xref: /openbmc/linux/mm/swap.c (revision 1b69c6d0ae90b7f1a4f61d5c8209d5cb7a55f849)
1  /*
2   *  linux/mm/swap.c
3   *
4   *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5   */
6  
7  /*
8   * This file contains the default values for the operation of the
9   * Linux VM subsystem. Fine-tuning documentation can be found in
10   * Documentation/sysctl/vm.txt.
11   * Started 18.12.91
12   * Swap aging added 23.2.95, Stephen Tweedie.
13   * Buffermem limits added 12.3.98, Rik van Riel.
14   */
15  
16  #include <linux/mm.h>
17  #include <linux/sched.h>
18  #include <linux/kernel_stat.h>
19  #include <linux/swap.h>
20  #include <linux/mman.h>
21  #include <linux/pagemap.h>
22  #include <linux/pagevec.h>
23  #include <linux/init.h>
24  #include <linux/export.h>
25  #include <linux/mm_inline.h>
26  #include <linux/percpu_counter.h>
27  #include <linux/percpu.h>
28  #include <linux/cpu.h>
29  #include <linux/notifier.h>
30  #include <linux/backing-dev.h>
31  #include <linux/memcontrol.h>
32  #include <linux/gfp.h>
33  #include <linux/uio.h>
34  #include <linux/hugetlb.h>
35  #include <linux/page_idle.h>
36  
37  #include "internal.h"
38  
39  #define CREATE_TRACE_POINTS
40  #include <trace/events/pagemap.h>
41  
42  /* How many pages do we try to swap or page in/out together? */
43  int page_cluster;
44  
45  static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
46  static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
47  static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
48  
49  /*
50   * This path almost never happens for VM activity - pages are normally
51   * freed via pagevecs.  But it gets used by networking.
52   */
53  static void __page_cache_release(struct page *page)
54  {
55  	if (PageLRU(page)) {
56  		struct zone *zone = page_zone(page);
57  		struct lruvec *lruvec;
58  		unsigned long flags;
59  
60  		spin_lock_irqsave(&zone->lru_lock, flags);
61  		lruvec = mem_cgroup_page_lruvec(page, zone);
62  		VM_BUG_ON_PAGE(!PageLRU(page), page);
63  		__ClearPageLRU(page);
64  		del_page_from_lru_list(page, lruvec, page_off_lru(page));
65  		spin_unlock_irqrestore(&zone->lru_lock, flags);
66  	}
67  	mem_cgroup_uncharge(page);
68  }
69  
70  static void __put_single_page(struct page *page)
71  {
72  	__page_cache_release(page);
73  	free_hot_cold_page(page, false);
74  }
75  
76  static void __put_compound_page(struct page *page)
77  {
78  	compound_page_dtor *dtor;
79  
80  	/*
81  	 * __page_cache_release() is supposed to be called for thp, not for
82  	 * hugetlb. This is because hugetlb page does never have PageLRU set
83  	 * (it's never listed to any LRU lists) and no memcg routines should
84  	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
85  	 */
86  	if (!PageHuge(page))
87  		__page_cache_release(page);
88  	dtor = get_compound_page_dtor(page);
89  	(*dtor)(page);
90  }
91  
92  /**
93   * Two special cases here: we could avoid taking compound_lock_irqsave
94   * and could skip the tail refcounting(in _mapcount).
95   *
96   * 1. Hugetlbfs page:
97   *
98   *    PageHeadHuge will remain true until the compound page
99   *    is released and enters the buddy allocator, and it could
100   *    not be split by __split_huge_page_refcount().
101   *
102   *    So if we see PageHeadHuge set, and we have the tail page pin,
103   *    then we could safely put head page.
104   *
105   * 2. Slab THP page:
106   *
107   *    PG_slab is cleared before the slab frees the head page, and
108   *    tail pin cannot be the last reference left on the head page,
109   *    because the slab code is free to reuse the compound page
110   *    after a kfree/kmem_cache_free without having to check if
111   *    there's any tail pin left.  In turn all tail pinsmust be always
112   *    released while the head is still pinned by the slab code
113   *    and so we know PG_slab will be still set too.
114   *
115   *    So if we see PageSlab set, and we have the tail page pin,
116   *    then we could safely put head page.
117   */
118  static __always_inline
119  void put_unrefcounted_compound_page(struct page *page_head, struct page *page)
120  {
121  	/*
122  	 * If @page is a THP tail, we must read the tail page
123  	 * flags after the head page flags. The
124  	 * __split_huge_page_refcount side enforces write memory barriers
125  	 * between clearing PageTail and before the head page
126  	 * can be freed and reallocated.
127  	 */
128  	smp_rmb();
129  	if (likely(PageTail(page))) {
130  		/*
131  		 * __split_huge_page_refcount cannot race
132  		 * here, see the comment above this function.
