1 /* 2 * linux/mm/swap.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file contains the default values for the operation of the 9 * Linux VM subsystem. Fine-tuning documentation can be found in 10 * Documentation/sysctl/vm.txt. 11 * Started 18.12.91 12 * Swap aging added 23.2.95, Stephen Tweedie. 13 * Buffermem limits added 12.3.98, Rik van Riel. 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/swap.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/pagevec.h> 23 #include <linux/init.h> 24 #include <linux/export.h> 25 #include <linux/mm_inline.h> 26 #include <linux/percpu_counter.h> 27 #include <linux/memremap.h> 28 #include <linux/percpu.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/backing-dev.h> 32 #include <linux/memcontrol.h> 33 #include <linux/gfp.h> 34 #include <linux/uio.h> 35 #include <linux/hugetlb.h> 36 #include <linux/page_idle.h> 37 38 #include "internal.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/pagemap.h> 42 43 /* How many pages do we try to swap or page in/out together? */ 44 int page_cluster; 45 46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec); 47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); 48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs); 49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs); 50 #ifdef CONFIG_SMP 51 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); 52 #endif 53 54 /* 55 * This path almost never happens for VM activity - pages are normally 56 * freed via pagevecs. But it gets used by networking. 57 */ 58 static void __page_cache_release(struct page *page) 59 { 60 if (PageLRU(page)) { 61 struct zone *zone = page_zone(page); 62 struct lruvec *lruvec; 63 unsigned long flags; 64 65 spin_lock_irqsave(&zone->lru_lock, flags); 66 lruvec = mem_cgroup_page_lruvec(page, zone); 67 VM_BUG_ON_PAGE(!PageLRU(page), page); 68 __ClearPageLRU(page); 69 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 70 spin_unlock_irqrestore(&zone->lru_lock, flags); 71 } 72 mem_cgroup_uncharge(page); 73 } 74 75 static void __put_single_page(struct page *page) 76 { 77 __page_cache_release(page); 78 free_hot_cold_page(page, false); 79 } 80 81 static void __put_compound_page(struct page *page) 82 { 83 compound_page_dtor *dtor; 84 85 /* 86 * __page_cache_release() is supposed to be called for thp, not for 87 * hugetlb. This is because hugetlb page does never have PageLRU set 88 * (it's never listed to any LRU lists) and no memcg routines should 89 * be called for hugetlb (it has a separate hugetlb_cgroup.) 90 */ 91 if (!PageHuge(page)) 92 __page_cache_release(page); 93 dtor = get_compound_page_dtor(page); 94 (*dtor)(page); 95 } 96 97 void __put_page(struct page *page) 98 { 99 if (unlikely(PageCompound(page))) 100 __put_compound_page(page); 101 else 102 __put_single_page(page); 103 } 104 EXPORT_SYMBOL(__put_page); 105 106 /** 107 * put_pages_list() - release a list of pages 108 * @pages: list of pages threaded on page->lru 109 * 110 * Release a list of pages which are strung together on page.lru. Currently 111 * used by read_cache_pages() and related error recovery code. 112 */ 113 void put_pages_list(struct list_head *pages) 114 { 115 while (!list_empty(pages)) { 116 struct page *victim; 117 118 victim = list_entry(pages->prev, struct page, lru); 119 list_del(&victim->lru); 120 put_page(victim); 121 } 122 } 123 EXPORT_SYMBOL(put_pages_list); 124 125 /* 126 * get_kernel_pages() - pin kernel pages in memory 127 * @kiov: An array of struct kvec structures 128 * @nr_segs: number of segments to pin 129 * @write: pinning for read/write, currently ignored 130 * @pages: array that receives pointers to the pages pinned. 131 * Should be at least nr_segs long. 132 * 133 * Returns number of pages pinned. This may be fewer than the number 134 * requested. If nr_pages is 0 or negative, returns 0. If no pages 135 * were pinned, returns -errno. Each page returned must be released 136 * with a put_page() call when it is finished with. 137 */ 138 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 139 struct page **pages) 140 { 141 int seg; 142 143 for (seg = 0; seg < nr_segs; seg++) { 144 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 145 return seg; 146 147 pages[seg] = kmap_to_page(kiov[seg].iov_base); 148 get_page(pages[seg]); 149 } 150 151 return seg; 152 } 153 EXPORT_SYMBOL_GPL(get_kernel_pages); 154 155 /* 156 * get_kernel_page() - pin a kernel page in memory 157 * @start: starting kernel address 158 * @write: pinning for read/write, currently ignored 159 * @pages: array that receives pointer to the page pinned. 