xref: /openbmc/linux/mm/swap.c (revision 20a55463)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40 
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45 
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
47 int page_cluster;
48 const int page_cluster_max = 31;
49 
50 /* Protecting only lru_rotate.fbatch which requires disabling interrupts */
51 struct lru_rotate {
52 	local_lock_t lock;
53 	struct folio_batch fbatch;
54 };
55 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
56 	.lock = INIT_LOCAL_LOCK(lock),
57 };
58 
59 /*
60  * The following folio batches are grouped together because they are protected
61  * by disabling preemption (and interrupts remain enabled).
62  */
63 struct cpu_fbatches {
64 	local_lock_t lock;
65 	struct folio_batch lru_add;
66 	struct folio_batch lru_deactivate_file;
67 	struct folio_batch lru_deactivate;
68 	struct folio_batch lru_lazyfree;
69 #ifdef CONFIG_SMP
70 	struct folio_batch activate;
71 #endif
72 };
73 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
74 	.lock = INIT_LOCAL_LOCK(lock),
75 };
76 
77 /*
78  * This path almost never happens for VM activity - pages are normally freed
79  * via pagevecs.  But it gets used by networking - and for compound pages.
80  */
81 static void __page_cache_release(struct folio *folio)
82 {
83 	if (folio_test_lru(folio)) {
84 		struct lruvec *lruvec;
85 		unsigned long flags;
86 
87 		lruvec = folio_lruvec_lock_irqsave(folio, &flags);
88 		lruvec_del_folio(lruvec, folio);
89 		__folio_clear_lru_flags(folio);
90 		unlock_page_lruvec_irqrestore(lruvec, flags);
91 	}
92 	/* See comment on folio_test_mlocked in release_pages() */
93 	if (unlikely(folio_test_mlocked(folio))) {
94 		long nr_pages = folio_nr_pages(folio);
95 
96 		__folio_clear_mlocked(folio);
97 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
98 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
99 	}
100 }
101 
102 static void __folio_put_small(struct folio *folio)
103 {
104 	__page_cache_release(folio);
105 	mem_cgroup_uncharge(folio);
106 	free_unref_page(&folio->page, 0);
107 }
108 
109 static void __folio_put_large(struct folio *folio)
110 {
111 	/*
112 	 * __page_cache_release() is supposed to be called for thp, not for
113 	 * hugetlb. This is because hugetlb page does never have PageLRU set
114 	 * (it's never listed to any LRU lists) and no memcg routines should
115 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
116 	 */
117 	if (!folio_test_hugetlb(folio))
118 		__page_cache_release(folio);
119 	destroy_large_folio(folio);
120 }
121 
122 void __folio_put(struct folio *folio)
123 {
124 	if (unlikely(folio_is_zone_device(folio)))
125 		free_zone_device_page(&folio->page);
126 	else if (unlikely(folio_test_large(folio)))
127 		__folio_put_large(folio);
128 	else
129 		__folio_put_small(folio);
130 }
131 EXPORT_SYMBOL(__folio_put);
132 
133 /**
134  * put_pages_list() - release a list of pages
135  * @pages: list of pages threaded on page->lru
136  *
137  * Release a list of pages which are strung together on page.lru.
138  */
139 void put_pages_list(struct list_head *pages)
140 {
141 	struct folio *folio, *next;
142 
143 	list_for_each_entry_safe(folio, next, pages, lru) {
144 		if (!folio_put_testzero(folio)) {
145 			list_del(&folio->lru);
146 			continue;
147 		}
148 		if (folio_test_large(folio)) {
149 			list_del(&folio->lru);
150 			__folio_put_large(folio);
151 			continue;
152 		}
153 		/* LRU flag must be clear because it's passed using the lru */
154 	}
155 
156 	free_unref_page_list(pages);
157 	INIT_LIST_HEAD(pages);
158 }
159 EXPORT_SYMBOL(put_pages_list);
160 
161 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
162 
163 static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
164 {
165 	int was_unevictable = folio_test_clear_unevictable(folio);
166 	long nr_pages = folio_nr_pages(folio);
167 
168 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
169 
170 	/*
171 	 * Is an smp_mb__after_atomic() still required here, before
172 	 * folio_evictable() tests the mlocked flag, to rule out the possibility
173 	 * of stranding an evictable folio on an unevictable LRU?  I think
174 	 * not, because __munlock_page() only clears the mlocked flag
175 	 * while the LRU lock is held.