133  		 */
134  		VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
135  		if (put_page_testzero(page_head)) {
136  			/*
137  			 * If this is the tail of a slab THP page,
138  			 * the tail pin must not be the last reference
139  			 * held on the page, because the PG_slab cannot
140  			 * be cleared before all tail pins (which skips
141  			 * the _mapcount tail refcounting) have been
142  			 * released.
143  			 *
144  			 * If this is the tail of a hugetlbfs page,
145  			 * the tail pin may be the last reference on
146  			 * the page instead, because PageHeadHuge will
147  			 * not go away until the compound page enters
148  			 * the buddy allocator.
149  			 */
150  			VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
151  			__put_compound_page(page_head);
152  		}
153  	} else
154  		/*
155  		 * __split_huge_page_refcount run before us,
156  		 * @page was a THP tail. The split @page_head
157  		 * has been freed and reallocated as slab or
158  		 * hugetlbfs page of smaller order (only
159  		 * possible if reallocated as slab on x86).
160  		 */
161  		if (put_page_testzero(page))
162  			__put_single_page(page);
163  }
164  
165  static __always_inline
166  void put_refcounted_compound_page(struct page *page_head, struct page *page)
167  {
168  	if (likely(page != page_head && get_page_unless_zero(page_head))) {
169  		unsigned long flags;
170  
171  		/*
172  		 * @page_head wasn't a dangling pointer but it may not
173  		 * be a head page anymore by the time we obtain the
174  		 * lock. That is ok as long as it can't be freed from
175  		 * under us.
176  		 */
177  		flags = compound_lock_irqsave(page_head);
178  		if (unlikely(!PageTail(page))) {
179  			/* __split_huge_page_refcount run before us */
180  			compound_unlock_irqrestore(page_head, flags);
181  			if (put_page_testzero(page_head)) {
182  				/*
183  				 * The @page_head may have been freed
184  				 * and reallocated as a compound page
185  				 * of smaller order and then freed
186  				 * again.  All we know is that it
187  				 * cannot have become: a THP page, a
188  				 * compound page of higher order, a
189  				 * tail page.  That is because we
190  				 * still hold the refcount of the
191  				 * split THP tail and page_head was
192  				 * the THP head before the split.
193  				 */
194  				if (PageHead(page_head))
195  					__put_compound_page(page_head);
196  				else
197  					__put_single_page(page_head);
198  			}
199  out_put_single:
200  			if (put_page_testzero(page))
201  				__put_single_page(page);
202  			return;
203  		}
204  		VM_BUG_ON_PAGE(page_head != page->first_page, page);
205  		/*
206  		 * We can release the refcount taken by
207  		 * get_page_unless_zero() now that
208  		 * __split_huge_page_refcount() is blocked on the
209  		 * compound_lock.
210  		 */
211  		if (put_page_testzero(page_head))
212  			VM_BUG_ON_PAGE(1, page_head);
213  		/* __split_huge_page_refcount will wait now */
214  		VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
215  		atomic_dec(&page->_mapcount);
216  		VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
217  		VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
218  		compound_unlock_irqrestore(page_head, flags);
219  
220  		if (put_page_testzero(page_head)) {
221  			if (PageHead(page_head))
222  				__put_compound_page(page_head);
223  			else
224  				__put_single_page(page_head);
225  		}
226  	} else {
227  		/* @page_head is a dangling pointer */
228  		VM_BUG_ON_PAGE(PageTail(page), page);
229  		goto out_put_single;
230  	}
231  }
232  
233  static void put_compound_page(struct page *page)
234  {
235  	struct page *page_head;
236  
237  	/*
238  	 * We see the PageCompound set and PageTail not set, so @page maybe:
239  	 *  1. hugetlbfs head page, or
240  	 *  2. THP head page.
241  	 */
242  	if (likely(!PageTail(page))) {
243  		if (put_page_testzero(page)) {
244  			/*
245  			 * By the time all refcounts have been released
246  			 * split_huge_page cannot run anymore from under us.
247  			 */
248  			if (PageHead(page))
249  				__put_compound_page(page);
250  			else
251  				__put_single_page(page);
252  		}
253  		return;
254  	}
255  
256  	/*
257  	 * We see the PageCompound set and PageTail set, so @page maybe:
258  	 *  1. a tail hugetlbfs page, or
259  	 *  2. a tail THP page, or
260  	 *  3. a split THP page.
261  	 *
262  	 *  Case 3 is possible, as we may race with
263  	 *  __split_huge_page_refcount tearing down a THP page.
264  	 */
265  	page_head = compound_head_by_tail(page);
266  	if (!__compound_tail_refcounted(page_head))
267  		put_unrefcounted_compound_page(page_head, page);
268  	else
269  		put_refcounted_compound_page(page_head, page);
270  }
271  
272  void put_page(struct page *page)
273  {
274  	if (unlikely(PageCompound(page)))
275  		put_compound_page(page);
276  	else if (put_page_testzero(page))
277  		__put_single_page(page);
278  }
279  EXPORT_SYMBOL(put_page);
280  
281  /*
282   * This function is exported but must not be called by anything other
283   * than get_page(). It implements the slow path of get_page().
