1 /* 2 * linux/mm/swap.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file contains the default values for the operation of the 9 * Linux VM subsystem. Fine-tuning documentation can be found in 10 * Documentation/sysctl/vm.txt. 11 * Started 18.12.91 12 * Swap aging added 23.2.95, Stephen Tweedie. 13 * Buffermem limits added 12.3.98, Rik van Riel. 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/swap.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/pagevec.h> 23 #include <linux/init.h> 24 #include <linux/export.h> 25 #include <linux/mm_inline.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page() */ 27 #include <linux/percpu_counter.h> 28 #include <linux/percpu.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/backing-dev.h> 32 #include <linux/memcontrol.h> 33 #include <linux/gfp.h> 34 35 #include "internal.h" 36 37 /* How many pages do we try to swap or page in/out together? */ 38 int page_cluster; 39 40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs); 41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); 42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs); 43 44 /* 45 * This path almost never happens for VM activity - pages are normally 46 * freed via pagevecs. But it gets used by networking. 47 */ 48 static void __page_cache_release(struct page *page) 49 { 50 if (PageLRU(page)) { 51 unsigned long flags; 52 struct zone *zone = page_zone(page); 53 54 spin_lock_irqsave(&zone->lru_lock, flags); 55 VM_BUG_ON(!PageLRU(page)); 56 __ClearPageLRU(page); 57 del_page_from_lru(zone, page); 58 spin_unlock_irqrestore(&zone->lru_lock, flags); 59 } 60 } 61 62 static void __put_single_page(struct page *page) 63 { 64 __page_cache_release(page); 65 free_hot_cold_page(page, 0); 66 } 67 68 static void __put_compound_page(struct page *page) 69 { 70 compound_page_dtor *dtor; 71 72 __page_cache_release(page); 73 dtor = get_compound_page_dtor(page); 74 (*dtor)(page); 75 } 76 77 static void put_compound_page(struct page *page) 78 { 79 if (unlikely(PageTail(page))) { 80 /* __split_huge_page_refcount can run under us */ 81 struct page *page_head = compound_trans_head(page); 82 83 if (likely(page != page_head && 84 get_page_unless_zero(page_head))) { 85 unsigned long flags; 86 /* 87 * page_head wasn't a dangling pointer but it 88 * may not be a head page anymore by the time 89 * we obtain the lock. That is ok as long as it 90 * can't be freed from under us. 91 */ 92 flags = compound_lock_irqsave(page_head); 93 if (unlikely(!PageTail(page))) { 94 /* __split_huge_page_refcount run before us */ 95 compound_unlock_irqrestore(page_head, flags); 96 VM_BUG_ON(PageHead(page_head)); 97 if (put_page_testzero(page_head)) 98 __put_single_page(page_head); 99 out_put_single: 100 if (put_page_testzero(page)) 101 __put_single_page(page); 102 return; 103 } 104 VM_BUG_ON(page_head != page->first_page); 105 /* 106 * We can release the refcount taken by 107 * get_page_unless_zero() now that 108 * __split_huge_page_refcount() is blocked on 109 * the compound_lock. 110 */ 111 if (put_page_testzero(page_head)) 112 VM_BUG_ON(1); 113 /* __split_huge_page_refcount will wait now */ 114 VM_BUG_ON(page_mapcount(page) <= 0); 115 atomic_dec(&page->_mapcount); 116 VM_BUG_ON(atomic_read(&page_head->_count) <= 0); 117 VM_BUG_ON(atomic_read(&page->_count) != 0); 118 compound_unlock_irqrestore(page_head, flags); 119 if (put_page_testzero(page_head)) { 120 if (PageHead(page_head)) 121 __put_compound_page(page_head); 122 else 123 __put_single_page(page_head); 124 } 125 } else { 126 /* page_head is a dangling pointer */ 127 VM_BUG_ON(PageTail(page)); 128 goto out_put_single; 129 } 130 } else if (put_page_testzero(page)) { 131 if (PageHead(page)) 132 __put_compound_page(page); 133 else 134 __put_single_page(page); 135 } 136 } 137 138 void put_page(struct page *page) 139 { 140 if (unlikely(PageCompound(page))) 141 put_compound_page(page); 142 else if (put_page_testzero(page)) 143 __put_single_page(page); 144 } 145 EXPORT_SYMBOL(put_page); 146 147 /* 148 * This function is exported but must not be called by anything other 149 * than get_page(). It implements the slow path of get_page(). 