160 * Must be at least nr_segs long. 161 * 162 * Returns 1 if page is pinned. If the page was not pinned, returns 163 * -errno. The page returned must be released with a put_page() call 164 * when it is finished with. 165 */ 166 int get_kernel_page(unsigned long start, int write, struct page **pages) 167 { 168 const struct kvec kiov = { 169 .iov_base = (void *)start, 170 .iov_len = PAGE_SIZE 171 }; 172 173 return get_kernel_pages(&kiov, 1, write, pages); 174 } 175 EXPORT_SYMBOL_GPL(get_kernel_page); 176 177 static void pagevec_lru_move_fn(struct pagevec *pvec, 178 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), 179 void *arg) 180 { 181 int i; 182 struct zone *zone = NULL; 183 struct lruvec *lruvec; 184 unsigned long flags = 0; 185 186 for (i = 0; i < pagevec_count(pvec); i++) { 187 struct page *page = pvec->pages[i]; 188 struct zone *pagezone = page_zone(page); 189 190 if (pagezone != zone) { 191 if (zone) 192 spin_unlock_irqrestore(&zone->lru_lock, flags); 193 zone = pagezone; 194 spin_lock_irqsave(&zone->lru_lock, flags); 195 } 196 197 lruvec = mem_cgroup_page_lruvec(page, zone); 198 (*move_fn)(page, lruvec, arg); 199 } 200 if (zone) 201 spin_unlock_irqrestore(&zone->lru_lock, flags); 202 release_pages(pvec->pages, pvec->nr, pvec->cold); 203 pagevec_reinit(pvec); 204 } 205 206 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, 207 void *arg) 208 { 209 int *pgmoved = arg; 210 211 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 212 enum lru_list lru = page_lru_base_type(page); 213 list_move_tail(&page->lru, &lruvec->lists[lru]); 214 (*pgmoved)++; 215 } 216 } 217 218 /* 219 * pagevec_move_tail() must be called with IRQ disabled. 220 * Otherwise this may cause nasty races. 221 */ 222 static void pagevec_move_tail(struct pagevec *pvec) 223 { 224 int pgmoved = 0; 225 226 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); 227 __count_vm_events(PGROTATED, pgmoved); 228 } 229 230 /* 231 * Writeback is about to end against a page which has been marked for immediate 232 * reclaim. If it still appears to be reclaimable, move it to the tail of the 233 * inactive list. 234 */ 235 void rotate_reclaimable_page(struct page *page) 236 { 237 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && 238 !PageUnevictable(page) && PageLRU(page)) { 239 struct pagevec *pvec; 240 unsigned long flags; 241 242 get_page(page); 243 local_irq_save(flags); 244 pvec = this_cpu_ptr(&lru_rotate_pvecs); 245 if (!pagevec_add(pvec, page) || PageCompound(page)) 246 pagevec_move_tail(pvec); 247 local_irq_restore(flags); 248 } 249 } 250 251 static void update_page_reclaim_stat(struct lruvec *lruvec, 252 int file, int rotated) 253 { 254 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 255 256 reclaim_stat->recent_scanned[file]++; 257 if (rotated) 258 reclaim_stat->recent_rotated[file]++; 259 } 260 261 static void __activate_page(struct page *page, struct lruvec *lruvec, 262 void *arg) 263 { 264 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 265 int file = page_is_file_cache(page); 266 int lru = page_lru_base_type(page); 267 268 del_page_from_lru_list(page, lruvec, lru); 269 SetPageActive(page); 270 lru += LRU_ACTIVE; 271 add_page_to_lru_list(page, lruvec, lru); 272 trace_mm_lru_activate(page); 273 274 __count_vm_event(PGACTIVATE); 275 update_page_reclaim_stat(lruvec, file, 1); 276 } 277 } 278 279 #ifdef CONFIG_SMP 280 static void activate_page_drain(int cpu) 281 { 282 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); 283 284 if (pagevec_count(pvec)) 285 pagevec_lru_move_fn(pvec, __activate_page, NULL); 286 } 287 288 static bool need_activate_page_drain(int cpu) 289 { 290 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0; 291 } 292 293 void activate_page(struct page *page) 294 { 295 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 296 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); 