176 	 *
177 	 * (That is not true of __page_cache_release(), and not necessarily
178 	 * true of release_pages(): but those only clear the mlocked flag after
179 	 * folio_put_testzero() has excluded any other users of the folio.)
180 	 */
181 	if (folio_evictable(folio)) {
182 		if (was_unevictable)
183 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
184 	} else {
185 		folio_clear_active(folio);
186 		folio_set_unevictable(folio);
187 		/*
188 		 * folio->mlock_count = !!folio_test_mlocked(folio)?
189 		 * But that leaves __mlock_page() in doubt whether another
190 		 * actor has already counted the mlock or not.  Err on the
191 		 * safe side, underestimate, let page reclaim fix it, rather
192 		 * than leaving a page on the unevictable LRU indefinitely.
193 		 */
194 		folio->mlock_count = 0;
195 		if (!was_unevictable)
196 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
197 	}
198 
199 	lruvec_add_folio(lruvec, folio);
200 	trace_mm_lru_insertion(folio);
201 }
202 
203 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
204 {
205 	int i;
206 	struct lruvec *lruvec = NULL;
207 	unsigned long flags = 0;
208 
209 	for (i = 0; i < folio_batch_count(fbatch); i++) {
210 		struct folio *folio = fbatch->folios[i];
211 
212 		/* block memcg migration while the folio moves between lru */
213 		if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
214 			continue;
215 
216 		lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
217 		move_fn(lruvec, folio);
218 
219 		folio_set_lru(folio);
220 	}
221 
222 	if (lruvec)
223 		unlock_page_lruvec_irqrestore(lruvec, flags);
224 	folios_put(fbatch->folios, folio_batch_count(fbatch));
225 	folio_batch_init(fbatch);
226 }
227 
228 static void folio_batch_add_and_move(struct folio_batch *fbatch,
229 		struct folio *folio, move_fn_t move_fn)
230 {
231 	if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
232 	    !lru_cache_disabled())
233 		return;
234 	folio_batch_move_lru(fbatch, move_fn);
235 }
236 
237 static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
238 {
239 	if (!folio_test_unevictable(folio)) {
240 		lruvec_del_folio(lruvec, folio);
241 		folio_clear_active(folio);
242 		lruvec_add_folio_tail(lruvec, folio);
243 		__count_vm_events(PGROTATED, folio_nr_pages(folio));
244 	}
245 }
246 
247 /*
248  * Writeback is about to end against a folio which has been marked for
249  * immediate reclaim.  If it still appears to be reclaimable, move it
250  * to the tail of the inactive list.
251  *
252  * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
253  */
254 void folio_rotate_reclaimable(struct folio *folio)
255 {
256 	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
257 	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
258 		struct folio_batch *fbatch;
259 		unsigned long flags;
260 
261 		folio_get(folio);
262 		local_lock_irqsave(&lru_rotate.lock, flags);
263 		fbatch = this_cpu_ptr(&lru_rotate.fbatch);
264 		folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
265 		local_unlock_irqrestore(&lru_rotate.lock, flags);
266 	}
267 }
268 
269 void lru_note_cost(struct lruvec *lruvec, bool file,
270 		   unsigned int nr_io, unsigned int nr_rotated)
271 {
272 	unsigned long cost;
273 
274 	/*
275 	 * Reflect the relative cost of incurring IO and spending CPU
276 	 * time on rotations. This doesn't attempt to make a precise
277 	 * comparison, it just says: if reloads are about comparable
278 	 * between the LRU lists, or rotations are overwhelmingly
279 	 * different between them, adjust scan balance for CPU work.
280 	 */
281 	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
282 
283 	do {
284 		unsigned long lrusize;
285 
286 		/*
287 		 * Hold lruvec->lru_lock is safe here, since
288 		 * 1) The pinned lruvec in reclaim, or
289 		 * 2) From a pre-LRU page during refault (which also holds the
290 		 *    rcu lock, so would be safe even if the page was on the LRU
291 		 *    and could move simultaneously to a new lruvec).
292 		 */
293 		spin_lock_irq(&lruvec->lru_lock);
294 		/* Record cost event */
295 		if (file)
296 			lruvec->file_cost += cost;
297 		else
298 			lruvec->anon_cost += cost;
299 
300 		/*
301 		 * Decay previous events
302 		 *
303 		 * Because workloads change over time (and to avoid
304 		 * overflow) we keep these statistics as a floating
305 		 * average, which ends up weighing recent refaults
306 		 * more than old ones.
