xref: /openbmc/linux/mm/swap.c (revision 171f1bc7)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 
35 #include "internal.h"
36 
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39 
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
43 
44 /*
45  * This path almost never happens for VM activity - pages are normally
46  * freed via pagevecs.  But it gets used by networking.
47  */
48 static void __page_cache_release(struct page *page)
49 {
50 	if (PageLRU(page)) {
51 		unsigned long flags;
52 		struct zone *zone = page_zone(page);
53 
54 		spin_lock_irqsave(&zone->lru_lock, flags);
55 		VM_BUG_ON(!PageLRU(page));
56 		__ClearPageLRU(page);
57 		del_page_from_lru(zone, page);
58 		spin_unlock_irqrestore(&zone->lru_lock, flags);
59 	}
60 }
61 
62 static void __put_single_page(struct page *page)
63 {
64 	__page_cache_release(page);
65 	free_hot_cold_page(page, 0);
66 }
67 
68 static void __put_compound_page(struct page *page)
69 {
70 	compound_page_dtor *dtor;
71 
72 	__page_cache_release(page);
73 	dtor = get_compound_page_dtor(page);
74 	(*dtor)(page);
75 }
76 
77 static void put_compound_page(struct page *page)
78 {
79 	if (unlikely(PageTail(page))) {
80 		/* __split_huge_page_refcount can run under us */
81 		struct page *page_head = compound_trans_head(page);
82 
83 		if (likely(page != page_head &&
84 			   get_page_unless_zero(page_head))) {
85 			unsigned long flags;
86 			/*
87 			 * page_head wasn't a dangling pointer but it
88 			 * may not be a head page anymore by the time
89 			 * we obtain the lock. That is ok as long as it
90 			 * can't be freed from under us.
91 			 */
92 			flags = compound_lock_irqsave(page_head);
93 			if (unlikely(!PageTail(page))) {
94 				/* __split_huge_page_refcount run before us */
95 				compound_unlock_irqrestore(page_head, flags);
96 				VM_BUG_ON(PageHead(page_head));
97 				if (put_page_testzero(page_head))
98 					__put_single_page(page_head);
99 			out_put_single:
100 				if (put_page_testzero(page))
101 					__put_single_page(page);
102 				return;
103 			}
104 			VM_BUG_ON(page_head != page->first_page);
105 			/*
106 			 * We can release the refcount taken by
107 			 * get_page_unless_zero() now that
108 			 * __split_huge_page_refcount() is blocked on
109 			 * the compound_lock.
110 			 */
111 			if (put_page_testzero(page_head))
112 				VM_BUG_ON(1);
113 			/* __split_huge_page_refcount will wait now */
114 			VM_BUG_ON(page_mapcount(page) <= 0);
115 			atomic_dec(&page->_mapcount);
116 			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
117 			VM_BUG_ON(atomic_read(&page->_count) != 0);
118 			compound_unlock_irqrestore(page_head, flags);
119 			if (put_page_testzero(page_head)) {
120 				if (PageHead(page_head))
121 					__put_compound_page(page_head);
122 				else
123 					__put_single_page(page_head);
124 			}
125 		} else {
126 			/* page_head is a dangling pointer */
127 			VM_BUG_ON(PageTail(page));
128 			goto out_put_single;
129 		}
130 	} else if (put_page_testzero(page)) {
131 		if (PageHead(page))
132 			__put_compound_page(page);
133 		else
134 			__put_single_page(page);
135 	}
136 }
137 
138 void put_page(struct page *page)
139 {
140 	if (unlikely(PageCompound(page)))
141 		put_compound_page(page);
142 	else if (put_page_testzero(page))
143 		__put_single_page(page);
144 }
145 EXPORT_SYMBOL(put_page);
146 
147 /*
148  * This function is exported but must not be called by anything other
149  * than get_page(). It implements the slow path of get_page().
150  */
151 bool __get_page_tail(struct page *page)
152 {
153 	/*
154 	 * This takes care of get_page() if run on a tail page
155 	 * returned by one of the get_user_pages/follow_page variants.
