xref: /openbmc/linux/mm/swap.c (revision 089a49b6)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 #include <linux/hugetlb.h>
35 
36 #include "internal.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/pagemap.h>
40 
41 /* How many pages do we try to swap or page in/out together? */
42 int page_cluster;
43 
44 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
45 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
46 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
47 
48 /*
49  * This path almost never happens for VM activity - pages are normally
50  * freed via pagevecs.  But it gets used by networking.
51  */
52 static void __page_cache_release(struct page *page)
53 {
54 	if (PageLRU(page)) {
55 		struct zone *zone = page_zone(page);
56 		struct lruvec *lruvec;
57 		unsigned long flags;
58 
59 		spin_lock_irqsave(&zone->lru_lock, flags);
60 		lruvec = mem_cgroup_page_lruvec(page, zone);
61 		VM_BUG_ON(!PageLRU(page));
62 		__ClearPageLRU(page);
63 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
64 		spin_unlock_irqrestore(&zone->lru_lock, flags);
65 	}
66 }
67 
68 static void __put_single_page(struct page *page)
69 {
70 	__page_cache_release(page);
71 	free_hot_cold_page(page, 0);
72 }
73 
74 static void __put_compound_page(struct page *page)
75 {
76 	compound_page_dtor *dtor;
77 
78 	__page_cache_release(page);
79 	dtor = get_compound_page_dtor(page);
80 	(*dtor)(page);
81 }
82 
83 static void put_compound_page(struct page *page)
84 {
85 	/*
86 	 * hugetlbfs pages cannot be split from under us.  If this is a
87 	 * hugetlbfs page, check refcount on head page and release the page if
88 	 * the refcount becomes zero.
89 	 */
90 	if (PageHuge(page)) {
91 		page = compound_head(page);
92 		if (put_page_testzero(page))
93 			__put_compound_page(page);
94 
95 		return;
96 	}
97 
98 	if (unlikely(PageTail(page))) {
99 		/* __split_huge_page_refcount can run under us */
100 		struct page *page_head = compound_trans_head(page);
101 
102 		if (likely(page != page_head &&
103 			   get_page_unless_zero(page_head))) {
104 			unsigned long flags;
105 
106 			/*
107 			 * THP can not break up slab pages so avoid taking
108 			 * compound_lock().  Slab performs non-atomic bit ops
109 			 * on page->flags for better performance.  In particular
110 			 * slab_unlock() in slub used to be a hot path.  It is
111 			 * still hot on arches that do not support
112 			 * this_cpu_cmpxchg_double().
113 			 */
114 			if (PageSlab(page_head)) {
115 				if (PageTail(page)) {
116 					if (put_page_testzero(page_head))
117 						VM_BUG_ON(1);
118 
119 					atomic_dec(&page->_mapcount);
120 					goto skip_lock_tail;
121 				} else
122 					goto skip_lock;
123 			}
124 			/*
125 			 * page_head wasn't a dangling pointer but it
126 			 * may not be a head page anymore by the time
127 			 * we obtain the lock. That is ok as long as it
128 			 * can't be freed from under us.
129 			 */
130 			flags = compound_lock_irqsave(page_head);
131 			if (unlikely(!PageTail(page))) {
132 				/* __split_huge_page_refcount run before us */
133 				compound_unlock_irqrestore(page_head, flags);
134 skip_lock:
135 				if (put_page_testzero(page_head))
136 					__put_single_page(page_head);
137 out_put_single:
138 				if (put_page_testzero(page))
139 					__put_single_page(page);
140 				return;
141 			}
142 			VM_BUG_ON(page_head != page->first_page);
143 			/*
144 			 * We can release the refcount taken by
145 			 * get_page_unless_zero() now that
146 			 * __split_huge_page_refcount() is blocked on
147 			 * the compound_lock.
148 			 */
149 			if (put_page_testzero(page_head))
150 				VM_BUG_ON(1);
151 			/* __split_huge_page_refcount will wait now */
152 			VM_BUG_ON(page_mapcount(page) <= 0);
153 			atomic_dec(&page->_mapcount);
154 			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
155 			VM_BUG_ON(atomic_read(&page->_count) != 0);
156 			compound_unlock_irqrestore(page_head, flags);
157 
158 skip_lock_tail:
159 			if (put_page_testzero(page_head)) {
160 				if (PageHead(page_head))
161 					__put_compound_page(page_head);
162 				else
163 					__put_single_page(page_head);
164 			}
165 		} else {
166 			/* page_head is a dangling pointer */
167 			VM_BUG_ON(PageTail(page));
168 			goto out_put_single;
169 		}
170 	} else if (put_page_testzero(page)) {
171 		if (PageHead(page))
172 			__put_compound_page(page);
173 		else
174 			__put_single_page(page);
175 	}
176 }
177 
178 void put_page(struct page *page)
179 {
180 	if (unlikely(PageCompound(page)))
181 		put_compound_page(page);
182 	else if (put_page_testzero(page))
183 		__put_single_page(page);
184 }
185 EXPORT_SYMBOL(put_page);
186 
187 /*
188  * This function is exported but must not be called by anything other
189  * than get_page(). It implements the slow path of get_page().