150 */ 151 bool __get_page_tail(struct page *page) 152 { 153 /* 154 * This takes care of get_page() if run on a tail page 155 * returned by one of the get_user_pages/follow_page variants. 156 * get_user_pages/follow_page itself doesn't need the compound 157 * lock because it runs __get_page_tail_foll() under the 158 * proper PT lock that already serializes against 159 * split_huge_page(). 160 */ 161 unsigned long flags; 162 bool got = false; 163 struct page *page_head = compound_trans_head(page); 164 165 if (likely(page != page_head && get_page_unless_zero(page_head))) { 166 /* 167 * page_head wasn't a dangling pointer but it 168 * may not be a head page anymore by the time 169 * we obtain the lock. That is ok as long as it 170 * can't be freed from under us. 171 */ 172 flags = compound_lock_irqsave(page_head); 173 /* here __split_huge_page_refcount won't run anymore */ 174 if (likely(PageTail(page))) { 175 __get_page_tail_foll(page, false); 176 got = true; 177 } 178 compound_unlock_irqrestore(page_head, flags); 179 if (unlikely(!got)) 180 put_page(page_head); 181 } 182 return got; 183 } 184 EXPORT_SYMBOL(__get_page_tail); 185 186 /** 187 * put_pages_list() - release a list of pages 188 * @pages: list of pages threaded on page->lru 189 * 190 * Release a list of pages which are strung together on page.lru. Currently 191 * used by read_cache_pages() and related error recovery code. 192 */ 193 void put_pages_list(struct list_head *pages) 194 { 195 while (!list_empty(pages)) { 196 struct page *victim; 197 198 victim = list_entry(pages->prev, struct page, lru); 199 list_del(&victim->lru); 200 page_cache_release(victim); 201 } 202 } 203 EXPORT_SYMBOL(put_pages_list); 204 205 static void pagevec_lru_move_fn(struct pagevec *pvec, 206 void (*move_fn)(struct page *page, void *arg), 207 void *arg) 208 { 209 int i; 210 struct zone *zone = NULL; 211 unsigned long flags = 0; 212 213 for (i = 0; i < pagevec_count(pvec); i++) { 214 struct page *page = pvec->pages[i]; 215 struct zone *pagezone = page_zone(page); 216 217 if (pagezone != zone) { 218 if (zone) 219 spin_unlock_irqrestore(&zone->lru_lock, flags); 220 zone = pagezone; 221 spin_lock_irqsave(&zone->lru_lock, flags); 222 } 223 224 (*move_fn)(page, arg); 225 } 226 if (zone) 227 spin_unlock_irqrestore(&zone->lru_lock, flags); 228 release_pages(pvec->pages, pvec->nr, pvec->cold); 229 pagevec_reinit(pvec); 230 } 231 232 static void pagevec_move_tail_fn(struct page *page, void *arg) 233 { 234 int *pgmoved = arg; 235 struct zone *zone = page_zone(page); 236 237 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 238 enum lru_list lru = page_lru_base_type(page); 239 list_move_tail(&page->lru, &zone->lru[lru].list); 240 mem_cgroup_rotate_reclaimable_page(page); 241 (*pgmoved)++; 242 } 243 } 244 245 /* 246 * pagevec_move_tail() must be called with IRQ disabled. 247 * Otherwise this may cause nasty races. 