xref: /openbmc/linux/mm/swap.c (revision 260ea95c)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 #include <linux/uio.h>
35 #include <linux/hugetlb.h>
36 #include <linux/page_idle.h>
37 
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/pagemap.h>
42 
43 /* How many pages do we try to swap or page in/out together? */
44 int page_cluster;
45 
46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
50 #ifdef CONFIG_SMP
51 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
52 #endif
53 
54 /*
55  * This path almost never happens for VM activity - pages are normally
56  * freed via pagevecs.  But it gets used by networking.
57  */
58 static void __page_cache_release(struct page *page)
59 {
60 	if (PageLRU(page)) {
61 		struct zone *zone = page_zone(page);
62 		struct lruvec *lruvec;
63 		unsigned long flags;
64 
65 		spin_lock_irqsave(zone_lru_lock(zone), flags);
66 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
67 		VM_BUG_ON_PAGE(!PageLRU(page), page);
68 		__ClearPageLRU(page);
69 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
70 		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
71 	}
72 	__ClearPageWaiters(page);
73 	mem_cgroup_uncharge(page);
74 }
75 
76 static void __put_single_page(struct page *page)
77 {
78 	__page_cache_release(page);
79 	free_hot_cold_page(page, false);
80 }
81 
82 static void __put_compound_page(struct page *page)
83 {
84 	compound_page_dtor *dtor;
85 
86 	/*
87 	 * __page_cache_release() is supposed to be called for thp, not for
88 	 * hugetlb. This is because hugetlb page does never have PageLRU set
89 	 * (it's never listed to any LRU lists) and no memcg routines should
90 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
91 	 */
92 	if (!PageHuge(page))
93 		__page_cache_release(page);
94 	dtor = get_compound_page_dtor(page);
95 	(*dtor)(page);
96 }
97 
98 void __put_page(struct page *page)
99 {
100 	if (is_zone_device_page(page)) {
101 		put_dev_pagemap(page->pgmap);
102 
103 		/*
104 		 * The page belongs to the device that created pgmap. Do
105 		 * not return it to page allocator.
106 		 */
107 		return;
108 	}
109 
110 	if (unlikely(PageCompound(page)))
111 		__put_compound_page(page);
112 	else
113 		__put_single_page(page);
114 }
115 EXPORT_SYMBOL(__put_page);
116 
117 /**
118  * put_pages_list() - release a list of pages
119  * @pages: list of pages threaded on page->lru
120  *
121  * Release a list of pages which are strung together on page.lru.  Currently
122  * used by read_cache_pages() and related error recovery code.
123  */
124 void put_pages_list(struct list_head *pages)
125 {
126 	while (!list_empty(pages)) {
127 		struct page *victim;
128 
129 		victim = list_entry(pages->prev, struct page, lru);
130 		list_del(&victim->lru);
131 		put_page(victim);
132 	}
133 }
134 EXPORT_SYMBOL(put_pages_list);
135 
136 /*
137  * get_kernel_pages() - pin kernel pages in memory
138  * @kiov:	An array of struct kvec structures
139  * @nr_segs:	number of segments to pin
140  * @write:	pinning for read/write, currently ignored
141  * @pages:	array that receives pointers to the pages pinned.
142  *		Should be at least nr_segs long.
143  *
144  * Returns number of pages pinned. This may be fewer than the number
145  * requested. If nr_pages is 0 or negative, returns 0. If no pages
146  * were pinned, returns -errno. Each page returned must be released
147  * with a put_page() call when it is finished with.
148  */
149 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
150 		struct page **pages)
151 {
152 	int seg;
153 
154 	for (seg = 0; seg < nr_segs; seg++) {
155 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
156 			return seg;
157 
158 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
159 		get_page(pages[seg]);
160 	}
161 
162 	return seg;
163 }
164 EXPORT_SYMBOL_GPL(get_kernel_pages);
165 
166 /*
167  * get_kernel_page() - pin a kernel page in memory
168  * @start:	starting kernel address
169  * @write:	pinning for read/write, currently ignored
170  * @pages:	array that receives pointer to the page pinned.
171  *		Must be at least nr_segs long.
172  *
173  * Returns 1 if page is pinned. If the page was not pinned, returns
174  * -errno. The page returned must be released with a put_page() call
175  * when it is finished with.