190  */
191 bool __get_page_tail(struct page *page)
192 {
193 	/*
194 	 * This takes care of get_page() if run on a tail page
195 	 * returned by one of the get_user_pages/follow_page variants.
196 	 * get_user_pages/follow_page itself doesn't need the compound
197 	 * lock because it runs __get_page_tail_foll() under the
198 	 * proper PT lock that already serializes against
199 	 * split_huge_page().
200 	 */
201 	bool got = false;
202 	struct page *page_head;
203 
204 	/*
205 	 * If this is a hugetlbfs page it cannot be split under us.  Simply
206 	 * increment refcount for the head page.
207 	 */
208 	if (PageHuge(page)) {
209 		page_head = compound_head(page);
210 		atomic_inc(&page_head->_count);
211 		got = true;
212 	} else {
213 		unsigned long flags;
214 
215 		page_head = compound_trans_head(page);
216 		if (likely(page != page_head &&
217 					get_page_unless_zero(page_head))) {
218 
219 			/* Ref to put_compound_page() comment. */
220 			if (PageSlab(page_head)) {
221 				if (likely(PageTail(page))) {
222 					__get_page_tail_foll(page, false);
223 					return true;
224 				} else {
225 					put_page(page_head);
226 					return false;
227 				}
228 			}
229 
230 			/*
231 			 * page_head wasn't a dangling pointer but it
232 			 * may not be a head page anymore by the time
233 			 * we obtain the lock. That is ok as long as it
234 			 * can't be freed from under us.
235 			 */
236 			flags = compound_lock_irqsave(page_head);
237 			/* here __split_huge_page_refcount won't run anymore */
238 			if (likely(PageTail(page))) {
239 				__get_page_tail_foll(page, false);
240 				got = true;
241 			}
242 			compound_unlock_irqrestore(page_head, flags);
243 			if (unlikely(!got))
244 				put_page(page_head);
245 		}
246 	}
247 	return got;
248 }
249 EXPORT_SYMBOL(__get_page_tail);
250 
251 /**
252  * put_pages_list() - release a list of pages
253  * @pages: list of pages threaded on page->lru
254  *
255  * Release a list of pages which are strung together on page.lru.  Currently
256  * used by read_cache_pages() and related error recovery code.
257  */
258 void put_pages_list(struct list_head *pages)
259 {
260 	while (!list_empty(pages)) {
261 		struct page *victim;
262 
263 		victim = list_entry(pages->prev, struct page, lru);
264 		list_del(&victim->lru);
265 		page_cache_release(victim);
266 	}
267 }
268 EXPORT_SYMBOL(put_pages_list);
269 
270 /*
271  * get_kernel_pages() - pin kernel pages in memory
272  * @kiov:	An array of struct kvec structures
273  * @nr_segs:	number of segments to pin
274  * @write:	pinning for read/write, currently ignored
275  * @pages:	array that receives pointers to the pages pinned.
276  *		Should be at least nr_segs long.
277  *
278  * Returns number of pages pinned. This may be fewer than the number
279  * requested. If nr_pages is 0 or negative, returns 0. If no pages
280  * were pinned, returns -errno. Each page returned must be released
281  * with a put_page() call when it is finished with.
282  */
283 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
284 		struct page **pages)
285 {
286 	int seg;
287 
288 	for (seg = 0; seg < nr_segs; seg++) {
289 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
290 			return seg;
291 
292 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
293 		page_cache_get(pages[seg]);
294 	}
295 
296 	return seg;
297 }
298 EXPORT_SYMBOL_GPL(get_kernel_pages);
299 
300 /*
301  * get_kernel_page() - pin a kernel page in memory
302  * @start:	starting kernel address
303  * @write:	pinning for read/write, currently ignored
304  * @pages:	array that receives pointer to the page pinned.
305  *		Must be at least nr_segs long.
306  *
307  * Returns 1 if page is pinned. If the page was not pinned, returns
308  * -errno. The page returned must be released with a put_page() call
309  * when it is finished with.