248 */ 249 static void pagevec_move_tail(struct pagevec *pvec) 250 { 251 int pgmoved = 0; 252 253 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); 254 __count_vm_events(PGROTATED, pgmoved); 255 } 256 257 /* 258 * Writeback is about to end against a page which has been marked for immediate 259 * reclaim. If it still appears to be reclaimable, move it to the tail of the 260 * inactive list. 261 */ 262 void rotate_reclaimable_page(struct page *page) 263 { 264 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && 265 !PageUnevictable(page) && PageLRU(page)) { 266 struct pagevec *pvec; 267 unsigned long flags; 268 269 page_cache_get(page); 270 local_irq_save(flags); 271 pvec = &__get_cpu_var(lru_rotate_pvecs); 272 if (!pagevec_add(pvec, page)) 273 pagevec_move_tail(pvec); 274 local_irq_restore(flags); 275 } 276 } 277 278 static void update_page_reclaim_stat(struct zone *zone, struct page *page, 279 int file, int rotated) 280 { 281 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat; 282 struct zone_reclaim_stat *memcg_reclaim_stat; 283 284 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page); 285 286 reclaim_stat->recent_scanned[file]++; 287 if (rotated) 288 reclaim_stat->recent_rotated[file]++; 289 290 if (!memcg_reclaim_stat) 291 return; 292 293 memcg_reclaim_stat->recent_scanned[file]++; 294 if (rotated) 295 memcg_reclaim_stat->recent_rotated[file]++; 296 } 297 298 static void __activate_page(struct page *page, void *arg) 299 { 300 struct zone *zone = page_zone(page); 301 302 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 303 int file = page_is_file_cache(page); 304 int lru = page_lru_base_type(page); 305 del_page_from_lru_list(zone, page, lru); 306 307 SetPageActive(page); 308 lru += LRU_ACTIVE; 309 add_page_to_lru_list(zone, page, lru); 310 __count_vm_event(PGACTIVATE); 311 312 update_page_reclaim_stat(zone, page, file, 1); 313 } 314 } 315 316 #ifdef CONFIG_SMP 317 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); 318 319 static void activate_page_drain(int cpu) 320 { 321 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); 322 323 if (pagevec_count(pvec)) 324 pagevec_lru_move_fn(pvec, __activate_page, NULL); 325 } 326 327 void activate_page(struct page *page) 328 { 329 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 330 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); 331 332 page_cache_get(page); 333 if (!pagevec_add(pvec, page)) 334 pagevec_lru_move_fn(pvec, __activate_page, NULL); 335 put_cpu_var(activate_page_pvecs); 336 } 337 } 338 339 #else 340 static inline void activate_page_drain(int cpu) 341 { 342 } 343 344 void activate_page(struct page *page) 345 { 346 struct zone *zone = page_zone(page); 347 348 spin_lock_irq(&zone->lru_lock); 349 __activate_page(page, NULL); 350 spin_unlock_irq(&zone->lru_lock); 351 } 352 #endif 353 354 /* 355 * Mark a page as having seen activity. 356 * 357 * inactive,unreferenced -> inactive,referenced 358 * inactive,referenced -> active,unreferenced 359 * active,unreferenced -> active,referenced 360 */ 361 void mark_page_accessed(struct page *page) 362 { 363 if (!PageActive(page) && !PageUnevictable(page) && 364 PageReferenced(page) && PageLRU(page)) { 365 activate_page(page); 366 ClearPageReferenced(page); 367 } else if (!PageReferenced(page)) { 368 SetPageReferenced(page); 369 } 370 } 371 372 EXPORT_SYMBOL(mark_page_accessed); 373 374 void __lru_cache_add(struct page *page, enum lru_list lru) 375 { 376 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru]; 377 378 page_cache_get(page); 379 if (!pagevec_add(pvec, page)) 380 ____pagevec_lru_add(pvec, lru); 381 put_cpu_var(lru_add_pvecs); 382 } 383 EXPORT_SYMBOL(__lru_cache_add); 384 385 /** 386 * lru_cache_add_lru - add a page to a page list 387 * @page: the page to be added to the LRU. 388 * @lru: the LRU list to which the page is added. 