176  */
177 int get_kernel_page(unsigned long start, int write, struct page **pages)
178 {
179 	const struct kvec kiov = {
180 		.iov_base = (void *)start,
181 		.iov_len = PAGE_SIZE
182 	};
183 
184 	return get_kernel_pages(&kiov, 1, write, pages);
185 }
186 EXPORT_SYMBOL_GPL(get_kernel_page);
187 
188 static void pagevec_lru_move_fn(struct pagevec *pvec,
189 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
190 	void *arg)
191 {
192 	int i;
193 	struct pglist_data *pgdat = NULL;
194 	struct lruvec *lruvec;
195 	unsigned long flags = 0;
196 
197 	for (i = 0; i < pagevec_count(pvec); i++) {
198 		struct page *page = pvec->pages[i];
199 		struct pglist_data *pagepgdat = page_pgdat(page);
200 
201 		if (pagepgdat != pgdat) {
202 			if (pgdat)
203 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
204 			pgdat = pagepgdat;
205 			spin_lock_irqsave(&pgdat->lru_lock, flags);
206 		}
207 
208 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
209 		(*move_fn)(page, lruvec, arg);
210 	}
211 	if (pgdat)
212 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
213 	release_pages(pvec->pages, pvec->nr, pvec->cold);
214 	pagevec_reinit(pvec);
215 }
216 
217 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
218 				 void *arg)
219 {
220 	int *pgmoved = arg;
221 
222 	if (PageLRU(page) && !PageUnevictable(page)) {
223 		del_page_from_lru_list(page, lruvec, page_lru(page));
224 		ClearPageActive(page);
225 		add_page_to_lru_list_tail(page, lruvec, page_lru(page));
226 		(*pgmoved)++;
227 	}
228 }
229 
230 /*
231  * pagevec_move_tail() must be called with IRQ disabled.
232  * Otherwise this may cause nasty races.
233  */
234 static void pagevec_move_tail(struct pagevec *pvec)
235 {
236 	int pgmoved = 0;
237 
238 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
239 	__count_vm_events(PGROTATED, pgmoved);
240 }
241 
242 /*
243  * Writeback is about to end against a page which has been marked for immediate
244  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
245  * inactive list.
246  */
247 void rotate_reclaimable_page(struct page *page)
248 {
249 	if (!PageLocked(page) && !PageDirty(page) &&
250 	    !PageUnevictable(page) && PageLRU(page)) {
251 		struct pagevec *pvec;
252 		unsigned long flags;
253 
254 		get_page(page);
255 		local_irq_save(flags);
256 		pvec = this_cpu_ptr(&lru_rotate_pvecs);
257 		if (!pagevec_add(pvec, page) || PageCompound(page))
258 			pagevec_move_tail(pvec);
259 		local_irq_restore(flags);
260 	}
261 }
262 
263 static void update_page_reclaim_stat(struct lruvec *lruvec,
264 				     int file, int rotated)
265 {
266 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
267 
268 	reclaim_stat->recent_scanned[file]++;
269 	if (rotated)
270 		reclaim_stat->recent_rotated[file]++;
271 }
272 
273 static void __activate_page(struct page *page, struct lruvec *lruvec,
274 			    void *arg)
275 {
276 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
277 		int file = page_is_file_cache(page);
278 		int lru = page_lru_base_type(page);
279 
280 		del_page_from_lru_list(page, lruvec, lru);
281 		SetPageActive(page);
282 		lru += LRU_ACTIVE;
283 		add_page_to_lru_list(page, lruvec, lru);
284 		trace_mm_lru_activate(page);
285 
286 		__count_vm_event(PGACTIVATE);
287 		update_page_reclaim_stat(lruvec, file, 1);
288 	}
289 }
290 
291 #ifdef CONFIG_SMP
292 static void activate_page_drain(int cpu)
293 {
294 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
295 
296 	if (pagevec_count(pvec))
297 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
298 }
299 
300 static bool need_activate_page_drain(int cpu)
301 {
302 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
303 }
304 
305 void activate_page(struct page *page)
306 {
307 	page = compound_head(page);
308 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
309 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
310 
311 		get_page(page);
312 		if (!pagevec_add(pvec, page) || PageCompound(page))
313 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
314 		put_cpu_var(activate_page_pvecs);
315 	}
316 }
317 
318 #else
319 static inline void activate_page_drain(int cpu)
320 {
321 }
322 
323 static bool need_activate_page_drain(int cpu)
324 {
325 	return false;
326 }
327 
328 void activate_page(struct page *page)
329 {
330 	struct zone *zone = page_zone(page);
331 
332 	page = compound_head(page);
333 	spin_lock_irq(zone_lru_lock(zone));
334 	__activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
335 	spin_unlock_irq(zone_lru_lock(zone));
336 }
337 #endif
338 
339 static void __lru_cache_activate_page(struct page *page)
340 {
341 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
342 	int i;
343 
344 	/*
345 	 * Search backwards on the optimistic assumption that the page being
346 	 * activated has just been added to this pagevec. Note that only
347 	 * the local pagevec is examined as a !PageLRU page could be in the
348 	 * process of being released, reclaimed, migrated or on a remote
349 	 * pagevec that is currently being drained. Furthermore, marking
350 	 * a remote pagevec's page PageActive potentially hits a race where
351 	 * a page is marked PageActive just after it is added to the inactive
352 	 * list causing accounting errors and BUG_ON checks to trigger.