307 		 */
308 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
309 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
310 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
311 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
312 
313 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
314 			lruvec->file_cost /= 2;
315 			lruvec->anon_cost /= 2;
316 		}
317 		spin_unlock_irq(&lruvec->lru_lock);
318 	} while ((lruvec = parent_lruvec(lruvec)));
319 }
320 
321 void lru_note_cost_refault(struct folio *folio)
322 {
323 	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
324 		      folio_nr_pages(folio), 0);
325 }
326 
327 static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
328 {
329 	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
330 		long nr_pages = folio_nr_pages(folio);
331 
332 		lruvec_del_folio(lruvec, folio);
333 		folio_set_active(folio);
334 		lruvec_add_folio(lruvec, folio);
335 		trace_mm_lru_activate(folio);
336 
337 		__count_vm_events(PGACTIVATE, nr_pages);
338 		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
339 				     nr_pages);
340 	}
341 }
342 
343 #ifdef CONFIG_SMP
344 static void folio_activate_drain(int cpu)
345 {
346 	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
347 
348 	if (folio_batch_count(fbatch))
349 		folio_batch_move_lru(fbatch, folio_activate_fn);
350 }
351 
352 void folio_activate(struct folio *folio)
353 {
354 	if (folio_test_lru(folio) && !folio_test_active(folio) &&
355 	    !folio_test_unevictable(folio)) {
356 		struct folio_batch *fbatch;
357 
358 		folio_get(folio);
359 		local_lock(&cpu_fbatches.lock);
360 		fbatch = this_cpu_ptr(&cpu_fbatches.activate);
361 		folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
362 		local_unlock(&cpu_fbatches.lock);
363 	}
364 }
365 
366 #else
367 static inline void folio_activate_drain(int cpu)
368 {
369 }
370 
371 void folio_activate(struct folio *folio)
372 {
373 	struct lruvec *lruvec;
374 
375 	if (folio_test_clear_lru(folio)) {
376 		lruvec = folio_lruvec_lock_irq(folio);
377 		folio_activate_fn(lruvec, folio);
378 		unlock_page_lruvec_irq(lruvec);
379 		folio_set_lru(folio);
380 	}
381 }
382 #endif
383 
384 static void __lru_cache_activate_folio(struct folio *folio)
385 {
386 	struct folio_batch *fbatch;
387 	int i;
388 
389 	local_lock(&cpu_fbatches.lock);
390 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
391 
392 	/*
393 	 * Search backwards on the optimistic assumption that the folio being
394 	 * activated has just been added to this batch. Note that only
395 	 * the local batch is examined as a !LRU folio could be in the
396 	 * process of being released, reclaimed, migrated or on a remote
397 	 * batch that is currently being drained. Furthermore, marking
398 	 * a remote batch's folio active potentially hits a race where
399 	 * a folio is marked active just after it is added to the inactive
400 	 * list causing accounting errors and BUG_ON checks to trigger.
401 	 */
402 	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
403 		struct folio *batch_folio = fbatch->folios[i];
404 
405 		if (batch_folio == folio) {
406 			folio_set_active(folio);
407 			break;
408 		}
409 	}
410 
411 	local_unlock(&cpu_fbatches.lock);
412 }
413 
414 #ifdef CONFIG_LRU_GEN
415 static void folio_inc_refs(struct folio *folio)
416 {
417 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
418 
419 	if (folio_test_unevictable(folio))
420 		return;
421 
422 	if (!folio_test_referenced(folio)) {
423 		folio_set_referenced(folio);
424 		return;
425 	}
426 
427 	if (!folio_test_workingset(folio)) {
428 		folio_set_workingset(folio);
429 		return;
430 	}
431 
432 	/* see the comment on MAX_NR_TIERS */
433 	do {
434 		new_flags = old_flags & LRU_REFS_MASK;
435 		if (new_flags == LRU_REFS_MASK)
436 			break;
437 
438 		new_flags += BIT(LRU_REFS_PGOFF);
439 		new_flags |= old_flags & ~LRU_REFS_MASK;
440 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
441 }
442 #else
443 static void folio_inc_refs(struct folio *folio)
444 {
445 }
446 #endif /* CONFIG_LRU_GEN */
447 
448 /*
449  * Mark a page as having seen activity.