389 */ 390 void lru_cache_add_lru(struct page *page, enum lru_list lru) 391 { 392 if (PageActive(page)) { 393 VM_BUG_ON(PageUnevictable(page)); 394 ClearPageActive(page); 395 } else if (PageUnevictable(page)) { 396 VM_BUG_ON(PageActive(page)); 397 ClearPageUnevictable(page); 398 } 399 400 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page)); 401 __lru_cache_add(page, lru); 402 } 403 404 /** 405 * add_page_to_unevictable_list - add a page to the unevictable list 406 * @page: the page to be added to the unevictable list 407 * 408 * Add page directly to its zone's unevictable list. To avoid races with 409 * tasks that might be making the page evictable, through eg. munlock, 410 * munmap or exit, while it's not on the lru, we want to add the page 411 * while it's locked or otherwise "invisible" to other tasks. This is 412 * difficult to do when using the pagevec cache, so bypass that. 413 */ 414 void add_page_to_unevictable_list(struct page *page) 415 { 416 struct zone *zone = page_zone(page); 417 418 spin_lock_irq(&zone->lru_lock); 419 SetPageUnevictable(page); 420 SetPageLRU(page); 421 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE); 422 spin_unlock_irq(&zone->lru_lock); 423 } 424 425 /* 426 * If the page can not be invalidated, it is moved to the 427 * inactive list to speed up its reclaim. It is moved to the 428 * head of the list, rather than the tail, to give the flusher 429 * threads some time to write it out, as this is much more 430 * effective than the single-page writeout from reclaim. 431 * 432 * If the page isn't page_mapped and dirty/writeback, the page 433 * could reclaim asap using PG_reclaim. 434 * 435 * 1. active, mapped page -> none 436 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 437 * 3. inactive, mapped page -> none 438 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 439 * 5. inactive, clean -> inactive, tail 440 * 6. Others -> none 441 * 442 * In 4, why it moves inactive's head, the VM expects the page would 443 * be write it out by flusher threads as this is much more effective 444 * than the single-page writeout from reclaim. 445 */ 446 static void lru_deactivate_fn(struct page *page, void *arg) 447 { 448 int lru, file; 449 bool active; 450 struct zone *zone = page_zone(page); 451 452 if (!PageLRU(page)) 453 return; 454 455 if (PageUnevictable(page)) 456 return; 457 458 /* Some processes are using the page */ 459 if (page_mapped(page)) 460 return; 461 462 active = PageActive(page); 463 464 file = page_is_file_cache(page); 465 lru = page_lru_base_type(page); 466 del_page_from_lru_list(zone, page, lru + active); 467 ClearPageActive(page); 468 ClearPageReferenced(page); 469 add_page_to_lru_list(zone, page, lru); 470 471 if (PageWriteback(page) || PageDirty(page)) { 472 /* 473 * PG_reclaim could be raced with end_page_writeback 474 * It can make readahead confusing. But race window 475 * is _really_ small and it's non-critical problem. 476 */ 477 SetPageReclaim(page); 478 } else { 479 /* 480 * The page's writeback ends up during pagevec 481 * We moves tha page into tail of inactive. 482 */ 483 list_move_tail(&page->lru, &zone->lru[lru].list); 484 mem_cgroup_rotate_reclaimable_page(page); 485 __count_vm_event(PGROTATED); 486 } 487 488 if (active) 489 __count_vm_event(PGDEACTIVATE); 490 update_page_reclaim_stat(zone, page, file, 0); 491 } 492 493 /* 494 * Drain pages out of the cpu's pagevecs. 495 * Either "cpu" is the current CPU, and preemption has already been 496 * disabled; or "cpu" is being hot-unplugged, and is already dead. 497 */ 498 static void drain_cpu_pagevecs(int cpu) 499 { 500 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu); 501 struct pagevec *pvec; 502 int lru; 503 504 for_each_lru(lru) { 505 pvec = &pvecs[lru - LRU_BASE]; 506 if (pagevec_count(pvec)) 507 ____pagevec_lru_add(pvec, lru); 508 } 509 510 pvec = &per_cpu(lru_rotate_pvecs, cpu); 511 if (pagevec_count(pvec)) { 512 unsigned long flags; 513 514 /* No harm done if a racing interrupt already did this */ 515 local_irq_save(flags); 516 pagevec_move_tail(pvec); 517 local_irq_restore(flags); 518 } 519 520 pvec = &per_cpu(lru_deactivate_pvecs, cpu); 521 if (pagevec_count(pvec)) 522 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 523 524 activate_page_drain(cpu); 525 } 526 527 /** 528 * deactivate_page - forcefully deactivate a page 529 * @page: page to deactivate 530 * 531 * This function hints the VM that @page is a good reclaim candidate, 532 * for example if its invalidation fails due to the page being dirty 533 * or under writeback. 