297 298 get_page(page); 299 if (!pagevec_add(pvec, page) || PageCompound(page)) 300 pagevec_lru_move_fn(pvec, __activate_page, NULL); 301 put_cpu_var(activate_page_pvecs); 302 } 303 } 304 305 #else 306 static inline void activate_page_drain(int cpu) 307 { 308 } 309 310 static bool need_activate_page_drain(int cpu) 311 { 312 return false; 313 } 314 315 void activate_page(struct page *page) 316 { 317 struct zone *zone = page_zone(page); 318 319 spin_lock_irq(&zone->lru_lock); 320 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL); 321 spin_unlock_irq(&zone->lru_lock); 322 } 323 #endif 324 325 static void __lru_cache_activate_page(struct page *page) 326 { 327 struct pagevec *pvec = &get_cpu_var(lru_add_pvec); 328 int i; 329 330 /* 331 * Search backwards on the optimistic assumption that the page being 332 * activated has just been added to this pagevec. Note that only 333 * the local pagevec is examined as a !PageLRU page could be in the 334 * process of being released, reclaimed, migrated or on a remote 335 * pagevec that is currently being drained. Furthermore, marking 336 * a remote pagevec's page PageActive potentially hits a race where 337 * a page is marked PageActive just after it is added to the inactive 338 * list causing accounting errors and BUG_ON checks to trigger. 339 */ 340 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 341 struct page *pagevec_page = pvec->pages[i]; 342 343 if (pagevec_page == page) { 344 SetPageActive(page); 345 break; 346 } 347 } 348 349 put_cpu_var(lru_add_pvec); 350 } 351 352 /* 353 * Mark a page as having seen activity. 354 * 355 * inactive,unreferenced -> inactive,referenced 356 * inactive,referenced -> active,unreferenced 357 * active,unreferenced -> active,referenced 358 * 359 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 360 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 361 */ 362 void mark_page_accessed(struct page *page) 363 { 364 page = compound_head(page); 365 if (!PageActive(page) && !PageUnevictable(page) && 366 PageReferenced(page)) { 367 368 /* 369 * If the page is on the LRU, queue it for activation via 370 * activate_page_pvecs. Otherwise, assume the page is on a 371 * pagevec, mark it active and it'll be moved to the active 372 * LRU on the next drain. 373 */ 374 if (PageLRU(page)) 375 activate_page(page); 376 else 377 __lru_cache_activate_page(page); 378 ClearPageReferenced(page); 379 if (page_is_file_cache(page)) 380 workingset_activation(page); 381 } else if (!PageReferenced(page)) { 382 SetPageReferenced(page); 383 } 384 if (page_is_idle(page)) 385 clear_page_idle(page); 386 } 387 EXPORT_SYMBOL(mark_page_accessed); 388 389 static void __lru_cache_add(struct page *page) 390 { 391 struct pagevec *pvec = &get_cpu_var(lru_add_pvec); 392 393 get_page(page); 394 if (!pagevec_add(pvec, page) || PageCompound(page)) 395 __pagevec_lru_add(pvec); 396 put_cpu_var(lru_add_pvec); 397 } 398 399 /** 400 * lru_cache_add: add a page to the page lists 401 * @page: the page to add 402 */ 403 void lru_cache_add_anon(struct page *page) 404 { 405 if (PageActive(page)) 406 ClearPageActive(page); 407 __lru_cache_add(page); 408 } 409 410 void lru_cache_add_file(struct page *page) 411 { 412 if (PageActive(page)) 413 ClearPageActive(page); 414 __lru_cache_add(page); 415 } 416 EXPORT_SYMBOL(lru_cache_add_file); 417 418 /** 419 * lru_cache_add - add a page to a page list 420 * @page: the page to be added to the LRU. 421 * 422 * Queue the page for addition to the LRU via pagevec. The decision on whether 423 * to add the page to the [in]active [file|anon] list is deferred until the 424 * pagevec is drained. This gives a chance for the caller of lru_cache_add() 425 * have the page added to the active list using mark_page_accessed(). 