450  *
451  * inactive,unreferenced	->	inactive,referenced
452  * inactive,referenced		->	active,unreferenced
453  * active,unreferenced		->	active,referenced
454  *
455  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
456  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
457  */
458 void folio_mark_accessed(struct folio *folio)
459 {
460 	if (lru_gen_enabled()) {
461 		folio_inc_refs(folio);
462 		return;
463 	}
464 
465 	if (!folio_test_referenced(folio)) {
466 		folio_set_referenced(folio);
467 	} else if (folio_test_unevictable(folio)) {
468 		/*
469 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
470 		 * this list is never rotated or maintained, so marking an
471 		 * unevictable page accessed has no effect.
472 		 */
473 	} else if (!folio_test_active(folio)) {
474 		/*
475 		 * If the folio is on the LRU, queue it for activation via
476 		 * cpu_fbatches.activate. Otherwise, assume the folio is in a
477 		 * folio_batch, mark it active and it'll be moved to the active
478 		 * LRU on the next drain.
479 		 */
480 		if (folio_test_lru(folio))
481 			folio_activate(folio);
482 		else
483 			__lru_cache_activate_folio(folio);
484 		folio_clear_referenced(folio);
485 		workingset_activation(folio);
486 	}
487 	if (folio_test_idle(folio))
488 		folio_clear_idle(folio);
489 }
490 EXPORT_SYMBOL(folio_mark_accessed);
491 
492 /**
493  * folio_add_lru - Add a folio to an LRU list.
494  * @folio: The folio to be added to the LRU.
495  *
496  * Queue the folio for addition to the LRU. The decision on whether
497  * to add the page to the [in]active [file|anon] list is deferred until the
498  * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
499  * have the folio added to the active list using folio_mark_accessed().
500  */
501 void folio_add_lru(struct folio *folio)
502 {
503 	struct folio_batch *fbatch;
504 
505 	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
506 			folio_test_unevictable(folio), folio);
507 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
508 
509 	/* see the comment in lru_gen_add_folio() */
510 	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
511 	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
512 		folio_set_active(folio);
513 
514 	folio_get(folio);
515 	local_lock(&cpu_fbatches.lock);
516 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
517 	folio_batch_add_and_move(fbatch, folio, lru_add_fn);
518 	local_unlock(&cpu_fbatches.lock);
519 }
520 EXPORT_SYMBOL(folio_add_lru);
521 
522 /**
523  * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
524  * @folio: The folio to be added to the LRU.
525  * @vma: VMA in which the folio is mapped.
526  *
527  * If the VMA is mlocked, @folio is added to the unevictable list.
528  * Otherwise, it is treated the same way as folio_add_lru().
529  */
530 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
531 {
532 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
533 
534 	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
535 		mlock_new_page(&folio->page);
536 	else
537 		folio_add_lru(folio);
538 }
539 
540 /*
541  * If the folio cannot be invalidated, it is moved to the
542  * inactive list to speed up its reclaim.  It is moved to the
543  * head of the list, rather than the tail, to give the flusher
544  * threads some time to write it out, as this is much more
545  * effective than the single-page writeout from reclaim.
546  *
547  * If the folio isn't mapped and dirty/writeback, the folio
548  * could be reclaimed asap using the reclaim flag.
549  *
550  * 1. active, mapped folio -> none
551  * 2. active, dirty/writeback folio -> inactive, head, reclaim
552  * 3. inactive, mapped folio -> none
553  * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
554  * 5. inactive, clean -> inactive, tail
555  * 6. Others -> none
556  *
557  * In 4, it moves to the head of the inactive list so the folio is
558  * written out by flusher threads as this is much more efficient
559  * than the single-page writeout from reclaim.
560  */
561 static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
562 {
563 	bool active = folio_test_active(folio);
564 	long nr_pages = folio_nr_pages(folio);
565 
566 	if (folio_test_unevictable(folio))
567 		return;
568 
569 	/* Some processes are using the folio */
570 	if (folio_mapped(folio))
571 		return;
572 
573 	lruvec_del_folio(lruvec, folio);
574 	folio_clear_active(folio);
575 	folio_clear_referenced(folio);
576 
577 	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
578 		/*
579 		 * Setting the reclaim flag could race with
580 		 * folio_end_writeback() and confuse readahead.  But the
581 		 * race window is _really_ small and  it's not a critical
582 		 * problem.
583 		 */
584 		lruvec_add_folio(lruvec, folio);
585 		folio_set_reclaim(folio);
586 	} else {
587 		/*
588 		 * The folio's writeback ended while it was in the batch.
589 		 * We move that folio to the tail of the inactive list.