353 	 */
354 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
355 		struct page *pagevec_page = pvec->pages[i];
356 
357 		if (pagevec_page == page) {
358 			SetPageActive(page);
359 			break;
360 		}
361 	}
362 
363 	put_cpu_var(lru_add_pvec);
364 }
365 
366 /*
367  * Mark a page as having seen activity.
368  *
369  * inactive,unreferenced	->	inactive,referenced
370  * inactive,referenced		->	active,unreferenced
371  * active,unreferenced		->	active,referenced
372  *
373  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
374  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
375  */
376 void mark_page_accessed(struct page *page)
377 {
378 	page = compound_head(page);
379 	if (!PageActive(page) && !PageUnevictable(page) &&
380 			PageReferenced(page)) {
381 
382 		/*
383 		 * If the page is on the LRU, queue it for activation via
384 		 * activate_page_pvecs. Otherwise, assume the page is on a
385 		 * pagevec, mark it active and it'll be moved to the active
386 		 * LRU on the next drain.
387 		 */
388 		if (PageLRU(page))
389 			activate_page(page);
390 		else
391 			__lru_cache_activate_page(page);
392 		ClearPageReferenced(page);
393 		if (page_is_file_cache(page))
394 			workingset_activation(page);
395 	} else if (!PageReferenced(page)) {
396 		SetPageReferenced(page);
397 	}
398 	if (page_is_idle(page))
399 		clear_page_idle(page);
400 }
401 EXPORT_SYMBOL(mark_page_accessed);
402 
403 static void __lru_cache_add(struct page *page)
404 {
405 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
406 
407 	get_page(page);
408 	if (!pagevec_add(pvec, page) || PageCompound(page))
409 		__pagevec_lru_add(pvec);
410 	put_cpu_var(lru_add_pvec);
411 }
412 
413 /**
414  * lru_cache_add: add a page to the page lists
415  * @page: the page to add
416  */
417 void lru_cache_add_anon(struct page *page)
418 {
419 	if (PageActive(page))
420 		ClearPageActive(page);
421 	__lru_cache_add(page);
422 }
423 
424 void lru_cache_add_file(struct page *page)
425 {
426 	if (PageActive(page))
427 		ClearPageActive(page);
428 	__lru_cache_add(page);
429 }
430 EXPORT_SYMBOL(lru_cache_add_file);
431 
432 /**
433  * lru_cache_add - add a page to a page list
434  * @page: the page to be added to the LRU.
435  *
436  * Queue the page for addition to the LRU via pagevec. The decision on whether
437  * to add the page to the [in]active [file|anon] list is deferred until the
438  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
439  * have the page added to the active list using mark_page_accessed().
440  */
441 void lru_cache_add(struct page *page)
442 {
443 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
444 	VM_BUG_ON_PAGE(PageLRU(page), page);
445 	__lru_cache_add(page);
446 }
447 
448 /**
449  * add_page_to_unevictable_list - add a page to the unevictable list
450  * @page:  the page to be added to the unevictable list
451  *
452  * Add page directly to its zone's unevictable list.  To avoid races with
453  * tasks that might be making the page evictable, through eg. munlock,
454  * munmap or exit, while it's not on the lru, we want to add the page
455  * while it's locked or otherwise "invisible" to other tasks.  This is
456  * difficult to do when using the pagevec cache, so bypass that.