426 */ 427 void lru_cache_add(struct page *page) 428 { 429 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); 430 VM_BUG_ON_PAGE(PageLRU(page), page); 431 __lru_cache_add(page); 432 } 433 434 /** 435 * add_page_to_unevictable_list - add a page to the unevictable list 436 * @page: the page to be added to the unevictable list 437 * 438 * Add page directly to its zone's unevictable list. To avoid races with 439 * tasks that might be making the page evictable, through eg. munlock, 440 * munmap or exit, while it's not on the lru, we want to add the page 441 * while it's locked or otherwise "invisible" to other tasks. This is 442 * difficult to do when using the pagevec cache, so bypass that. 443 */ 444 void add_page_to_unevictable_list(struct page *page) 445 { 446 struct zone *zone = page_zone(page); 447 struct lruvec *lruvec; 448 449 spin_lock_irq(&zone->lru_lock); 450 lruvec = mem_cgroup_page_lruvec(page, zone); 451 ClearPageActive(page); 452 SetPageUnevictable(page); 453 SetPageLRU(page); 454 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE); 455 spin_unlock_irq(&zone->lru_lock); 456 } 457 458 /** 459 * lru_cache_add_active_or_unevictable 460 * @page: the page to be added to LRU 461 * @vma: vma in which page is mapped for determining reclaimability 462 * 463 * Place @page on the active or unevictable LRU list, depending on its 464 * evictability. Note that if the page is not evictable, it goes 465 * directly back onto it's zone's unevictable list, it does NOT use a 466 * per cpu pagevec. 467 */ 468 void lru_cache_add_active_or_unevictable(struct page *page, 469 struct vm_area_struct *vma) 470 { 471 VM_BUG_ON_PAGE(PageLRU(page), page); 472 473 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) { 474 SetPageActive(page); 475 lru_cache_add(page); 476 return; 477 } 478 479 if (!TestSetPageMlocked(page)) { 480 /* 481 * We use the irq-unsafe __mod_zone_page_stat because this 482 * counter is not modified from interrupt context, and the pte 483 * lock is held(spinlock), which implies preemption disabled. 484 */ 485 __mod_zone_page_state(page_zone(page), NR_MLOCK, 486 hpage_nr_pages(page)); 487 count_vm_event(UNEVICTABLE_PGMLOCKED); 488 } 489 add_page_to_unevictable_list(page); 490 } 491 492 /* 493 * If the page can not be invalidated, it is moved to the 494 * inactive list to speed up its reclaim. It is moved to the 495 * head of the list, rather than the tail, to give the flusher 496 * threads some time to write it out, as this is much more 497 * effective than the single-page writeout from reclaim. 498 * 499 * If the page isn't page_mapped and dirty/writeback, the page 500 * could reclaim asap using PG_reclaim. 501 * 502 * 1. active, mapped page -> none 503 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 504 * 3. inactive, mapped page -> none 505 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 506 * 5. inactive, clean -> inactive, tail 507 * 6. Others -> none 508 * 509 * In 4, why it moves inactive's head, the VM expects the page would 510 * be write it out by flusher threads as this is much more effective 511 * than the single-page writeout from reclaim. 512 */ 513 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec, 514 void *arg) 515 { 516 int lru, file; 517 bool active; 518 519 if (!PageLRU(page)) 520 return; 521 522 if (PageUnevictable(page)) 523 return; 524 525 /* Some processes are using the page */ 526 if (page_mapped(page)) 527 return; 528 529 active = PageActive(page); 530 file = page_is_file_cache(page); 531 lru = page_lru_base_type(page); 532 533 del_page_from_lru_list(page, lruvec, lru + active); 534 ClearPageActive(page); 535 ClearPageReferenced(page); 536 add_page_to_lru_list(page, lruvec, lru); 537 538 if (PageWriteback(page) || PageDirty(page)) { 539 /* 540 * PG_reclaim could be raced with end_page_writeback 541 * It can make readahead confusing. But race window 542 * is _really_ small and it's non-critical problem. 543 */ 544 SetPageReclaim(page); 545 } else { 546 /* 547 * The page's writeback ends up during pagevec 548 * We moves tha page into tail of inactive. 549 */ 550 list_move_tail(&page->lru, &lruvec->lists[lru]); 551 __count_vm_event(PGROTATED); 552 } 553 554 if (active) 555 __count_vm_event(PGDEACTIVATE); 556 update_page_reclaim_stat(lruvec, file, 0); 557 } 558 559 560 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec, 561 void *arg) 562 { 563 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 564 int file = page_is_file_cache(page); 565 int lru = page_lru_base_type(page); 566 567 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE); 568 ClearPageActive(page); 569 ClearPageReferenced(page); 570 add_page_to_lru_list(page, lruvec, lru); 571 572 __count_vm_event(PGDEACTIVATE); 573 update_page_reclaim_stat(lruvec, file, 0); 574 } 575 } 576 577 /* 578 * Drain pages out of the cpu's pagevecs. 