590 		 */
591 		lruvec_add_folio_tail(lruvec, folio);
592 		__count_vm_events(PGROTATED, nr_pages);
593 	}
594 
595 	if (active) {
596 		__count_vm_events(PGDEACTIVATE, nr_pages);
597 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
598 				     nr_pages);
599 	}
600 }
601 
602 static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
603 {
604 	if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
605 		long nr_pages = folio_nr_pages(folio);
606 
607 		lruvec_del_folio(lruvec, folio);
608 		folio_clear_active(folio);
609 		folio_clear_referenced(folio);
610 		lruvec_add_folio(lruvec, folio);
611 
612 		__count_vm_events(PGDEACTIVATE, nr_pages);
613 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
614 				     nr_pages);
615 	}
616 }
617 
618 static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
619 {
620 	if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
621 	    !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
622 		long nr_pages = folio_nr_pages(folio);
623 
624 		lruvec_del_folio(lruvec, folio);
625 		folio_clear_active(folio);
626 		folio_clear_referenced(folio);
627 		/*
628 		 * Lazyfree folios are clean anonymous folios.  They have
629 		 * the swapbacked flag cleared, to distinguish them from normal
630 		 * anonymous folios
631 		 */
632 		folio_clear_swapbacked(folio);
633 		lruvec_add_folio(lruvec, folio);
634 
635 		__count_vm_events(PGLAZYFREE, nr_pages);
636 		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
637 				     nr_pages);
638 	}
639 }
640 
641 /*
642  * Drain pages out of the cpu's folio_batch.
643  * Either "cpu" is the current CPU, and preemption has already been
644  * disabled; or "cpu" is being hot-unplugged, and is already dead.
645  */
646 void lru_add_drain_cpu(int cpu)
647 {
648 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
649 	struct folio_batch *fbatch = &fbatches->lru_add;
650 
651 	if (folio_batch_count(fbatch))
652 		folio_batch_move_lru(fbatch, lru_add_fn);
653 
654 	fbatch = &per_cpu(lru_rotate.fbatch, cpu);
655 	/* Disabling interrupts below acts as a compiler barrier. */
656 	if (data_race(folio_batch_count(fbatch))) {
657 		unsigned long flags;
658 
659 		/* No harm done if a racing interrupt already did this */
660 		local_lock_irqsave(&lru_rotate.lock, flags);
661 		folio_batch_move_lru(fbatch, lru_move_tail_fn);
662 		local_unlock_irqrestore(&lru_rotate.lock, flags);
663 	}
664 
665 	fbatch = &fbatches->lru_deactivate_file;
666 	if (folio_batch_count(fbatch))
667 		folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
668 
669 	fbatch = &fbatches->lru_deactivate;
670 	if (folio_batch_count(fbatch))
671 		folio_batch_move_lru(fbatch, lru_deactivate_fn);
672 
673 	fbatch = &fbatches->lru_lazyfree;
674 	if (folio_batch_count(fbatch))
675 		folio_batch_move_lru(fbatch, lru_lazyfree_fn);
676 
677 	folio_activate_drain(cpu);
678 }
679 
680 /**
681  * deactivate_file_folio() - Deactivate a file folio.
682  * @folio: Folio to deactivate.
683  *
684  * This function hints to the VM that @folio is a good reclaim candidate,
685  * for example if its invalidation fails due to the folio being dirty
686  * or under writeback.
687  *
688  * Context: Caller holds a reference on the folio.
689  */
690 void deactivate_file_folio(struct folio *folio)
691 {
692 	struct folio_batch *fbatch;
693 
694 	/* Deactivating an unevictable folio will not accelerate reclaim */
695 	if (folio_test_unevictable(folio))
696 		return;
697 
698 	folio_get(folio);
699 	local_lock(&cpu_fbatches.lock);
700 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
701 	folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
702 	local_unlock(&cpu_fbatches.lock);
703 }
704 
705 /*
706  * deactivate_page - deactivate a page
707  * @page: page to deactivate
708  *
709  * deactivate_page() moves @page to the inactive list if @page was on the active
710  * list and was not an unevictable page.  This is done to accelerate the reclaim
711  * of @page.