156 	 * get_user_pages/follow_page itself doesn't need the compound
157 	 * lock because it runs __get_page_tail_foll() under the
158 	 * proper PT lock that already serializes against
159 	 * split_huge_page().
160 	 */
161 	unsigned long flags;
162 	bool got = false;
163 	struct page *page_head = compound_trans_head(page);
164 
165 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
166 		/*
167 		 * page_head wasn't a dangling pointer but it
168 		 * may not be a head page anymore by the time
169 		 * we obtain the lock. That is ok as long as it
170 		 * can't be freed from under us.
171 		 */
172 		flags = compound_lock_irqsave(page_head);
173 		/* here __split_huge_page_refcount won't run anymore */
174 		if (likely(PageTail(page))) {
175 			__get_page_tail_foll(page, false);
176 			got = true;
177 		}
178 		compound_unlock_irqrestore(page_head, flags);
179 		if (unlikely(!got))
180 			put_page(page_head);
181 	}
182 	return got;
183 }
184 EXPORT_SYMBOL(__get_page_tail);
185 
186 /**
187  * put_pages_list() - release a list of pages
188  * @pages: list of pages threaded on page->lru
189  *
190  * Release a list of pages which are strung together on page.lru.  Currently
191  * used by read_cache_pages() and related error recovery code.
192  */
193 void put_pages_list(struct list_head *pages)
194 {
195 	while (!list_empty(pages)) {
196 		struct page *victim;
197 
198 		victim = list_entry(pages->prev, struct page, lru);
199 		list_del(&victim->lru);
200 		page_cache_release(victim);
201 	}
202 }
203 EXPORT_SYMBOL(put_pages_list);
204 
205 static void pagevec_lru_move_fn(struct pagevec *pvec,
206 				void (*move_fn)(struct page *page, void *arg),
207 				void *arg)
208 {
209 	int i;
210 	struct zone *zone = NULL;
211 	unsigned long flags = 0;
212 
213 	for (i = 0; i < pagevec_count(pvec); i++) {
214 		struct page *page = pvec->pages[i];
215 		struct zone *pagezone = page_zone(page);
216 
217 		if (pagezone != zone) {
218 			if (zone)
219 				spin_unlock_irqrestore(&zone->lru_lock, flags);
220 			zone = pagezone;
221 			spin_lock_irqsave(&zone->lru_lock, flags);
222 		}
223 
224 		(*move_fn)(page, arg);
225 	}
226 	if (zone)
227 		spin_unlock_irqrestore(&zone->lru_lock, flags);
228 	release_pages(pvec->pages, pvec->nr, pvec->cold);
229 	pagevec_reinit(pvec);
230 }
231 
232 static void pagevec_move_tail_fn(struct page *page, void *arg)
233 {
234 	int *pgmoved = arg;
235 	struct zone *zone = page_zone(page);
236 
237 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
238 		enum lru_list lru = page_lru_base_type(page);
239 		list_move_tail(&page->lru, &zone->lru[lru].list);
240 		mem_cgroup_rotate_reclaimable_page(page);
241 		(*pgmoved)++;
242 	}
243 }
244 
245 /*
246  * pagevec_move_tail() must be called with IRQ disabled.
247  * Otherwise this may cause nasty races.
248  */
249 static void pagevec_move_tail(struct pagevec *pvec)
250 {
251 	int pgmoved = 0;
252 
253 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
254 	__count_vm_events(PGROTATED, pgmoved);
255 }
256 
257 /*
258  * Writeback is about to end against a page which has been marked for immediate
259  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
260  * inactive list.