284   */
285  bool __get_page_tail(struct page *page)
286  {
287  	/*
288  	 * This takes care of get_page() if run on a tail page
289  	 * returned by one of the get_user_pages/follow_page variants.
290  	 * get_user_pages/follow_page itself doesn't need the compound
291  	 * lock because it runs __get_page_tail_foll() under the
292  	 * proper PT lock that already serializes against
293  	 * split_huge_page().
294  	 */
295  	unsigned long flags;
296  	bool got;
297  	struct page *page_head = compound_head(page);
298  
299  	/* Ref to put_compound_page() comment. */
300  	if (!__compound_tail_refcounted(page_head)) {
301  		smp_rmb();
302  		if (likely(PageTail(page))) {
303  			/*
304  			 * This is a hugetlbfs page or a slab
305  			 * page. __split_huge_page_refcount
306  			 * cannot race here.
307  			 */
308  			VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
309  			__get_page_tail_foll(page, true);
310  			return true;
311  		} else {
312  			/*
313  			 * __split_huge_page_refcount run
314  			 * before us, "page" was a THP
315  			 * tail. The split page_head has been
316  			 * freed and reallocated as slab or
317  			 * hugetlbfs page of smaller order
318  			 * (only possible if reallocated as
319  			 * slab on x86).
320  			 */
321  			return false;
322  		}
323  	}
324  
325  	got = false;
326  	if (likely(page != page_head && get_page_unless_zero(page_head))) {
327  		/*
328  		 * page_head wasn't a dangling pointer but it
329  		 * may not be a head page anymore by the time
330  		 * we obtain the lock. That is ok as long as it
331  		 * can't be freed from under us.
332  		 */
333  		flags = compound_lock_irqsave(page_head);
334  		/* here __split_huge_page_refcount won't run anymore */
335  		if (likely(PageTail(page))) {
336  			__get_page_tail_foll(page, false);
337  			got = true;
338  		}
339  		compound_unlock_irqrestore(page_head, flags);
340  		if (unlikely(!got))
341  			put_page(page_head);
342  	}
343  	return got;
344  }
345  EXPORT_SYMBOL(__get_page_tail);
346  
347  /**
348   * put_pages_list() - release a list of pages
349   * @pages: list of pages threaded on page->lru
350   *
351   * Release a list of pages which are strung together on page.lru.  Currently
352   * used by read_cache_pages() and related error recovery code.
353   */
354  void put_pages_list(struct list_head *pages)
355  {
356  	while (!list_empty(pages)) {
357  		struct page *victim;
358  
359  		victim = list_entry(pages->prev, struct page, lru);
360  		list_del(&victim->lru);
361  		page_cache_release(victim);
362  	}
363  }
364  EXPORT_SYMBOL(put_pages_list);
365  
366  /*
367   * get_kernel_pages() - pin kernel pages in memory
368   * @kiov:	An array of struct kvec structures
369   * @nr_segs:	number of segments to pin
370   * @write:	pinning for read/write, currently ignored
371   * @pages:	array that receives pointers to the pages pinned.
372   *		Should be at least nr_segs long.
373   *
374   * Returns number of pages pinned. This may be fewer than the number
375   * requested. If nr_pages is 0 or negative, returns 0. If no pages
376   * were pinned, returns -errno. Each page returned must be released
377   * with a put_page() call when it is finished with.
378   */
379  int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
380  		struct page **pages)
381  {
382  	int seg;
383  
384  	for (seg = 0; seg < nr_segs; seg++) {
385  		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
386  			return seg;
387  
388  		pages[seg] = kmap_to_page(kiov[seg].iov_base);
389  		page_cache_get(pages[seg]);
390  	}
391  
392  	return seg;
393  }
394  EXPORT_SYMBOL_GPL(get_kernel_pages);
395  
396  /*
397   * get_kernel_page() - pin a kernel page in memory
398   * @start:	starting kernel address
399   * @write:	pinning for read/write, currently ignored
400   * @pages:	array that receives pointer to the page pinned.
401   *		Must be at least nr_segs long.
402   *
403   * Returns 1 if page is pinned. If the page was not pinned, returns
404   * -errno. The page returned must be released with a put_page() call
405   * when it is finished with.