457  */
458 void add_page_to_unevictable_list(struct page *page)
459 {
460 	struct pglist_data *pgdat = page_pgdat(page);
461 	struct lruvec *lruvec;
462 
463 	spin_lock_irq(&pgdat->lru_lock);
464 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
465 	ClearPageActive(page);
466 	SetPageUnevictable(page);
467 	SetPageLRU(page);
468 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
469 	spin_unlock_irq(&pgdat->lru_lock);
470 }
471 
472 /**
473  * lru_cache_add_active_or_unevictable
474  * @page:  the page to be added to LRU
475  * @vma:   vma in which page is mapped for determining reclaimability
476  *
477  * Place @page on the active or unevictable LRU list, depending on its
478  * evictability.  Note that if the page is not evictable, it goes
479  * directly back onto it's zone's unevictable list, it does NOT use a
480  * per cpu pagevec.
481  */
482 void lru_cache_add_active_or_unevictable(struct page *page,
483 					 struct vm_area_struct *vma)
484 {
485 	VM_BUG_ON_PAGE(PageLRU(page), page);
486 
487 	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
488 		SetPageActive(page);
489 		lru_cache_add(page);
490 		return;
491 	}
492 
493 	if (!TestSetPageMlocked(page)) {
494 		/*
495 		 * We use the irq-unsafe __mod_zone_page_stat because this
496 		 * counter is not modified from interrupt context, and the pte
497 		 * lock is held(spinlock), which implies preemption disabled.
498 		 */
499 		__mod_zone_page_state(page_zone(page), NR_MLOCK,
500 				    hpage_nr_pages(page));
501 		count_vm_event(UNEVICTABLE_PGMLOCKED);
502 	}
503 	add_page_to_unevictable_list(page);
504 }
505 
506 /*
507  * If the page can not be invalidated, it is moved to the
508  * inactive list to speed up its reclaim.  It is moved to the
509  * head of the list, rather than the tail, to give the flusher
510  * threads some time to write it out, as this is much more
511  * effective than the single-page writeout from reclaim.
512  *
513  * If the page isn't page_mapped and dirty/writeback, the page
514  * could reclaim asap using PG_reclaim.
515  *
516  * 1. active, mapped page -> none
517  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
518  * 3. inactive, mapped page -> none
519  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
520  * 5. inactive, clean -> inactive, tail
521  * 6. Others -> none
522  *
523  * In 4, why it moves inactive's head, the VM expects the page would
524  * be write it out by flusher threads as this is much more effective
525  * than the single-page writeout from reclaim.
526  */
527 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
528 			      void *arg)
529 {
530 	int lru, file;
531 	bool active;
532 
533 	if (!PageLRU(page))
534 		return;
535 
536 	if (PageUnevictable(page))
537 		return;
538 
539 	/* Some processes are using the page */
540 	if (page_mapped(page))
541 		return;
542 
543 	active = PageActive(page);
544 	file = page_is_file_cache(page);
545 	lru = page_lru_base_type(page);
546 
547 	del_page_from_lru_list(page, lruvec, lru + active);
548 	ClearPageActive(page);
549 	ClearPageReferenced(page);
550 	add_page_to_lru_list(page, lruvec, lru);
551 
552 	if (PageWriteback(page) || PageDirty(page)) {
553 		/*
554 		 * PG_reclaim could be raced with end_page_writeback
555 		 * It can make readahead confusing.  But race window
556 		 * is _really_ small and  it's non-critical problem.
557 		 */
558 		SetPageReclaim(page);
559 	} else {
560 		/*
561 		 * The page's writeback ends up during pagevec
562 		 * We moves tha page into tail of inactive.