261  */
262 void rotate_reclaimable_page(struct page *page)
263 {
264 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
265 	    !PageUnevictable(page) && PageLRU(page)) {
266 		struct pagevec *pvec;
267 		unsigned long flags;
268 
269 		page_cache_get(page);
270 		local_irq_save(flags);
271 		pvec = &__get_cpu_var(lru_rotate_pvecs);
272 		if (!pagevec_add(pvec, page))
273 			pagevec_move_tail(pvec);
274 		local_irq_restore(flags);
275 	}
276 }
277 
278 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
279 				     int file, int rotated)
280 {
281 	struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
282 	struct zone_reclaim_stat *memcg_reclaim_stat;
283 
284 	memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
285 
286 	reclaim_stat->recent_scanned[file]++;
287 	if (rotated)
288 		reclaim_stat->recent_rotated[file]++;
289 
290 	if (!memcg_reclaim_stat)
291 		return;
292 
293 	memcg_reclaim_stat->recent_scanned[file]++;
294 	if (rotated)
295 		memcg_reclaim_stat->recent_rotated[file]++;
296 }
297 
298 static void __activate_page(struct page *page, void *arg)
299 {
300 	struct zone *zone = page_zone(page);
301 
302 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
303 		int file = page_is_file_cache(page);
304 		int lru = page_lru_base_type(page);
305 		del_page_from_lru_list(zone, page, lru);
306 
307 		SetPageActive(page);
308 		lru += LRU_ACTIVE;
309 		add_page_to_lru_list(zone, page, lru);
310 		__count_vm_event(PGACTIVATE);
311 
312 		update_page_reclaim_stat(zone, page, file, 1);
313 	}
314 }
315 
316 #ifdef CONFIG_SMP
317 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
318 
319 static void activate_page_drain(int cpu)
320 {
321 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
322 
323 	if (pagevec_count(pvec))
324 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
325 }
326 
327 void activate_page(struct page *page)
328 {
329 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
330 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
331 
332 		page_cache_get(page);
333 		if (!pagevec_add(pvec, page))
334 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
335 		put_cpu_var(activate_page_pvecs);
336 	}
337 }
338 
339 #else
340 static inline void activate_page_drain(int cpu)
341 {
342 }
343 
344 void activate_page(struct page *page)
345 {
346 	struct zone *zone = page_zone(page);
347 
348 	spin_lock_irq(&zone->lru_lock);
349 	__activate_page(page, NULL);
350 	spin_unlock_irq(&zone->lru_lock);
351 }
352 #endif
353 
354 /*
355  * Mark a page as having seen activity.
356  *
357  * inactive,unreferenced	->	inactive,referenced
358  * inactive,referenced		->	active,unreferenced
359  * active,unreferenced		->	active,referenced
360  */
361 void mark_page_accessed(struct page *page)
362 {
363 	if (!PageActive(page) && !PageUnevictable(page) &&
364 			PageReferenced(page) && PageLRU(page)) {
365 		activate_page(page);
366 		ClearPageReferenced(page);
367 	} else if (!PageReferenced(page)) {
368 		SetPageReferenced(page);
369 	}
370 }
371 
372 EXPORT_SYMBOL(mark_page_accessed);
373 
374 void __lru_cache_add(struct page *page, enum lru_list lru)
375 {
376 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
377 
378 	page_cache_get(page);
379 	if (!pagevec_add(pvec, page))
380 		____pagevec_lru_add(pvec, lru);
381 	put_cpu_var(lru_add_pvecs);
382 }
383 EXPORT_SYMBOL(__lru_cache_add);
384 
385 /**
386  * lru_cache_add_lru - add a page to a page list
387  * @page: the page to be added to the LRU.
388  * @lru: the LRU list to which the page is added.
389  */
390 void lru_cache_add_lru(struct page *page, enum lru_list lru)
391 {
392 	if (PageActive(page)) {
393 		VM_BUG_ON(PageUnevictable(page));
394 		ClearPageActive(page);
395 	} else if (PageUnevictable(page)) {
396 		VM_BUG_ON(PageActive(page));
397 		ClearPageUnevictable(page);
398 	}
399 
400 	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
401 	__lru_cache_add(page, lru);
402 }
403 
404 /**
405  * add_page_to_unevictable_list - add a page to the unevictable list
406  * @page:  the page to be added to the unevictable list
407  *
408  * Add page directly to its zone's unevictable list.  To avoid races with
409  * tasks that might be making the page evictable, through eg. munlock,
410  * munmap or exit, while it's not on the lru, we want to add the page
411  * while it's locked or otherwise "invisible" to other tasks.  This is
412  * difficult to do when using the pagevec cache, so bypass that.