712  */
713 void deactivate_page(struct page *page)
714 {
715 	struct folio *folio = page_folio(page);
716 
717 	if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
718 	    (folio_test_active(folio) || lru_gen_enabled())) {
719 		struct folio_batch *fbatch;
720 
721 		folio_get(folio);
722 		local_lock(&cpu_fbatches.lock);
723 		fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
724 		folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
725 		local_unlock(&cpu_fbatches.lock);
726 	}
727 }
728 
729 /**
730  * mark_page_lazyfree - make an anon page lazyfree
731  * @page: page to deactivate
732  *
733  * mark_page_lazyfree() moves @page to the inactive file list.
734  * This is done to accelerate the reclaim of @page.
735  */
736 void mark_page_lazyfree(struct page *page)
737 {
738 	struct folio *folio = page_folio(page);
739 
740 	if (folio_test_lru(folio) && folio_test_anon(folio) &&
741 	    folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
742 	    !folio_test_unevictable(folio)) {
743 		struct folio_batch *fbatch;
744 
745 		folio_get(folio);
746 		local_lock(&cpu_fbatches.lock);
747 		fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
748 		folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
749 		local_unlock(&cpu_fbatches.lock);
750 	}
751 }
752 
753 void lru_add_drain(void)
754 {
755 	local_lock(&cpu_fbatches.lock);
756 	lru_add_drain_cpu(smp_processor_id());
757 	local_unlock(&cpu_fbatches.lock);
758 	mlock_page_drain_local();
759 }
760 
761 /*
762  * It's called from per-cpu workqueue context in SMP case so
763  * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
764  * the same cpu. It shouldn't be a problem in !SMP case since
765  * the core is only one and the locks will disable preemption.
766  */
767 static void lru_add_and_bh_lrus_drain(void)
768 {
769 	local_lock(&cpu_fbatches.lock);
770 	lru_add_drain_cpu(smp_processor_id());
771 	local_unlock(&cpu_fbatches.lock);
772 	invalidate_bh_lrus_cpu();
773 	mlock_page_drain_local();
774 }
775 
776 void lru_add_drain_cpu_zone(struct zone *zone)
777 {
778 	local_lock(&cpu_fbatches.lock);
779 	lru_add_drain_cpu(smp_processor_id());
780 	drain_local_pages(zone);
781 	local_unlock(&cpu_fbatches.lock);
782 	mlock_page_drain_local();
783 }
784 
785 #ifdef CONFIG_SMP
786 
787 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
788 
789 static void lru_add_drain_per_cpu(struct work_struct *dummy)
790 {
791 	lru_add_and_bh_lrus_drain();
792 }
793 
794 static bool cpu_needs_drain(unsigned int cpu)
795 {
796 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
797 
798 	/* Check these in order of likelihood that they're not zero */
799 	return folio_batch_count(&fbatches->lru_add) ||
800 		data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
801 		folio_batch_count(&fbatches->lru_deactivate_file) ||
802 		folio_batch_count(&fbatches->lru_deactivate) ||
803 		folio_batch_count(&fbatches->lru_lazyfree) ||
804 		folio_batch_count(&fbatches->activate) ||
805 		need_mlock_page_drain(cpu) ||
806 		has_bh_in_lru(cpu, NULL);
807 }
808 
809 /*
810  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
811  * kworkers being shut down before our page_alloc_cpu_dead callback is
812  * executed on the offlined cpu.
813  * Calling this function with cpu hotplug locks held can actually lead
814  * to obscure indirect dependencies via WQ context.
815  */
816 static inline void __lru_add_drain_all(bool force_all_cpus)
817 {
818 	/*
819 	 * lru_drain_gen - Global pages generation number
820 	 *
821 	 * (A) Definition: global lru_drain_gen = x implies that all generations
822 	 *     0 < n <= x are already *scheduled* for draining.
823 	 *
824 	 * This is an optimization for the highly-contended use case where a
825 	 * user space workload keeps constantly generating a flow of pages for
826 	 * each CPU.
827 	 */
828 	static unsigned int lru_drain_gen;
829 	static struct cpumask has_work;
830 	static DEFINE_MUTEX(lock);
831 	unsigned cpu, this_gen;
832 
833 	/*
834 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
835 	 * initialized.
836 	 */
837 	if (WARN_ON(!mm_percpu_wq))
838 		return;
839 
840 	/*
841 	 * Guarantee folio_batch counter stores visible by this CPU
842 	 * are visible to other CPUs before loading the current drain
843 	 * generation.
844 	 */
845 	smp_mb();
846 
847 	/*
848 	 * (B) Locally cache global LRU draining generation number
849 	 *
850 	 * The read barrier ensures that the counter is loaded before the mutex
851 	 * is taken. It pairs with smp_mb() inside the mutex critical section
852 	 * at (D).
