqrestore(lruvec, flags); 946 lruvec = NULL; 947 } 948 __put_compound_page(page); 949 continue; 950 } 951 952 if (PageLRU(page)) { 953 struct lruvec *prev_lruvec = lruvec; 954 955 lruvec = relock_page_lruvec_irqsave(page, lruvec, 956 &flags); 957 if (prev_lruvec != lruvec) 958 lock_batch = 0; 959 960 del_page_from_lru_list(page, lruvec); 961 __clear_page_lru_flags(page); 962 } 963 964 __ClearPageWaiters(page); 965 966 list_add(&page->lru, &pages_to_free); 967 } 968 if (lruvec) 969 unlock_page_lruvec_irqrestore(lruvec, flags); 970 971 mem_cgroup_uncharge_list(&pages_to_free); 972 free_unref_page_list(&pages_to_free); 973 } 974 EXPORT_SYMBOL(release_pages); 975 976 /* 977 * The pages which we're about to release may be in the deferred lru-addition 978 * queues. That would prevent them from really being freed right now. That's 979 * OK from a correctness point of view but is inefficient - those pages may be 980 * cache-warm and we want to give them back to the page allocator ASAP. 981 * 982 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 983 * and __pagevec_lru_add_active() call release_pages() directly to avoid 984 * mutual recursion. 985 */ 986 void __pagevec_release(struct pagevec *pvec) 987 { 988 if (!pvec->percpu_pvec_drained) { 989 lru_add_drain(); 990 pvec->percpu_pvec_drained = true; 991 } 992 release_pages(pvec->pages, pagevec_count(pvec)); 993 pagevec_reinit(pvec); 994 } 995 EXPORT_SYMBOL(__pagevec_release); 996 997 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec) 998 { 999 int was_unevictable = TestClearPageUnevictable(page); 1000 int nr_pages = thp_nr_pages(page); 1001 1002 VM_BUG_ON_PAGE(PageLRU(page), page); 1003 1004 /* 1005 * Page becomes evictable in two ways: 1006 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()]. 1007 * 2) Before acquiring LRU lock to put the page to correct LRU and then 1008 * a) do PageLRU check with lock [check_move_unevictable_pages] 1009 * b) do PageLRU check before lock [clear_page_mlock] 1010 * 1011 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need 1012 * following strict ordering: 1013 * 1014 * #0: __pagevec_lru_add_fn #1: clear_page_mlock 1015 * 1016 * SetPageLRU() TestClearPageMlocked() 1017 * smp_mb() // explicit ordering // above provides strict 1018 * // ordering 1019 * PageMlocked() PageLRU() 1020 * 1021 * 1022 * if '#1' does not observe setting of PG_lru by '#0' and fails 1023 * isolation, the explicit barrier will make sure that page_evictable 1024 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU 1025 * can be reordered after PageMlocked check and can make '#1' to fail 1026 * the isolation of the page whose Mlocked bit is cleared (#0 is also 1027 * looking at the same page) and the evictable page will be stranded 1028 * in an unevictable LRU. 1029 */ 1030 SetPageLRU(page); 1031 smp_mb__after_atomic(); 1032 1033 if (page_evictable(page)) { 1034 if (was_unevictable) 1035 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 1036 } else { 1037 ClearPageActive(page); 1038 SetPageUnevictable(page); 1039 if (!was_unevictable) 1040 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 1041 } 1042 1043 add_page_to_lru_list(page, lruvec); 1044 trace_mm_lru_insertion(page); 1045 } 1046 1047 /* 1048 * Add the passed pages to the LRU, then drop the caller's refcount 1049 * on them. Reinitialises the caller's pagevec. 1050 */ 1051 void __pagevec_lru_add(struct pagevec *pvec) 1052 { 1053 int i; 1054 struct lruvec *lruvec = NULL; 1055 unsigned long flags = 0; 1056 1057 for (i = 0; i < pagevec_count(pvec); i++) { 1058 struct page *page = pvec->pages[i]; 1059 1060 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags); 1061 __pagevec_lru_add_fn(page, lruvec); 1062 } 1063 if (lruvec) 1064 unlock_page_lruvec_irqrestore(lruvec, flags); 1065 release_pages(pvec->pages, pvec->nr); 1066 pagevec_reinit(pvec); 1067 } 1068 1069 /** 1070 * pagevec_remove_exceptionals - pagevec exceptionals pruning 1071 * @pvec: The pagevec to prune 1072 * 1073 * find_get_entries() fills both pages and XArray value entries (aka 1074 * exceptional entries) into the pagevec. This function prunes all 1075 * exceptionals from @pvec without leaving holes, so that it can be 1076 * passed on to page-only pagevec operations. 1077 */ 1078 void pagevec_remove_exceptionals(struct pagevec *pvec) 1079 { 1080 int i, j; 1081 1082 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 1083 struct page *page = pvec->pages[i]; 1084 if (!xa_is_value(page)) 1085 pvec->pages[j++] = page; 1086 } 1087 pvec->nr = j; 1088 } 1089 1090 /** 1091 * pagevec_lookup_range - gang pagecache lookup 1092 * @pvec: Where the resulting pages are placed 1093 * @mapping: The address_space to search 1094 * @start: The starting page index 1095 * @end: The final page index 1096 * 1097 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE 1098 * pages in the mapping starting from index @start and upto index @end 1099 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a 1100 * reference against the pages in @pvec. 1101 * 1102 * The search returns a group of mapping-contiguous pages with ascending 1103 * indexes. There may be holes in the indices due to not-present pages. We 1104 * also update @start to index the next page for the traversal. 1105 * 1106 * pagevec_lookup_range() returns the number of pages which were found. If this 1107 * number is smaller than PAGEVEC_SIZE, the end of specified range has been 1108 * reached. 1109 */ 1110 unsigned pagevec_lookup_range(struct pagevec *pvec, 1111 struct address_space *mapping, pgoff_t *start, pgoff_t end) 1112 { 1113 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE, 1114 pvec->pages); 1115 return pagevec_count(pvec); 1116 } 1117 EXPORT_SYMBOL(pagevec_lookup_range); 1118 1119 unsigned pagevec_lookup_range_tag(struct pagevec *pvec, 1120 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1121 xa_mark_t tag) 1122 { 1123 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1124 PAGEVEC_SIZE, pvec->pages); 1125 return pagevec_count(pvec); 1126 } 1127 EXPORT_SYMBOL(pagevec_lookup_range_tag); 1128 1129 /* 1130 * Perform any setup for the swap system 1131 */ 1132 void __init swap_setup(void) 1133 { 1134 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1135 1136 /* Use a smaller cluster for small-memory machines */ 1137 if (megs < 16) 1138 page_cluster = 2; 1139 else 1140 page_cluster = 3; 1141 /* 1142 * Right now other parts of the system means that we 1143 * _really_ don't want to cluster much more 1144 */ 1145 } 1146 1147 #ifdef CONFIG_DEV_PAGEMAP_OPS 1148 void put_devmap_managed_page(struct page *page) 1149 { 1150 int count; 1151 1152 if (WARN_ON_ONCE(!page_is_devmap_managed(page))) 1153 return; 1154 1155 count = page_ref_dec_return(page); 1156 1157 /* 1158 * devmap page refcounts are 1-based, rather than 0-based: if 1159 * refcount is 1, then the page is free and the refcount is 1160 * stable because nobody holds a reference on the page. 1161 */ 1162 if (count == 1) 1163 free_devmap_managed_page(page); 1164 else if (!count) 1165 __put_page(page); 1166 } 1167 EXPORT_SYMBOL(put_devmap_managed_page); 1168 #endif 1169