413  */
414 void add_page_to_unevictable_list(struct page *page)
415 {
416 	struct zone *zone = page_zone(page);
417 
418 	spin_lock_irq(&zone->lru_lock);
419 	SetPageUnevictable(page);
420 	SetPageLRU(page);
421 	add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
422 	spin_unlock_irq(&zone->lru_lock);
423 }
424 
425 /*
426  * If the page can not be invalidated, it is moved to the
427  * inactive list to speed up its reclaim.  It is moved to the
428  * head of the list, rather than the tail, to give the flusher
429  * threads some time to write it out, as this is much more
430  * effective than the single-page writeout from reclaim.
431  *
432  * If the page isn't page_mapped and dirty/writeback, the page
433  * could reclaim asap using PG_reclaim.
434  *
435  * 1. active, mapped page -> none
436  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
437  * 3. inactive, mapped page -> none
438  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
439  * 5. inactive, clean -> inactive, tail
440  * 6. Others -> none
441  *
442  * In 4, why it moves inactive's head, the VM expects the page would
443  * be write it out by flusher threads as this is much more effective
444  * than the single-page writeout from reclaim.
445  */
446 static void lru_deactivate_fn(struct page *page, void *arg)
447 {
448 	int lru, file;
449 	bool active;
450 	struct zone *zone = page_zone(page);
451 
452 	if (!PageLRU(page))
453 		return;
454 
455 	if (PageUnevictable(page))
456 		return;
457 
458 	/* Some processes are using the page */
459 	if (page_mapped(page))
460 		return;
461 
462 	active = PageActive(page);
463 
464 	file = page_is_file_cache(page);
465 	lru = page_lru_base_type(page);
466 	del_page_from_lru_list(zone, page, lru + active);
467 	ClearPageActive(page);
468 	ClearPageReferenced(page);
469 	add_page_to_lru_list(zone, page, lru);
470 
471 	if (PageWriteback(page) || PageDirty(page)) {
472 		/*
473 		 * PG_reclaim could be raced with end_page_writeback
474 		 * It can make readahead confusing.  But race window
475 		 * is _really_ small and  it's non-critical problem.
476 		 */
477 		SetPageReclaim(page);
478 	} else {
479 		/*
480 		 * The page's writeback ends up during pagevec
481 		 * We moves tha page into tail of inactive.
482 		 */
483 		list_move_tail(&page->lru, &zone->lru[lru].list);
484 		mem_cgroup_rotate_reclaimable_page(page);
485 		__count_vm_event(PGROTATED);
486 	}
487 
488 	if (active)
489 		__count_vm_event(PGDEACTIVATE);
490 	update_page_reclaim_stat(zone, page, file, 0);
491 }
492 
493 /*
494  * Drain pages out of the cpu's pagevecs.
495  * Either "cpu" is the current CPU, and preemption has already been
496  * disabled; or "cpu" is being hot-unplugged, and is already dead.
497  */
498 static void drain_cpu_pagevecs(int cpu)
499 {
500 	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
501 	struct pagevec *pvec;
502 	int lru;
503 
504 	for_each_lru(lru) {
505 		pvec = &pvecs[lru - LRU_BASE];
506 		if (pagevec_count(pvec))
507 			____pagevec_lru_add(pvec, lru);
508 	}
509 
510 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
511 	if (pagevec_count(pvec)) {
512 		unsigned long flags;
513 
514 		/* No harm done if a racing interrupt already did this */
515 		local_irq_save(flags);
516 		pagevec_move_tail(pvec);
517 		local_irq_restore(flags);
518 	}
519 
520 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
521 	if (pagevec_count(pvec))
522 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
523 
524 	activate_page_drain(cpu);
525 }
526 
527 /**
528  * deactivate_page - forcefully deactivate a page
529  * @page: page to deactivate
530  *
531  * This function hints the VM that @page is a good reclaim candidate,
532  * for example if its invalidation fails due to the page being dirty
533  * or under writeback.