406   */
407  int get_kernel_page(unsigned long start, int write, struct page **pages)
408  {
409  	const struct kvec kiov = {
410  		.iov_base = (void *)start,
411  		.iov_len = PAGE_SIZE
412  	};
413  
414  	return get_kernel_pages(&kiov, 1, write, pages);
415  }
416  EXPORT_SYMBOL_GPL(get_kernel_page);
417  
418  static void pagevec_lru_move_fn(struct pagevec *pvec,
419  	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
420  	void *arg)
421  {
422  	int i;
423  	struct zone *zone = NULL;
424  	struct lruvec *lruvec;
425  	unsigned long flags = 0;
426  
427  	for (i = 0; i < pagevec_count(pvec); i++) {
428  		struct page *page = pvec->pages[i];
429  		struct zone *pagezone = page_zone(page);
430  
431  		if (pagezone != zone) {
432  			if (zone)
433  				spin_unlock_irqrestore(&zone->lru_lock, flags);
434  			zone = pagezone;
435  			spin_lock_irqsave(&zone->lru_lock, flags);
436  		}
437  
438  		lruvec = mem_cgroup_page_lruvec(page, zone);
439  		(*move_fn)(page, lruvec, arg);
440  	}
441  	if (zone)
442  		spin_unlock_irqrestore(&zone->lru_lock, flags);
443  	release_pages(pvec->pages, pvec->nr, pvec->cold);
444  	pagevec_reinit(pvec);
445  }
446  
447  static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
448  				 void *arg)
449  {
450  	int *pgmoved = arg;
451  
452  	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
453  		enum lru_list lru = page_lru_base_type(page);
454  		list_move_tail(&page->lru, &lruvec->lists[lru]);
455  		(*pgmoved)++;
456  	}
457  }
458  
459  /*
460   * pagevec_move_tail() must be called with IRQ disabled.
461   * Otherwise this may cause nasty races.
462   */
463  static void pagevec_move_tail(struct pagevec *pvec)
464  {
465  	int pgmoved = 0;
466  
467  	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
468  	__count_vm_events(PGROTATED, pgmoved);
469  }
470  
471  /*
472   * Writeback is about to end against a page which has been marked for immediate
473   * reclaim.  If it still appears to be reclaimable, move it to the tail of the
474   * inactive list.
475   */
476  void rotate_reclaimable_page(struct page *page)
477  {
478  	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
479  	    !PageUnevictable(page) && PageLRU(page)) {
480  		struct pagevec *pvec;
481  		unsigned long flags;
482  
483  		page_cache_get(page);
484  		local_irq_save(flags);
485  		pvec = this_cpu_ptr(&lru_rotate_pvecs);
486  		if (!pagevec_add(pvec, page))
487  			pagevec_move_tail(pvec);
488  		local_irq_restore(flags);
489  	}
490  }
491  
492  static void update_page_reclaim_stat(struct lruvec *lruvec,
493  				     int file, int rotated)
494  {
495  	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
496  
497  	reclaim_stat->recent_scanned[file]++;
498  	if (rotated)
499  		reclaim_stat->recent_rotated[file]++;
500  }
501  
502  static void __activate_page(struct page *page, struct lruvec *lruvec,
503  			    void *arg)
504  {
505  	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
506  		int file = page_is_file_cache(page);
507  		int lru = page_lru_base_type(page);
508  
509  		del_page_from_lru_list(page, lruvec, lru);
510  		SetPageActive(page);
511  		lru += LRU_ACTIVE;
512  		add_page_to_lru_list(page, lruvec, lru);
513  		trace_mm_lru_activate(page);
514  
515  		__count_vm_event(PGACTIVATE);
516  		update_page_reclaim_stat(lruvec, file, 1);
517  	}
518  }
519  
520  #ifdef CONFIG_SMP
521  static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
522  
523  static void activate_page_drain(int cpu)
524  {
525  	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
526  
527  	if (pagevec_count(pvec))
528  		pagevec_lru_move_fn(pvec, __activate_page, NULL);
529  }
530  
531  static bool need_activate_page_drain(int cpu)
532  {
533  	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
534  }
535  
536  void activate_page(struct page *page)
537  {
538  	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
539  		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
540  
541  		page_cache_get(page);
542  		if (!pagevec_add(pvec, page))
543  			pagevec_lru_move_fn(pvec, __activate_page, NULL);
544  		put_cpu_var(activate_page_pvecs);
545  	}
546  }
547  
548  #else
549  static inline void activate_page_drain(int cpu)
550  {
551  }
552  
553  static bool need_activate_page_drain(int cpu)
554  {
555  	return false;
556  }
557  
558  void activate_page(struct page *page)
559  {
560  	struct zone *zone = page_zone(page);
561  
562  	spin_lock_irq(&zone->lru_lock);
563  	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
564  	spin_unlock_irq(&zone->lru_lock);
565  }
566  #endif
567  
568  static void __lru_cache_activate_page(struct page *page)
569  {
570  	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
571  	int i;
572  
573  	/*
574  	 * Search backwards on the optimistic assumption that the page being
575  	 * activated has just been added to this pagevec. Note that only
576  	 * the local pagevec is examined as a !PageLRU page could be in the
577  	 * process of being released, reclaimed, migrated or on a remote
578  	 * pagevec that is currently being drained. Furthermore, marking
579  	 * a remote pagevec's page PageActive potentially hits a race where
580  	 * a page is marked PageActive just after it is added to the inactive
581  	 * list causing accounting errors and BUG_ON checks to trigger.