563 		 */
564 		list_move_tail(&page->lru, &lruvec->lists[lru]);
565 		__count_vm_event(PGROTATED);
566 	}
567 
568 	if (active)
569 		__count_vm_event(PGDEACTIVATE);
570 	update_page_reclaim_stat(lruvec, file, 0);
571 }
572 
573 
574 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
575 			    void *arg)
576 {
577 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
578 	    !PageUnevictable(page)) {
579 		bool active = PageActive(page);
580 
581 		del_page_from_lru_list(page, lruvec,
582 				       LRU_INACTIVE_ANON + active);
583 		ClearPageActive(page);
584 		ClearPageReferenced(page);
585 		/*
586 		 * lazyfree pages are clean anonymous pages. They have
587 		 * SwapBacked flag cleared to distinguish normal anonymous
588 		 * pages
589 		 */
590 		ClearPageSwapBacked(page);
591 		add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
592 
593 		__count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
594 		count_memcg_page_event(page, PGLAZYFREE);
595 		update_page_reclaim_stat(lruvec, 1, 0);
596 	}
597 }
598 
599 /*
600  * Drain pages out of the cpu's pagevecs.
601  * Either "cpu" is the current CPU, and preemption has already been
602  * disabled; or "cpu" is being hot-unplugged, and is already dead.
603  */
604 void lru_add_drain_cpu(int cpu)
605 {
606 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
607 
608 	if (pagevec_count(pvec))
609 		__pagevec_lru_add(pvec);
610 
611 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
612 	if (pagevec_count(pvec)) {
613 		unsigned long flags;
614 
615 		/* No harm done if a racing interrupt already did this */
616 		local_irq_save(flags);
617 		pagevec_move_tail(pvec);
618 		local_irq_restore(flags);
619 	}
620 
621 	pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
622 	if (pagevec_count(pvec))
623 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
624 
625 	pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
626 	if (pagevec_count(pvec))
627 		pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
628 
629 	activate_page_drain(cpu);
630 }
631 
632 /**
633  * deactivate_file_page - forcefully deactivate a file page
634  * @page: page to deactivate
635  *
636  * This function hints the VM that @page is a good reclaim candidate,
637  * for example if its invalidation fails due to the page being dirty
638  * or under writeback.
639  */
640 void deactivate_file_page(struct page *page)
641 {
642 	/*
643 	 * In a workload with many unevictable page such as mprotect,
644 	 * unevictable page deactivation for accelerating reclaim is pointless.
645 	 */
646 	if (PageUnevictable(page))
647 		return;
648 
649 	if (likely(get_page_unless_zero(page))) {
650 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
651 
652 		if (!pagevec_add(pvec, page) || PageCompound(page))
653 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
654 		put_cpu_var(lru_deactivate_file_pvecs);
655 	}
656 }
657 
658 /**
659  * mark_page_lazyfree - make an anon page lazyfree
660  * @page: page to deactivate
661  *
662  * mark_page_lazyfree() moves @page to the inactive file list.
663  * This is done to accelerate the reclaim of @page.
664  */
665 void mark_page_lazyfree(struct page *page)
666 {
667 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
668 	    !PageUnevictable(page)) {
669 		struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
670 
671 		get_page(page);
672 		if (!pagevec_add(pvec, page) || PageCompound(page))
673 			pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
674 		put_cpu_var(lru_lazyfree_pvecs);
675 	}
676 }
677 
678 void lru_add_drain(void)
679 {
680 	lru_add_drain_cpu(get_cpu());
681 	put_cpu();
682 }
683 
684 static void lru_add_drain_per_cpu(struct work_struct *dummy)
685 {
686 	lru_add_drain();
687 }
688 
689 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
690 
691 void lru_add_drain_all_cpuslocked(void)
692 {
693 	static DEFINE_MUTEX(lock);
694 	static struct cpumask has_work;
695 	int cpu;
696 
697 	/*
698 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
699 	 * initialized.
700 	 */
701 	if (WARN_ON(!mm_percpu_wq))
702 		return;
703 
704 	mutex_lock(&lock);
705 	cpumask_clear(&has_work);
706 
707 	for_each_online_cpu(cpu) {
708 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
709 
710 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
711 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
712 		    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
713 		    pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
714 		    need_activate_page_drain(cpu)) {
715 			INIT_WORK(work, lru_add_drain_per_cpu);
716 			queue_work_on(cpu, mm_percpu_wq, work);
717 			cpumask_set_cpu(cpu, &has_work);
718 		}
719 	}
720 
721 	for_each_cpu(cpu, &has_work)
722 		flush_work(&per_cpu(lru_add_drain_work, cpu));
723 
724 	mutex_unlock(&lock);
725 }
726 
727 void lru_add_drain_all(void)
728 {
729 	get_online_cpus();
730 	lru_add_drain_all_cpuslocked();
731 	put_online_cpus();
732 }
733 
734 /**
735  * release_pages - batched put_page()
736  * @pages: array of pages to release
737  * @nr: number of pages
738  * @cold: whether the pages are cache cold
739  *
740  * Decrement the reference count on all the pages in @pages.  If it
741  * fell to zero, remove the page from the LRU and free it.