534  */
535 void deactivate_page(struct page *page)
536 {
537 	/*
538 	 * In a workload with many unevictable page such as mprotect, unevictable
539 	 * page deactivation for accelerating reclaim is pointless.
540 	 */
541 	if (PageUnevictable(page))
542 		return;
543 
544 	if (likely(get_page_unless_zero(page))) {
545 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
546 
547 		if (!pagevec_add(pvec, page))
548 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
549 		put_cpu_var(lru_deactivate_pvecs);
550 	}
551 }
552 
553 void lru_add_drain(void)
554 {
555 	drain_cpu_pagevecs(get_cpu());
556 	put_cpu();
557 }
558 
559 static void lru_add_drain_per_cpu(struct work_struct *dummy)
560 {
561 	lru_add_drain();
562 }
563 
564 /*
565  * Returns 0 for success
566  */
567 int lru_add_drain_all(void)
568 {
569 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
570 }
571 
572 /*
573  * Batched page_cache_release().  Decrement the reference count on all the
574  * passed pages.  If it fell to zero then remove the page from the LRU and
575  * free it.
576  *
577  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
578  * for the remainder of the operation.
579  *
580  * The locking in this function is against shrink_inactive_list(): we recheck
581  * the page count inside the lock to see whether shrink_inactive_list()
582  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
583  * will free it.
584  */
585 void release_pages(struct page **pages, int nr, int cold)
586 {
587 	int i;
588 	struct pagevec pages_to_free;
589 	struct zone *zone = NULL;
590 	unsigned long uninitialized_var(flags);
591 
592 	pagevec_init(&pages_to_free, cold);
593 	for (i = 0; i < nr; i++) {
594 		struct page *page = pages[i];
595 
596 		if (unlikely(PageCompound(page))) {
597 			if (zone) {
598 				spin_unlock_irqrestore(&zone->lru_lock, flags);
599 				zone = NULL;
600 			}
601 			put_compound_page(page);
602 			continue;
603 		}
604 
605 		if (!put_page_testzero(page))
606 			continue;
607 
608 		if (PageLRU(page)) {
609 			struct zone *pagezone = page_zone(page);
610 
611 			if (pagezone != zone) {
612 				if (zone)
613 					spin_unlock_irqrestore(&zone->lru_lock,
614 									flags);
615 				zone = pagezone;
616 				spin_lock_irqsave(&zone->lru_lock, flags);
617 			}
618 			VM_BUG_ON(!PageLRU(page));
619 			__ClearPageLRU(page);
620 			del_page_from_lru(zone, page);
621 		}
622 
623 		if (!pagevec_add(&pages_to_free, page)) {
624 			if (zone) {
625 				spin_unlock_irqrestore(&zone->lru_lock, flags);
626 				zone = NULL;
627 			}
628 			__pagevec_free(&pages_to_free);
629 			pagevec_reinit(&pages_to_free);
630   		}
631 	}
632 	if (zone)
633 		spin_unlock_irqrestore(&zone->lru_lock, flags);
634 
635 	pagevec_free(&pages_to_free);
636 }
637 EXPORT_SYMBOL(release_pages);
638 
639 /*
640  * The pages which we're about to release may be in the deferred lru-addition
641  * queues.  That would prevent them from really being freed right now.  That's
642  * OK from a correctness point of view but is inefficient - those pages may be
643  * cache-warm and we want to give them back to the page allocator ASAP.
644  *
645  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
646  * and __pagevec_lru_add_active() call release_pages() directly to avoid
647  * mutual recursion.