582  	 */
583  	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
584  		struct page *pagevec_page = pvec->pages[i];
585  
586  		if (pagevec_page == page) {
587  			SetPageActive(page);
588  			break;
589  		}
590  	}
591  
592  	put_cpu_var(lru_add_pvec);
593  }
594  
595  /*
596   * Mark a page as having seen activity.
597   *
598   * inactive,unreferenced	->	inactive,referenced
599   * inactive,referenced		->	active,unreferenced
600   * active,unreferenced		->	active,referenced
601   *
602   * When a newly allocated page is not yet visible, so safe for non-atomic ops,
603   * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
604   */
605  void mark_page_accessed(struct page *page)
606  {
607  	if (!PageActive(page) && !PageUnevictable(page) &&
608  			PageReferenced(page)) {
609  
610  		/*
611  		 * If the page is on the LRU, queue it for activation via
612  		 * activate_page_pvecs. Otherwise, assume the page is on a
613  		 * pagevec, mark it active and it'll be moved to the active
614  		 * LRU on the next drain.
615  		 */
616  		if (PageLRU(page))
617  			activate_page(page);
618  		else
619  			__lru_cache_activate_page(page);
620  		ClearPageReferenced(page);
621  		if (page_is_file_cache(page))
622  			workingset_activation(page);
623  	} else if (!PageReferenced(page)) {
624  		SetPageReferenced(page);
625  	}
626  	if (page_is_idle(page))
627  		clear_page_idle(page);
628  }
629  EXPORT_SYMBOL(mark_page_accessed);
630  
631  static void __lru_cache_add(struct page *page)
632  {
633  	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
634  
635  	page_cache_get(page);
636  	if (!pagevec_space(pvec))
637  		__pagevec_lru_add(pvec);
638  	pagevec_add(pvec, page);
639  	put_cpu_var(lru_add_pvec);
640  }
641  
642  /**
643   * lru_cache_add: add a page to the page lists
644   * @page: the page to add
645   */
646  void lru_cache_add_anon(struct page *page)
647  {
648  	if (PageActive(page))
649  		ClearPageActive(page);
650  	__lru_cache_add(page);
651  }
652  
653  void lru_cache_add_file(struct page *page)
654  {
655  	if (PageActive(page))
656  		ClearPageActive(page);
657  	__lru_cache_add(page);
658  }
659  EXPORT_SYMBOL(lru_cache_add_file);
660  
661  /**
662   * lru_cache_add - add a page to a page list
663   * @page: the page to be added to the LRU.
664   *
665   * Queue the page for addition to the LRU via pagevec. The decision on whether
666   * to add the page to the [in]active [file|anon] list is deferred until the
667   * pagevec is drained. This gives a chance for the caller of lru_cache_add()
668   * have the page added to the active list using mark_page_accessed().
669   */
670  void lru_cache_add(struct page *page)
671  {
672  	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
673  	VM_BUG_ON_PAGE(PageLRU(page), page);
674  	__lru_cache_add(page);
675  }
676  
677  /**
678   * add_page_to_unevictable_list - add a page to the unevictable list
679   * @page:  the page to be added to the unevictable list
680   *
681   * Add page directly to its zone's unevictable list.  To avoid races with
682   * tasks that might be making the page evictable, through eg. munlock,
683   * munmap or exit, while it's not on the lru, we want to add the page
684   * while it's locked or otherwise "invisible" to other tasks.  This is
685   * difficult to do when using the pagevec cache, so bypass that.
686   */
687  void add_page_to_unevictable_list(struct page *page)
688  {
689  	struct zone *zone = page_zone(page);
690  	struct lruvec *lruvec;
691  
692  	spin_lock_irq(&zone->lru_lock);
693  	lruvec = mem_cgroup_page_lruvec(page, zone);
694  	ClearPageActive(page);
695  	SetPageUnevictable(page);
696  	SetPageLRU(page);
697  	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
698  	spin_unlock_irq(&zone->lru_lock);
699  }
700  
701  /**
702   * lru_cache_add_active_or_unevictable
703   * @page:  the page to be added to LRU
704   * @vma:   vma in which page is mapped for determining reclaimability
705   *
706   * Place @page on the active or unevictable LRU list, depending on its
707   * evictability.  Note that if the page is not evictable, it goes
708   * directly back onto it's zone's unevictable list, it does NOT use a
709   * per cpu pagevec.
710   */
711  void lru_cache_add_active_or_unevictable(struct page *page,
712  					 struct vm_area_struct *vma)
713  {
714  	VM_BUG_ON_PAGE(PageLRU(page), page);
715  
716  	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
717  		SetPageActive(page);
718  		lru_cache_add(page);
719  		return;
720  	}
721  
722  	if (!TestSetPageMlocked(page)) {
723  		/*
724  		 * We use the irq-unsafe __mod_zone_page_stat because this
725  		 * counter is not modified from interrupt context, and the pte
726  		 * lock is held(spinlock), which implies preemption disabled.