534 */ 535 void deactivate_page(struct page *page) 536 { 537 /* 538 * In a workload with many unevictable page such as mprotect, unevictable 539 * page deactivation for accelerating reclaim is pointless. 540 */ 541 if (PageUnevictable(page)) 542 return; 543 544 if (likely(get_page_unless_zero(page))) { 545 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs); 546 547 if (!pagevec_add(pvec, page)) 548 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 549 put_cpu_var(lru_deactivate_pvecs); 550 } 551 } 552 553 void lru_add_drain(void) 554 { 555 drain_cpu_pagevecs(get_cpu()); 556 put_cpu(); 557 } 558 559 static void lru_add_drain_per_cpu(struct work_struct *dummy) 560 { 561 lru_add_drain(); 562 } 563 564 /* 565 * Returns 0 for success 566 */ 567 int lru_add_drain_all(void) 568 { 569 return schedule_on_each_cpu(lru_add_drain_per_cpu); 570 } 571 572 /* 573 * Batched page_cache_release(). Decrement the reference count on all the 574 * passed pages. If it fell to zero then remove the page from the LRU and 575 * free it. 576 * 577 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it 578 * for the remainder of the operation. 579 * 580 * The locking in this function is against shrink_inactive_list(): we recheck 581 * the page count inside the lock to see whether shrink_inactive_list() 582 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list() 583 * will free it. 584 */ 585 void release_pages(struct page **pages, int nr, int cold) 586 { 587 int i; 588 struct pagevec pages_to_free; 589 struct zone *zone = NULL; 590 unsigned long uninitialized_var(flags); 591 592 pagevec_init(&pages_to_free, cold); 593 for (i = 0; i < nr; i++) { 594 struct page *page = pages[i]; 595 596 if (unlikely(PageCompound(page))) { 597 if (zone) { 598 spin_unlock_irqrestore(&zone->lru_lock, flags); 599 zone = NULL; 600 } 601 put_compound_page(page); 602 continue; 603 } 604 605 if (!put_page_testzero(page)) 606 continue; 607 608 if (PageLRU(page)) { 609 struct zone *pagezone = page_zone(page); 610 611 if (pagezone != zone) { 612 if (zone) 613 spin_unlock_irqrestore(&zone->lru_lock, 614 flags); 615 zone = pagezone; 616 spin_lock_irqsave(&zone->lru_lock, flags); 617 } 618 VM_BUG_ON(!PageLRU(page)); 619 __ClearPageLRU(page); 620 del_page_from_lru(zone, page); 621 } 622 623 if (!pagevec_add(&pages_to_free, page)) { 624 if (zone) { 625 spin_unlock_irqrestore(&zone->lru_lock, flags); 626 zone = NULL; 627 } 628 __pagevec_free(&pages_to_free); 629 pagevec_reinit(&pages_to_free); 630 } 631 } 632 if (zone) 633 spin_unlock_irqrestore(&zone->lru_lock, flags); 634 635 pagevec_free(&pages_to_free); 636 } 637 EXPORT_SYMBOL(release_pages); 638 639 /* 640 * The pages which we're about to release may be in the deferred lru-addition 641 * queues. That would prevent them from really being freed right now. That's 642 * OK from a correctness point of view but is inefficient - those pages may be 643 * cache-warm and we want to give them back to the page allocator ASAP. 644 * 645 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 646 * and __pagevec_lru_add_active() call release_pages() directly to avoid 647 * mutual recursion. 