648  */
649 void __pagevec_release(struct pagevec *pvec)
650 {
651 	lru_add_drain();
652 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
653 	pagevec_reinit(pvec);
654 }
655 
656 EXPORT_SYMBOL(__pagevec_release);
657 
658 /* used by __split_huge_page_refcount() */
659 void lru_add_page_tail(struct zone* zone,
660 		       struct page *page, struct page *page_tail)
661 {
662 	int active;
663 	enum lru_list lru;
664 	const int file = 0;
665 	struct list_head *head;
666 
667 	VM_BUG_ON(!PageHead(page));
668 	VM_BUG_ON(PageCompound(page_tail));
669 	VM_BUG_ON(PageLRU(page_tail));
670 	VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
671 
672 	SetPageLRU(page_tail);
673 
674 	if (page_evictable(page_tail, NULL)) {
675 		if (PageActive(page)) {
676 			SetPageActive(page_tail);
677 			active = 1;
678 			lru = LRU_ACTIVE_ANON;
679 		} else {
680 			active = 0;
681 			lru = LRU_INACTIVE_ANON;
682 		}
683 		update_page_reclaim_stat(zone, page_tail, file, active);
684 		if (likely(PageLRU(page)))
685 			head = page->lru.prev;
686 		else
687 			head = &zone->lru[lru].list;
688 		__add_page_to_lru_list(zone, page_tail, lru, head);
689 	} else {
690 		SetPageUnevictable(page_tail);
691 		add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
692 	}
693 }
694 
695 static void ____pagevec_lru_add_fn(struct page *page, void *arg)
696 {
697 	enum lru_list lru = (enum lru_list)arg;
698 	struct zone *zone = page_zone(page);
699 	int file = is_file_lru(lru);
700 	int active = is_active_lru(lru);
701 
702 	VM_BUG_ON(PageActive(page));
703 	VM_BUG_ON(PageUnevictable(page));
704 	VM_BUG_ON(PageLRU(page));
705 
706 	SetPageLRU(page);
707 	if (active)
708 		SetPageActive(page);
709 	update_page_reclaim_stat(zone, page, file, active);
710 	add_page_to_lru_list(zone, page, lru);
711 }
712 
713 /*
714  * Add the passed pages to the LRU, then drop the caller's refcount
715  * on them.  Reinitialises the caller's pagevec.
716  */
717 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
718 {
719 	VM_BUG_ON(is_unevictable_lru(lru));
720 
721 	pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
722 }
723 
724 EXPORT_SYMBOL(____pagevec_lru_add);
725 
726 /*
727  * Try to drop buffers from the pages in a pagevec
728  */
729 void pagevec_strip(struct pagevec *pvec)
730 {
731 	int i;
732 
733 	for (i = 0; i < pagevec_count(pvec); i++) {
734 		struct page *page = pvec->pages[i];
735 
736 		if (page_has_private(page) && trylock_page(page)) {
737 			if (page_has_private(page))
738 				try_to_release_page(page, 0);
739 			unlock_page(page);
740 		}
741 	}
742 }
743 
744 /**
745  * pagevec_lookup - gang pagecache lookup
746  * @pvec:	Where the resulting pages are placed
747  * @mapping:	The address_space to search
748  * @start:	The starting page index
749  * @nr_pages:	The maximum number of pages
750  *
751  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
752  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
753  * reference against the pages in @pvec.
754  *
755  * The search returns a group of mapping-contiguous pages with ascending
756  * indexes.  There may be holes in the indices due to not-present pages.
757  *
758  * pagevec_lookup() returns the number of pages which were found.
759  */
760 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
761 		pgoff_t start, unsigned nr_pages)
762 {
763 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
764 	return pagevec_count(pvec);
765 }
766 
767 EXPORT_SYMBOL(pagevec_lookup);
768 
769 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
770 		pgoff_t *index, int tag, unsigned nr_pages)
771 {
772 	pvec->nr = find_get_pages_tag(mapping, index, tag,
773 					nr_pages, pvec->pages);
774 	return pagevec_count(pvec);
775 }
776 
777 EXPORT_SYMBOL(pagevec_lookup_tag);
778 
779 /*
780  * Perform any setup for the swap system
781  */
782 void __init swap_setup(void)
783 {
784 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
785 
786 #ifdef CONFIG_SWAP
787 	bdi_init(swapper_space.backing_dev_info);
788 #endif
789 
790 	/* Use a smaller cluster for small-memory machines */
791 	if (megs < 16)
792 		page_cluster = 2;
793 	else
794 		page_cluster = 3;
795 	/*
796 	 * Right now other parts of the system means that we
797 	 * _really_ don't want to cluster much more
798 	 */
799 }
800