727  		 */
728  		__mod_zone_page_state(page_zone(page), NR_MLOCK,
729  				    hpage_nr_pages(page));
730  		count_vm_event(UNEVICTABLE_PGMLOCKED);
731  	}
732  	add_page_to_unevictable_list(page);
733  }
734  
735  /*
736   * If the page can not be invalidated, it is moved to the
737   * inactive list to speed up its reclaim.  It is moved to the
738   * head of the list, rather than the tail, to give the flusher
739   * threads some time to write it out, as this is much more
740   * effective than the single-page writeout from reclaim.
741   *
742   * If the page isn't page_mapped and dirty/writeback, the page
743   * could reclaim asap using PG_reclaim.
744   *
745   * 1. active, mapped page -> none
746   * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
747   * 3. inactive, mapped page -> none
748   * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
749   * 5. inactive, clean -> inactive, tail
750   * 6. Others -> none
751   *
752   * In 4, why it moves inactive's head, the VM expects the page would
753   * be write it out by flusher threads as this is much more effective
754   * than the single-page writeout from reclaim.
755   */
756  static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
757  			      void *arg)
758  {
759  	int lru, file;
760  	bool active;
761  
762  	if (!PageLRU(page))
763  		return;
764  
765  	if (PageUnevictable(page))
766  		return;
767  
768  	/* Some processes are using the page */
769  	if (page_mapped(page))
770  		return;
771  
772  	active = PageActive(page);
773  	file = page_is_file_cache(page);
774  	lru = page_lru_base_type(page);
775  
776  	del_page_from_lru_list(page, lruvec, lru + active);
777  	ClearPageActive(page);
778  	ClearPageReferenced(page);
779  	add_page_to_lru_list(page, lruvec, lru);
780  
781  	if (PageWriteback(page) || PageDirty(page)) {
782  		/*
783  		 * PG_reclaim could be raced with end_page_writeback
784  		 * It can make readahead confusing.  But race window
785  		 * is _really_ small and  it's non-critical problem.
786  		 */
787  		SetPageReclaim(page);
788  	} else {
789  		/*
790  		 * The page's writeback ends up during pagevec
791  		 * We moves tha page into tail of inactive.
792  		 */
793  		list_move_tail(&page->lru, &lruvec->lists[lru]);
794  		__count_vm_event(PGROTATED);
795  	}
796  
797  	if (active)
798  		__count_vm_event(PGDEACTIVATE);
799  	update_page_reclaim_stat(lruvec, file, 0);
800  }
801  
802  /*
803   * Drain pages out of the cpu's pagevecs.
804   * Either "cpu" is the current CPU, and preemption has already been
805   * disabled; or "cpu" is being hot-unplugged, and is already dead.
806   */
807  void lru_add_drain_cpu(int cpu)
808  {
809  	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
810  
811  	if (pagevec_count(pvec))
812  		__pagevec_lru_add(pvec);
813  
814  	pvec = &per_cpu(lru_rotate_pvecs, cpu);
815  	if (pagevec_count(pvec)) {
816  		unsigned long flags;
817  
818  		/* No harm done if a racing interrupt already did this */
819  		local_irq_save(flags);
820  		pagevec_move_tail(pvec);
821  		local_irq_restore(flags);
822  	}
823  
824  	pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
825  	if (pagevec_count(pvec))
826  		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
827  
828  	activate_page_drain(cpu);
829  }
830  
831  /**
832   * deactivate_file_page - forcefully deactivate a file page
833   * @page: page to deactivate
834   *
835   * This function hints the VM that @page is a good reclaim candidate,
836   * for example if its invalidation fails due to the page being dirty
837   * or under writeback.
838   */
839  void deactivate_file_page(struct page *page)
840  {
841  	/*
842  	 * In a workload with many unevictable page such as mprotect,
843  	 * unevictable page deactivation for accelerating reclaim is pointless.
844  	 */
845  	if (PageUnevictable(page))
846  		return;
847  
848  	if (likely(get_page_unless_zero(page))) {
849  		struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
850  
851  		if (!pagevec_add(pvec, page))
852  			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
853  		put_cpu_var(lru_deactivate_file_pvecs);
854  	}
855  }
856  
857  void lru_add_drain(void)
858  {
859  	lru_add_drain_cpu(get_cpu());
860  	put_cpu();
861  }
862  
863  static void lru_add_drain_per_cpu(struct work_struct *dummy)
864  {
865  	lru_add_drain();
866  }
867  
868  static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
869  
870  void lru_add_drain_all(void)
871  {
872  	static DEFINE_MUTEX(lock);
873  	static struct cpumask has_work;
874  	int cpu;
875  
876  	mutex_lock(&lock);
877  	get_online_cpus();
878  	cpumask_clear(&has_work);
879  
880  	for_each_online_cpu(cpu) {
881  		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
882  
883  		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
884  		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
885  		    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
886  		    need_activate_page_drain(cpu)) {
887  			INIT_WORK(work, lru_add_drain_per_cpu);
888  			schedule_work_on(cpu, work);
889  			cpumask_set_cpu(cpu, &has_work);
890  		}
891  	}
892  
893  	for_each_cpu(cpu, &has_work)
894  		flush_work(&per_cpu(lru_add_drain_work, cpu));
895  
896  	put_online_cpus();
897  	mutex_unlock(&lock);
898  }
899  
900  /**
901   * release_pages - batched page_cache_release()
902   * @pages: array of pages to release
903   * @nr: number of pages
904   * @cold: whether the pages are cache cold
905   *
906   * Decrement the reference count on all the pages in @pages.  If it
907   * fell to zero, remove the page from the LRU and free it.