579 * Either "cpu" is the current CPU, and preemption has already been 580 * disabled; or "cpu" is being hot-unplugged, and is already dead. 581 */ 582 void lru_add_drain_cpu(int cpu) 583 { 584 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu); 585 586 if (pagevec_count(pvec)) 587 __pagevec_lru_add(pvec); 588 589 pvec = &per_cpu(lru_rotate_pvecs, cpu); 590 if (pagevec_count(pvec)) { 591 unsigned long flags; 592 593 /* No harm done if a racing interrupt already did this */ 594 local_irq_save(flags); 595 pagevec_move_tail(pvec); 596 local_irq_restore(flags); 597 } 598 599 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu); 600 if (pagevec_count(pvec)) 601 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 602 603 pvec = &per_cpu(lru_deactivate_pvecs, cpu); 604 if (pagevec_count(pvec)) 605 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 606 607 activate_page_drain(cpu); 608 } 609 610 /** 611 * deactivate_file_page - forcefully deactivate a file page 612 * @page: page to deactivate 613 * 614 * This function hints the VM that @page is a good reclaim candidate, 615 * for example if its invalidation fails due to the page being dirty 616 * or under writeback. 617 */ 618 void deactivate_file_page(struct page *page) 619 { 620 /* 621 * In a workload with many unevictable page such as mprotect, 622 * unevictable page deactivation for accelerating reclaim is pointless. 623 */ 624 if (PageUnevictable(page)) 625 return; 626 627 if (likely(get_page_unless_zero(page))) { 628 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs); 629 630 if (!pagevec_add(pvec, page) || PageCompound(page)) 631 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 632 put_cpu_var(lru_deactivate_file_pvecs); 633 } 634 } 635 636 /** 637 * deactivate_page - deactivate a page 638 * @page: page to deactivate 639 * 640 * deactivate_page() moves @page to the inactive list if @page was on the active 641 * list and was not an unevictable page. This is done to accelerate the reclaim 642 * of @page. 643 */ 644 void deactivate_page(struct page *page) 645 { 646 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 647 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs); 648 649 get_page(page); 650 if (!pagevec_add(pvec, page) || PageCompound(page)) 651 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 652 put_cpu_var(lru_deactivate_pvecs); 653 } 654 } 655 656 void lru_add_drain(void) 657 { 658 lru_add_drain_cpu(get_cpu()); 659 put_cpu(); 660 } 661 662 static void lru_add_drain_per_cpu(struct work_struct *dummy) 663 { 664 lru_add_drain(); 665 } 666 667 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 668 669 /* 670 * lru_add_drain_wq is used to do lru_add_drain_all() from a WQ_MEM_RECLAIM 671 * workqueue, aiding in getting memory freed. 672 */ 673 static struct workqueue_struct *lru_add_drain_wq; 674 675 static int __init lru_init(void) 676 { 677 lru_add_drain_wq = alloc_workqueue("lru-add-drain", WQ_MEM_RECLAIM, 0); 678 679 if (WARN(!lru_add_drain_wq, 680 "Failed to create workqueue lru_add_drain_wq")) 681 return -ENOMEM; 682 683 return 0; 684 } 685 early_initcall(lru_init); 686 687 void lru_add_drain_all(void) 688 { 689 static DEFINE_MUTEX(lock); 690 static struct cpumask has_work; 691 int cpu; 692 693 mutex_lock(&lock); 694 get_online_cpus(); 695 cpumask_clear(&has_work); 696 697 for_each_online_cpu(cpu) { 698 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 699 700 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) || 701 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) || 702 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) || 703 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) || 704 need_activate_page_drain(cpu)) { 705 INIT_WORK(work, lru_add_drain_per_cpu); 706 queue_work_on(cpu, lru_add_drain_wq, work); 707 cpumask_set_cpu(cpu, &has_work); 708 } 709 } 710 711 for_each_cpu(cpu, &has_work) 712 flush_work(&per_cpu(lru_add_drain_work, cpu)); 713 714 put_online_cpus(); 715 mutex_unlock(&lock); 716 } 717 718 /** 719 * release_pages - batched put_page() 720 * @pages: array of pages to release 721 * @nr: number of pages 722 * @cold: whether the pages are cache cold 723 * 724 * Decrement the reference count on all the pages in @pages. If it 725 * fell to zero, remove the page from the LRU and free it. 726 */ 727 void release_pages(struct page **pages, int nr, bool cold) 728 { 729 int i; 730 LIST_HEAD(pages_to_free); 731 struct zone *zone = NULL; 732 struct lruvec *lruvec; 733 unsigned long uninitialized_var(flags); 734 unsigned int uninitialized_var(lock_batch); 735 736 for (i = 0; i < nr; i++) { 737 struct page *page = pages[i]; 738 739 /* 740 * Make sure the IRQ-safe lock-holding time does not get 741 * excessive with a continuous string of pages from the 742 * same zone. The lock is held only if zone != NULL. 743 */ 744 if (zone && ++lock_batch == SWAP_CLUSTER_MAX) { 745 spin_unlock_irqrestore(&zone->lru_lock, flags); 746 zone = NULL; 747 } 748 749 if (is_huge_zero_page(page)) { 750 put_huge_zero_page(); 751 continue; 752 } 753 754 page = compound_head(page); 755 if (!put_page_testzero(page)) 756 continue; 757 758 if (PageCompound(page)) { 759 if (zone) { 760 spin_unlock_irqrestore(&zone->lru_lock, flags); 761 zone = NULL; 762 } 763 __put_compound_page(page); 764 continue; 765 } 766 767 if (PageLRU(page)) { 768 struct zone *pagezone = page_zone(page); 769 770 if (pagezone != zone) { 771 if (zone) 772 spin_unlock_irqrestore(&zone->lru_lock, 773 flags); 774 lock_batch = 0; 775 zone = pagezone; 776 spin_lock_irqsave(&zone->lru_lock, flags); 777 } 778 779 lruvec = mem_cgroup_page_lruvec(page, zone); 780 VM_BUG_ON_PAGE(!PageLRU(page), page); 781 __ClearPageLRU(page); 782 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 783 } 784 785 /* Clear Active bit in case of parallel mark_page_accessed */ 786 __ClearPageActive(page); 787 788 list_add(&page->lru, &pages_to_free); 789 } 790 if (zone) 791 spin_unlock_irqrestore(&zone->lru_lock, flags); 792 793 mem_cgroup_uncharge_list(&pages_to_free); 794 free_hot_cold_page_list(&pages_to_free, cold); 795 } 796 EXPORT_SYMBOL(release_pages); 797 798 /* 799 * The pages which we're about to release may be in the deferred lru-addition 800 * queues. That would prevent them from really being freed right now. That's 801 * OK from a correctness point of view but is inefficient - those pages may be 802 * cache-warm and we want to give them back to the page allocator ASAP. 803 * 804 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 805 * and __pagevec_lru_add_active() call release_pages() directly to avoid 806 * mutual recursion. 807 */ 808 void __pagevec_release(struct pagevec *pvec) 809 { 810 lru_add_drain(); 811 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); 812 pagevec_reinit(pvec); 813 } 814 EXPORT_SYMBOL(__pagevec_release); 815 816 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 817 /* used by __split_huge_page_refcount() */ 818 void lru_add_page_tail(struct page *page, struct page *page_tail, 819 struct lruvec *lruvec, struct list_head *list) 820 { 821 const int file = 0; 822 823 VM_BUG_ON_PAGE(!PageHead(page), page); 824 VM_BUG_ON_PAGE(PageCompound(page_tail), page); 825 VM_BUG_ON_PAGE(PageLRU(page_tail), page); 826 VM_BUG_ON(NR_CPUS != 1 && 827 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock)); 828 829 if (!list) 830 SetPageLRU(page_tail); 831 832 if (likely(PageLRU(page))) 833 list_add_tail(&page_tail->lru, &page->lru); 834 else if (list) { 835 /* page reclaim is reclaiming a huge page */ 836 get_page(page_tail); 837 list_add_tail(&page_tail->lru, list); 838 } else { 839 struct list_head *list_head; 840 /* 841 * Head page has not yet been counted, as an hpage, 842 * so we must account for each subpage individually. 843 * 844 * Use the standard add function to put page_tail on the list, 845 * but then correct its position so they all end up in order. 