742  */
743 void release_pages(struct page **pages, int nr, bool cold)
744 {
745 	int i;
746 	LIST_HEAD(pages_to_free);
747 	struct pglist_data *locked_pgdat = NULL;
748 	struct lruvec *lruvec;
749 	unsigned long uninitialized_var(flags);
750 	unsigned int uninitialized_var(lock_batch);
751 
752 	for (i = 0; i < nr; i++) {
753 		struct page *page = pages[i];
754 
755 		/*
756 		 * Make sure the IRQ-safe lock-holding time does not get
757 		 * excessive with a continuous string of pages from the
758 		 * same pgdat. The lock is held only if pgdat != NULL.
759 		 */
760 		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
761 			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
762 			locked_pgdat = NULL;
763 		}
764 
765 		if (is_huge_zero_page(page))
766 			continue;
767 
768 		page = compound_head(page);
769 		if (!put_page_testzero(page))
770 			continue;
771 
772 		if (PageCompound(page)) {
773 			if (locked_pgdat) {
774 				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
775 				locked_pgdat = NULL;
776 			}
777 			__put_compound_page(page);
778 			continue;
779 		}
780 
781 		if (PageLRU(page)) {
782 			struct pglist_data *pgdat = page_pgdat(page);
783 
784 			if (pgdat != locked_pgdat) {
785 				if (locked_pgdat)
786 					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
787 									flags);
788 				lock_batch = 0;
789 				locked_pgdat = pgdat;
790 				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
791 			}
792 
793 			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
794 			VM_BUG_ON_PAGE(!PageLRU(page), page);
795 			__ClearPageLRU(page);
796 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
797 		}
798 
799 		/* Clear Active bit in case of parallel mark_page_accessed */
800 		__ClearPageActive(page);
801 		__ClearPageWaiters(page);
802 
803 		list_add(&page->lru, &pages_to_free);
804 	}
805 	if (locked_pgdat)
806 		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
807 
808 	mem_cgroup_uncharge_list(&pages_to_free);
809 	free_hot_cold_page_list(&pages_to_free, cold);
810 }
811 EXPORT_SYMBOL(release_pages);
812 
813 /*
814  * The pages which we're about to release may be in the deferred lru-addition
815  * queues.  That would prevent them from really being freed right now.  That's
816  * OK from a correctness point of view but is inefficient - those pages may be
817  * cache-warm and we want to give them back to the page allocator ASAP.
818  *
819  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
820  * and __pagevec_lru_add_active() call release_pages() directly to avoid
821  * mutual recursion.
822  */
823 void __pagevec_release(struct pagevec *pvec)
824 {
825 	lru_add_drain();
826 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
827 	pagevec_reinit(pvec);
828 }
829 EXPORT_SYMBOL(__pagevec_release);
830 
831 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
832 /* used by __split_huge_page_refcount() */
833 void lru_add_page_tail(struct page *page, struct page *page_tail,
834 		       struct lruvec *lruvec, struct list_head *list)
835 {
836 	const int file = 0;
837 
838 	VM_BUG_ON_PAGE(!PageHead(page), page);
839 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
840 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
841 	VM_BUG_ON(NR_CPUS != 1 &&
842 		  !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
843 
844 	if (!list)
845 		SetPageLRU(page_tail);
846 
847 	if (likely(PageLRU(page)))
848 		list_add_tail(&page_tail->lru, &page->lru);
849 	else if (list) {
850 		/* page reclaim is reclaiming a huge page */
851 		get_page(page_tail);
852 		list_add_tail(&page_tail->lru, list);
853 	} else {
854 		struct list_head *list_head;
855 		/*
856 		 * Head page has not yet been counted, as an hpage,
857 		 * so we must account for each subpage individually.
858 		 *
859 		 * Use the standard add function to put page_tail on the list,
860 		 * but then correct its position so they all end up in order.