908   */
909  void release_pages(struct page **pages, int nr, bool cold)
910  {
911  	int i;
912  	LIST_HEAD(pages_to_free);
913  	struct zone *zone = NULL;
914  	struct lruvec *lruvec;
915  	unsigned long uninitialized_var(flags);
916  	unsigned int uninitialized_var(lock_batch);
917  
918  	for (i = 0; i < nr; i++) {
919  		struct page *page = pages[i];
920  
921  		if (unlikely(PageCompound(page))) {
922  			if (zone) {
923  				spin_unlock_irqrestore(&zone->lru_lock, flags);
924  				zone = NULL;
925  			}
926  			put_compound_page(page);
927  			continue;
928  		}
929  
930  		/*
931  		 * Make sure the IRQ-safe lock-holding time does not get
932  		 * excessive with a continuous string of pages from the
933  		 * same zone. The lock is held only if zone != NULL.
934  		 */
935  		if (zone && ++lock_batch == SWAP_CLUSTER_MAX) {
936  			spin_unlock_irqrestore(&zone->lru_lock, flags);
937  			zone = NULL;
938  		}
939  
940  		if (!put_page_testzero(page))
941  			continue;
942  
943  		if (PageLRU(page)) {
944  			struct zone *pagezone = page_zone(page);
945  
946  			if (pagezone != zone) {
947  				if (zone)
948  					spin_unlock_irqrestore(&zone->lru_lock,
949  									flags);
950  				lock_batch = 0;
951  				zone = pagezone;
952  				spin_lock_irqsave(&zone->lru_lock, flags);
953  			}
954  
955  			lruvec = mem_cgroup_page_lruvec(page, zone);
956  			VM_BUG_ON_PAGE(!PageLRU(page), page);
957  			__ClearPageLRU(page);
958  			del_page_from_lru_list(page, lruvec, page_off_lru(page));
959  		}
960  
961  		/* Clear Active bit in case of parallel mark_page_accessed */
962  		__ClearPageActive(page);
963  
964  		list_add(&page->lru, &pages_to_free);
965  	}
966  	if (zone)
967  		spin_unlock_irqrestore(&zone->lru_lock, flags);
968  
969  	mem_cgroup_uncharge_list(&pages_to_free);
970  	free_hot_cold_page_list(&pages_to_free, cold);
971  }
972  EXPORT_SYMBOL(release_pages);
973  
974  /*
975   * The pages which we're about to release may be in the deferred lru-addition
976   * queues.  That would prevent them from really being freed right now.  That's
977   * OK from a correctness point of view but is inefficient - those pages may be
978   * cache-warm and we want to give them back to the page allocator ASAP.
979   *
980   * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
981   * and __pagevec_lru_add_active() call release_pages() directly to avoid
982   * mutual recursion.
983   */
984  void __pagevec_release(struct pagevec *pvec)
985  {
986  	lru_add_drain();
987  	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
988  	pagevec_reinit(pvec);
989  }
990  EXPORT_SYMBOL(__pagevec_release);
991  
992  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
993  /* used by __split_huge_page_refcount() */
994  void lru_add_page_tail(struct page *page, struct page *page_tail,
995  		       struct lruvec *lruvec, struct list_head *list)
996  {
997  	const int file = 0;
998  
999  	VM_BUG_ON_PAGE(!PageHead(page), page);
1000  	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
1001  	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
1002  	VM_BUG_ON(NR_CPUS != 1 &&
1003  		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
1004  
1005  	if (!list)
1006  		SetPageLRU(page_tail);
1007  
1008  	if (likely(PageLRU(page)))
1009  		list_add_tail(&page_tail->lru, &page->lru);
1010  	else if (list) {
1011  		/* page reclaim is reclaiming a huge page */
1012  		get_page(page_tail);
1013  		list_add_tail(&page_tail->lru, list);
1014  	} else {
1015  		struct list_head *list_head;
1016  		/*
1017  		 * Head page has not yet been counted, as an hpage,
1018  		 * so we must account for each subpage individually.
1019  		 *
1020  		 * Use the standard add function to put page_tail on the list,
1021  		 * but then correct its position so they all end up in order.