846 */ 847 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail)); 848 list_head = page_tail->lru.prev; 849 list_move_tail(&page_tail->lru, list_head); 850 } 851 852 if (!PageUnevictable(page)) 853 update_page_reclaim_stat(lruvec, file, PageActive(page_tail)); 854 } 855 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 856 857 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, 858 void *arg) 859 { 860 int file = page_is_file_cache(page); 861 int active = PageActive(page); 862 enum lru_list lru = page_lru(page); 863 864 VM_BUG_ON_PAGE(PageLRU(page), page); 865 866 SetPageLRU(page); 867 add_page_to_lru_list(page, lruvec, lru); 868 update_page_reclaim_stat(lruvec, file, active); 869 trace_mm_lru_insertion(page, lru); 870 } 871 872 /* 873 * Add the passed pages to the LRU, then drop the caller's refcount 874 * on them. Reinitialises the caller's pagevec. 875 */ 876 void __pagevec_lru_add(struct pagevec *pvec) 877 { 878 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL); 879 } 880 EXPORT_SYMBOL(__pagevec_lru_add); 881 882 /** 883 * pagevec_lookup_entries - gang pagecache lookup 884 * @pvec: Where the resulting entries are placed 885 * @mapping: The address_space to search 886 * @start: The starting entry index 887 * @nr_entries: The maximum number of entries 888 * @indices: The cache indices corresponding to the entries in @pvec 889 * 890 * pagevec_lookup_entries() will search for and return a group of up 891 * to @nr_entries pages and shadow entries in the mapping. All 892 * entries are placed in @pvec. pagevec_lookup_entries() takes a 893 * reference against actual pages in @pvec. 894 * 895 * The search returns a group of mapping-contiguous entries with 896 * ascending indexes. There may be holes in the indices due to 897 * not-present entries. 898 * 899 * pagevec_lookup_entries() returns the number of entries which were 900 * found. 901 */ 902 unsigned pagevec_lookup_entries(struct pagevec *pvec, 903 struct address_space *mapping, 904 pgoff_t start, unsigned nr_pages, 905 pgoff_t *indices) 906 { 907 pvec->nr = find_get_entries(mapping, start, nr_pages, 908 pvec->pages, indices); 909 return pagevec_count(pvec); 910 } 911 912 /** 913 * pagevec_remove_exceptionals - pagevec exceptionals pruning 914 * @pvec: The pagevec to prune 915 * 916 * pagevec_lookup_entries() fills both pages and exceptional radix 917 * tree entries into the pagevec. This function prunes all 918 * exceptionals from @pvec without leaving holes, so that it can be 919 * passed on to page-only pagevec operations. 920 */ 921 void pagevec_remove_exceptionals(struct pagevec *pvec) 922 { 923 int i, j; 924 925 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 926 struct page *page = pvec->pages[i]; 927 if (!radix_tree_exceptional_entry(page)) 928 pvec->pages[j++] = page; 929 } 930 pvec->nr = j; 931 } 932 933 /** 934 * pagevec_lookup - gang pagecache lookup 935 * @pvec: Where the resulting pages are placed 936 * @mapping: The address_space to search 937 * @start: The starting page index 938 * @nr_pages: The maximum number of pages 939 * 940 * pagevec_lookup() will search for and return a group of up to @nr_pages pages 941 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a 942 * reference against the pages in @pvec. 943 * 944 * The search returns a group of mapping-contiguous pages with ascending 945 * indexes. There may be holes in the indices due to not-present pages. 946 * 947 * pagevec_lookup() returns the number of pages which were found. 948 */ 949 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, 950 pgoff_t start, unsigned nr_pages) 951 { 952 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); 953 return pagevec_count(pvec); 954 } 955 EXPORT_SYMBOL(pagevec_lookup); 956 957 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, 958 pgoff_t *index, int tag, unsigned nr_pages) 959 { 960 pvec->nr = find_get_pages_tag(mapping, index, tag, 961 nr_pages, pvec->pages); 962 return pagevec_count(pvec); 963 } 964 EXPORT_SYMBOL(pagevec_lookup_tag); 965 966 /* 967 * Perform any setup for the swap system 968 */ 969 void __init swap_setup(void) 970 { 971 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); 972 #ifdef CONFIG_SWAP 973 int i; 974 975 for (i = 0; i < MAX_SWAPFILES; i++) 976 spin_lock_init(&swapper_spaces[i].tree_lock); 977 #endif 978 979 /* Use a smaller cluster for small-memory machines */ 980 if (megs < 16) 981 page_cluster = 2; 982 else 983 page_cluster = 3; 984 /* 985 * Right now other parts of the system means that we 986 * _really_ don't want to cluster much more 987 */ 988 } 989