648 */ 649 void __pagevec_release(struct pagevec *pvec) 650 { 651 lru_add_drain(); 652 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); 653 pagevec_reinit(pvec); 654 } 655 656 EXPORT_SYMBOL(__pagevec_release); 657 658 /* used by __split_huge_page_refcount() */ 659 void lru_add_page_tail(struct zone* zone, 660 struct page *page, struct page *page_tail) 661 { 662 int active; 663 enum lru_list lru; 664 const int file = 0; 665 struct list_head *head; 666 667 VM_BUG_ON(!PageHead(page)); 668 VM_BUG_ON(PageCompound(page_tail)); 669 VM_BUG_ON(PageLRU(page_tail)); 670 VM_BUG_ON(!spin_is_locked(&zone->lru_lock)); 671 672 SetPageLRU(page_tail); 673 674 if (page_evictable(page_tail, NULL)) { 675 if (PageActive(page)) { 676 SetPageActive(page_tail); 677 active = 1; 678 lru = LRU_ACTIVE_ANON; 679 } else { 680 active = 0; 681 lru = LRU_INACTIVE_ANON; 682 } 683 update_page_reclaim_stat(zone, page_tail, file, active); 684 if (likely(PageLRU(page))) 685 head = page->lru.prev; 686 else 687 head = &zone->lru[lru].list; 688 __add_page_to_lru_list(zone, page_tail, lru, head); 689 } else { 690 SetPageUnevictable(page_tail); 691 add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE); 692 } 693 } 694 695 static void ____pagevec_lru_add_fn(struct page *page, void *arg) 696 { 697 enum lru_list lru = (enum lru_list)arg; 698 struct zone *zone = page_zone(page); 699 int file = is_file_lru(lru); 700 int active = is_active_lru(lru); 701 702 VM_BUG_ON(PageActive(page)); 703 VM_BUG_ON(PageUnevictable(page)); 704 VM_BUG_ON(PageLRU(page)); 705 706 SetPageLRU(page); 707 if (active) 708 SetPageActive(page); 709 update_page_reclaim_stat(zone, page, file, active); 710 add_page_to_lru_list(zone, page, lru); 711 } 712 713 /* 714 * Add the passed pages to the LRU, then drop the caller's refcount 715 * on them. Reinitialises the caller's pagevec. 716 */ 717 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru) 718 { 719 VM_BUG_ON(is_unevictable_lru(lru)); 720 721 pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru); 722 } 723 724 EXPORT_SYMBOL(____pagevec_lru_add); 725 726 /* 727 * Try to drop buffers from the pages in a pagevec 728 */ 729 void pagevec_strip(struct pagevec *pvec) 730 { 731 int i; 732 733 for (i = 0; i < pagevec_count(pvec); i++) { 734 struct page *page = pvec->pages[i]; 735 736 if (page_has_private(page) && trylock_page(page)) { 737 if (page_has_private(page)) 738 try_to_release_page(page, 0); 739 unlock_page(page); 740 } 741 } 742 } 743 744 /** 745 * pagevec_lookup - gang pagecache lookup 746 * @pvec: Where the resulting pages are placed 747 * @mapping: The address_space to search 748 * @start: The starting page index 749 * @nr_pages: The maximum number of pages 750 * 751 * pagevec_lookup() will search for and return a group of up to @nr_pages pages 752 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a 753 * reference against the pages in @pvec. 754 * 755 * The search returns a group of mapping-contiguous pages with ascending 756 * indexes. There may be holes in the indices due to not-present pages. 757 * 758 * pagevec_lookup() returns the number of pages which were found. 759 */ 760 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, 761 pgoff_t start, unsigned nr_pages) 762 { 763 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); 764 return pagevec_count(pvec); 765 } 766 767 EXPORT_SYMBOL(pagevec_lookup); 768 769 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, 770 pgoff_t *index, int tag, unsigned nr_pages) 771 { 772 pvec->nr = find_get_pages_tag(mapping, index, tag, 773 nr_pages, pvec->pages); 774 return pagevec_count(pvec); 775 } 776 777 EXPORT_SYMBOL(pagevec_lookup_tag); 778 779 /* 780 * Perform any setup for the swap system 781 */ 782 void __init swap_setup(void) 783 { 784 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); 785 786 #ifdef CONFIG_SWAP 787 bdi_init(swapper_space.backing_dev_info); 788 #endif 789 790 /* Use a smaller cluster for small-memory machines */ 791 if (megs < 16) 792 page_cluster = 2; 793 else 794 page_cluster = 3; 795 /* 796 * Right now other parts of the system means that we 797 * _really_ don't want to cluster much more 798 */ 799 } 800