1022  		 */
1023  		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
1024  		list_head = page_tail->lru.prev;
1025  		list_move_tail(&page_tail->lru, list_head);
1026  	}
1027  
1028  	if (!PageUnevictable(page))
1029  		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
1030  }
1031  #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1032  
1033  static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
1034  				 void *arg)
1035  {
1036  	int file = page_is_file_cache(page);
1037  	int active = PageActive(page);
1038  	enum lru_list lru = page_lru(page);
1039  
1040  	VM_BUG_ON_PAGE(PageLRU(page), page);
1041  
1042  	SetPageLRU(page);
1043  	add_page_to_lru_list(page, lruvec, lru);
1044  	update_page_reclaim_stat(lruvec, file, active);
1045  	trace_mm_lru_insertion(page, lru);
1046  }
1047  
1048  /*
1049   * Add the passed pages to the LRU, then drop the caller's refcount
1050   * on them.  Reinitialises the caller's pagevec.
1051   */
1052  void __pagevec_lru_add(struct pagevec *pvec)
1053  {
1054  	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1055  }
1056  EXPORT_SYMBOL(__pagevec_lru_add);
1057  
1058  /**
1059   * pagevec_lookup_entries - gang pagecache lookup
1060   * @pvec:	Where the resulting entries are placed
1061   * @mapping:	The address_space to search
1062   * @start:	The starting entry index
1063   * @nr_entries:	The maximum number of entries
1064   * @indices:	The cache indices corresponding to the entries in @pvec
1065   *
1066   * pagevec_lookup_entries() will search for and return a group of up
1067   * to @nr_entries pages and shadow entries in the mapping.  All
1068   * entries are placed in @pvec.  pagevec_lookup_entries() takes a
1069   * reference against actual pages in @pvec.
1070   *
1071   * The search returns a group of mapping-contiguous entries with
1072   * ascending indexes.  There may be holes in the indices due to
1073   * not-present entries.
1074   *
1075   * pagevec_lookup_entries() returns the number of entries which were
1076   * found.
1077   */
1078  unsigned pagevec_lookup_entries(struct pagevec *pvec,
1079  				struct address_space *mapping,
1080  				pgoff_t start, unsigned nr_pages,
1081  				pgoff_t *indices)
1082  {
1083  	pvec->nr = find_get_entries(mapping, start, nr_pages,
1084  				    pvec->pages, indices);
1085  	return pagevec_count(pvec);
1086  }
1087  
1088  /**
1089   * pagevec_remove_exceptionals - pagevec exceptionals pruning
1090   * @pvec:	The pagevec to prune
1091   *
1092   * pagevec_lookup_entries() fills both pages and exceptional radix
1093   * tree entries into the pagevec.  This function prunes all
1094   * exceptionals from @pvec without leaving holes, so that it can be
1095   * passed on to page-only pagevec operations.
1096   */
1097  void pagevec_remove_exceptionals(struct pagevec *pvec)
1098  {
1099  	int i, j;
1100  
1101  	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1102  		struct page *page = pvec->pages[i];
1103  		if (!radix_tree_exceptional_entry(page))
1104  			pvec->pages[j++] = page;
1105  	}
1106  	pvec->nr = j;
1107  }
1108  
1109  /**
1110   * pagevec_lookup - gang pagecache lookup
1111   * @pvec:	Where the resulting pages are placed
1112   * @mapping:	The address_space to search
1113   * @start:	The starting page index
1114   * @nr_pages:	The maximum number of pages
1115   *
1116   * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1117   * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
1118   * reference against the pages in @pvec.
1119   *
1120   * The search returns a group of mapping-contiguous pages with ascending
1121   * indexes.  There may be holes in the indices due to not-present pages.
1122   *
1123   * pagevec_lookup() returns the number of pages which were found.
1124   */
1125  unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
1126  		pgoff_t start, unsigned nr_pages)
1127  {
1128  	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
1129  	return pagevec_count(pvec);
1130  }
1131  EXPORT_SYMBOL(pagevec_lookup);
1132  
1133  unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
1134  		pgoff_t *index, int tag, unsigned nr_pages)
1135  {
1136  	pvec->nr = find_get_pages_tag(mapping, index, tag,
1137  					nr_pages, pvec->pages);
1138  	return pagevec_count(pvec);
1139  }
1140  EXPORT_SYMBOL(pagevec_lookup_tag);
1141  
1142  /*
1143   * Perform any setup for the swap system
1144   */
1145  void __init swap_setup(void)
1146  {
1147  	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1148  #ifdef CONFIG_SWAP
1149  	int i;
1150  
1151  	for (i = 0; i < MAX_SWAPFILES; i++)
1152  		spin_lock_init(&swapper_spaces[i].tree_lock);
1153  #endif
1154  
1155  	/* Use a smaller cluster for small-memory machines */
1156  	if (megs < 16)
1157  		page_cluster = 2;
1158  	else
1159  		page_cluster = 3;
1160  	/*
1161  	 * Right now other parts of the system means that we
1162  	 * _really_ don't want to cluster much more
1163  	 */
1164  }
1165