861 		 */
862 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
863 		list_head = page_tail->lru.prev;
864 		list_move_tail(&page_tail->lru, list_head);
865 	}
866 
867 	if (!PageUnevictable(page))
868 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
869 }
870 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
871 
872 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
873 				 void *arg)
874 {
875 	int file = page_is_file_cache(page);
876 	int active = PageActive(page);
877 	enum lru_list lru = page_lru(page);
878 
879 	VM_BUG_ON_PAGE(PageLRU(page), page);
880 
881 	SetPageLRU(page);
882 	add_page_to_lru_list(page, lruvec, lru);
883 	update_page_reclaim_stat(lruvec, file, active);
884 	trace_mm_lru_insertion(page, lru);
885 }
886 
887 /*
888  * Add the passed pages to the LRU, then drop the caller's refcount
889  * on them.  Reinitialises the caller's pagevec.
890  */
891 void __pagevec_lru_add(struct pagevec *pvec)
892 {
893 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
894 }
895 EXPORT_SYMBOL(__pagevec_lru_add);
896 
897 /**
898  * pagevec_lookup_entries - gang pagecache lookup
899  * @pvec:	Where the resulting entries are placed
900  * @mapping:	The address_space to search
901  * @start:	The starting entry index
902  * @nr_entries:	The maximum number of entries
903  * @indices:	The cache indices corresponding to the entries in @pvec
904  *
905  * pagevec_lookup_entries() will search for and return a group of up
906  * to @nr_entries pages and shadow entries in the mapping.  All
907  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
908  * reference against actual pages in @pvec.
909  *
910  * The search returns a group of mapping-contiguous entries with
911  * ascending indexes.  There may be holes in the indices due to
912  * not-present entries.
913  *
914  * pagevec_lookup_entries() returns the number of entries which were
915  * found.
916  */
917 unsigned pagevec_lookup_entries(struct pagevec *pvec,
918 				struct address_space *mapping,
919 				pgoff_t start, unsigned nr_pages,
920 				pgoff_t *indices)
921 {
922 	pvec->nr = find_get_entries(mapping, start, nr_pages,
923 				    pvec->pages, indices);
924 	return pagevec_count(pvec);
925 }
926 
927 /**
928  * pagevec_remove_exceptionals - pagevec exceptionals pruning
929  * @pvec:	The pagevec to prune
930  *
931  * pagevec_lookup_entries() fills both pages and exceptional radix
932  * tree entries into the pagevec.  This function prunes all
933  * exceptionals from @pvec without leaving holes, so that it can be
934  * passed on to page-only pagevec operations.
935  */
936 void pagevec_remove_exceptionals(struct pagevec *pvec)
937 {
938 	int i, j;
939 
940 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
941 		struct page *page = pvec->pages[i];
942 		if (!radix_tree_exceptional_entry(page))
943 			pvec->pages[j++] = page;
944 	}
945 	pvec->nr = j;
946 }
947 
948 /**
949  * pagevec_lookup - gang pagecache lookup
950  * @pvec:	Where the resulting pages are placed
951  * @mapping:	The address_space to search
952  * @start:	The starting page index
953  * @nr_pages:	The maximum number of pages
954  *
955  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
956  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
957  * reference against the pages in @pvec.
958  *
959  * The search returns a group of mapping-contiguous pages with ascending
960  * indexes.  There may be holes in the indices due to not-present pages.
961  *
962  * pagevec_lookup() returns the number of pages which were found.
963  */
964 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
965 		pgoff_t start, unsigned nr_pages)
966 {
967 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
968 	return pagevec_count(pvec);
969 }
970 EXPORT_SYMBOL(pagevec_lookup);
971 
972 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
973 		pgoff_t *index, int tag, unsigned nr_pages)
974 {
975 	pvec->nr = find_get_pages_tag(mapping, index, tag,
976 					nr_pages, pvec->pages);
977 	return pagevec_count(pvec);
978 }
979 EXPORT_SYMBOL(pagevec_lookup_tag);
980 
981 /*
982  * Perform any setup for the swap system
983  */
984 void __init swap_setup(void)
985 {
986 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
987 
988 	/* Use a smaller cluster for small-memory machines */
989 	if (megs < 16)
990 		page_cluster = 2;
991 	else
992 		page_cluster = 3;
993 	/*
994 	 * Right now other parts of the system means that we
995 	 * _really_ don't want to cluster much more
996 	 */
997 }
998