853 	 */
854 	this_gen = smp_load_acquire(&lru_drain_gen);
855 
856 	mutex_lock(&lock);
857 
858 	/*
859 	 * (C) Exit the draining operation if a newer generation, from another
860 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
861 	 */
862 	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
863 		goto done;
864 
865 	/*
866 	 * (D) Increment global generation number
867 	 *
868 	 * Pairs with smp_load_acquire() at (B), outside of the critical
869 	 * section. Use a full memory barrier to guarantee that the
870 	 * new global drain generation number is stored before loading
871 	 * folio_batch counters.
872 	 *
873 	 * This pairing must be done here, before the for_each_online_cpu loop
874 	 * below which drains the page vectors.
875 	 *
876 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
877 	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
878 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
879 	 * along, adds some pages to its per-cpu vectors, then calls
880 	 * lru_add_drain_all().
881 	 *
882 	 * If the paired barrier is done at any later step, e.g. after the
883 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
884 	 * added pages.
885 	 */
886 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
887 	smp_mb();
888 
889 	cpumask_clear(&has_work);
890 	for_each_online_cpu(cpu) {
891 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
892 
893 		if (cpu_needs_drain(cpu)) {
894 			INIT_WORK(work, lru_add_drain_per_cpu);
895 			queue_work_on(cpu, mm_percpu_wq, work);
896 			__cpumask_set_cpu(cpu, &has_work);
897 		}
898 	}
899 
900 	for_each_cpu(cpu, &has_work)
901 		flush_work(&per_cpu(lru_add_drain_work, cpu));
902 
903 done:
904 	mutex_unlock(&lock);
905 }
906 
907 void lru_add_drain_all(void)
908 {
909 	__lru_add_drain_all(false);
910 }
911 #else
912 void lru_add_drain_all(void)
913 {
914 	lru_add_drain();
915 }
916 #endif /* CONFIG_SMP */
917 
918 atomic_t lru_disable_count = ATOMIC_INIT(0);
919 
920 /*
921  * lru_cache_disable() needs to be called before we start compiling
922  * a list of pages to be migrated using isolate_lru_page().
923  * It drains pages on LRU cache and then disable on all cpus until
924  * lru_cache_enable is called.
925  *
926  * Must be paired with a call to lru_cache_enable().
927  */
928 void lru_cache_disable(void)
929 {
930 	atomic_inc(&lru_disable_count);
931 	/*
932 	 * Readers of lru_disable_count are protected by either disabling
933 	 * preemption or rcu_read_lock:
934 	 *
935 	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
936 	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
937 	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
938 	 *
939 	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
940 	 * preempt_disable() regions of code. So any CPU which sees
941 	 * lru_disable_count = 0 will have exited the critical
942 	 * section when synchronize_rcu() returns.
943 	 */
944 	synchronize_rcu_expedited();
945 #ifdef CONFIG_SMP
946 	__lru_add_drain_all(true);
947 #else
948 	lru_add_and_bh_lrus_drain();
949 #endif
950 }
951 
952 /**
953  * release_pages - batched put_page()
954  * @arg: array of pages to release
955  * @nr: number of pages
956  *
957  * Decrement the reference count on all the pages in @arg.  If it
958  * fell to zero, remove the page from the LRU and free it.
959  *
960  * Note that the argument can be an array of pages, encoded pages,
961  * or folio pointers. We ignore any encoded bits, and turn any of
962  * them into just a folio that gets free'd.
963  */
964 void release_pages(release_pages_arg arg, int nr)
965 {
966 	int i;
967 	struct encoded_page **encoded = arg.encoded_pages;
968 	LIST_HEAD(pages_to_free);
969 	struct lruvec *lruvec = NULL;
970 	unsigned long flags = 0;
971 	unsigned int lock_batch;
972 
973 	for (i = 0; i < nr; i++) {
974 		struct folio *folio;
975 
976 		/* Turn any of the argument types into a folio */
977 		folio = page_folio(encoded_page_ptr(encoded[i]));
978 
979 		/*
980 		 * Make sure the IRQ-safe lock-holding time does not get
981 		 * excessive with a continuous string of pages from the
982 		 * same lruvec. The lock is held only if lruvec != NULL.
983 		 */
984 		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
985 			unlock_page_lruvec_irqrestore(lruvec, flags);
986 			lruvec = NULL;
987 		}
988 
989 		if (is_huge_zero_page(&folio->page))
990 			continue;
991 
992 		if (folio_is_zone_device(folio)) {
993 			if (lruvec) {
994 				unlock_page_lruvec_irqrestore(lruvec, flags);
995 				lruvec = NULL;
996 			}
997 			if (put_devmap_managed_page(&folio->page))
998 				continue;
999 			if (folio_put_testzero(folio))
1000 				free_zone_device_page(&folio->page);
1001 			continue;
1002 		}
1003 
1004 		if (!folio_put_testzero(folio))
1005 			continue;
1006 
1007 		if (folio_test_large(folio)) {
1008 			if (lruvec) {
1009 				unlock_page_lruvec_irqrestore(lruvec, flags);
1010 				lruvec = NULL;
1011 			}
1012 			__folio_put_large(folio);
1013 			continue;
1014 		}
1015 
1016 		if (folio_test_lru(folio)) {
1017 			struct lruvec *prev_lruvec = lruvec;
1018 
1019 			lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
1020 									&flags);
1021 			if (prev_lruvec != lruvec)
1022 				lock_batch = 0;
1023 
1024 			lruvec_del_folio(lruvec, folio);
1025 			__folio_clear_lru_flags(folio);
1026 		}
1027 
1028 		/*
1029 		 * In rare cases, when truncation or holepunching raced with
1030 		 * munlock after VM_LOCKED was cleared, Mlocked may still be
1031 		 * found set here.  This does not indicate a problem, unless
1032 		 * "unevictable_pgs_cleared" appears worryingly large.
1033 		 */
1034 		if (unlikely(folio_test_mlocked(folio))) {
1035 			__folio_clear_mlocked(folio);
1036 			zone_stat_sub_folio(folio, NR_MLOCK);
1037 			count_vm_event(UNEVICTABLE_PGCLEARED);
1038 		}
1039 
1040 		list_add(&folio->lru, &pages_to_free);
1041 	}
1042 	if (lruvec)
1043 		unlock_page_lruvec_irqrestore(lruvec, flags);
1044 
1045 	mem_cgroup_uncharge_list(&pages_to_free);
1046 	free_unref_page_list(&pages_to_free);
1047 }
1048 EXPORT_SYMBOL(release_pages);
1049 
1050 /*
1051  * The pages which we're about to release may be in the deferred lru-addition
1052  * queues.  That would prevent them from really being freed right now.  That's
1053  * OK from a correctness point of view but is inefficient - those pages may be
1054  * cache-warm and we want to give them back to the page allocator ASAP.
1055  *
1056  * So __pagevec_release() will drain those queues here.
1057  * folio_batch_move_lru() calls folios_put() directly to avoid
1058  * mutual recursion.
1059  */
1060 void __pagevec_release(struct pagevec *pvec)
1061 {
1062 	if (!pvec->percpu_pvec_drained) {
1063 		lru_add_drain();
1064 		pvec->percpu_pvec_drained = true;
1065 	}
1066 	release_pages(pvec->pages, pagevec_count(pvec));
1067 	pagevec_reinit(pvec);
1068 }
1069 EXPORT_SYMBOL(__pagevec_release);
1070 
1071 /**
1072  * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1073  * @fbatch: The batch to prune
1074  *
1075  * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1076  * entries.  This function prunes all the non-folio entries from @fbatch
1077  * without leaving holes, so that it can be passed on to folio-only batch
1078  * operations.
1079  */
1080 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1081 {
1082 	unsigned int i, j;
1083 
1084 	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1085 		struct folio *folio = fbatch->folios[i];
1086 		if (!xa_is_value(folio))
1087 			fbatch->folios[j++] = folio;
1088 	}
1089 	fbatch->nr = j;
1090 }
1091 
1092 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1093 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1094 		xa_mark_t tag)
1095 {
1096 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1097 					PAGEVEC_SIZE, pvec->pages);
1098 	return pagevec_count(pvec);
1099 }
1100 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1101 
1102 /*
1103  * Perform any setup for the swap system
1104  */
1105 void __init swap_setup(void)
1106 {
1107 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1108 
1109 	/* Use a smaller cluster for small-memory machines */
1110 	if (megs < 16)
1111 		page_cluster = 2;
1112 	else
1113 		page_cluster = 3;
1114 	/*
1115 	 * Right now other parts of the system means that we
1116 	 * _really_ don't want to cluster much more
1117 	 */
1118 }
1119