310  */
311 int get_kernel_page(unsigned long start, int write, struct page **pages)
312 {
313 	const struct kvec kiov = {
314 		.iov_base = (void *)start,
315 		.iov_len = PAGE_SIZE
316 	};
317 
318 	return get_kernel_pages(&kiov, 1, write, pages);
319 }
320 EXPORT_SYMBOL_GPL(get_kernel_page);
321 
322 static void pagevec_lru_move_fn(struct pagevec *pvec,
323 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
324 	void *arg)
325 {
326 	int i;
327 	struct zone *zone = NULL;
328 	struct lruvec *lruvec;
329 	unsigned long flags = 0;
330 
331 	for (i = 0; i < pagevec_count(pvec); i++) {
332 		struct page *page = pvec->pages[i];
333 		struct zone *pagezone = page_zone(page);
334 
335 		if (pagezone != zone) {
336 			if (zone)
337 				spin_unlock_irqrestore(&zone->lru_lock, flags);
338 			zone = pagezone;
339 			spin_lock_irqsave(&zone->lru_lock, flags);
340 		}
341 
342 		lruvec = mem_cgroup_page_lruvec(page, zone);
343 		(*move_fn)(page, lruvec, arg);
344 	}
345 	if (zone)
346 		spin_unlock_irqrestore(&zone->lru_lock, flags);
347 	release_pages(pvec->pages, pvec->nr, pvec->cold);
348 	pagevec_reinit(pvec);
349 }
350 
351 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
352 				 void *arg)
353 {
354 	int *pgmoved = arg;
355 
356 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
357 		enum lru_list lru = page_lru_base_type(page);
358 		list_move_tail(&page->lru, &lruvec->lists[lru]);
359 		(*pgmoved)++;
360 	}
361 }
362 
363 /*
364  * pagevec_move_tail() must be called with IRQ disabled.
365  * Otherwise this may cause nasty races.
366  */
367 static void pagevec_move_tail(struct pagevec *pvec)
368 {
369 	int pgmoved = 0;
370 
371 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
372 	__count_vm_events(PGROTATED, pgmoved);
373 }
374 
375 /*
376  * Writeback is about to end against a page which has been marked for immediate
377  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
378  * inactive list.
379  */
380 void rotate_reclaimable_page(struct page *page)
381 {
382 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
383 	    !PageUnevictable(page) && PageLRU(page)) {
384 		struct pagevec *pvec;
385 		unsigned long flags;
386 
387 		page_cache_get(page);
388 		local_irq_save(flags);
389 		pvec = &__get_cpu_var(lru_rotate_pvecs);
390 		if (!pagevec_add(pvec, page))
391 			pagevec_move_tail(pvec);
392 		local_irq_restore(flags);
393 	}
394 }
395 
396 static void update_page_reclaim_stat(struct lruvec *lruvec,
397 				     int file, int rotated)
398 {
399 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
400 
401 	reclaim_stat->recent_scanned[file]++;
402 	if (rotated)
403 		reclaim_stat->recent_rotated[file]++;
404 }
405 
406 static void __activate_page(struct page *page, struct lruvec *lruvec,
407 			    void *arg)
408 {
409 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
410 		int file = page_is_file_cache(page);
411 		int lru = page_lru_base_type(page);
412 
413 		del_page_from_lru_list(page, lruvec, lru);
414 		SetPageActive(page);
415 		lru += LRU_ACTIVE;
416 		add_page_to_lru_list(page, lruvec, lru);
417 		trace_mm_lru_activate(page, page_to_pfn(page));
418 
419 		__count_vm_event(PGACTIVATE);
420 		update_page_reclaim_stat(lruvec, file, 1);
421 	}
422 }
423 
424 #ifdef CONFIG_SMP
425 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
426 
427 static void activate_page_drain(int cpu)
428 {
429 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
430 
431 	if (pagevec_count(pvec))
432 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
433 }
434 
435 static bool need_activate_page_drain(int cpu)
436 {
437 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
438 }
439 
440 void activate_page(struct page *page)
441 {
442 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
443 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
444 
445 		page_cache_get(page);
446 		if (!pagevec_add(pvec, page))
447 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
448 		put_cpu_var(activate_page_pvecs);
449 	}
450 }
451 
452 #else
453 static inline void activate_page_drain(int cpu)
454 {
455 }
456 
457 static bool need_activate_page_drain(int cpu)
458 {
459 	return false;
460 }
461 
462 void activate_page(struct page *page)
463 {
464 	struct zone *zone = page_zone(page);
465 
466 	spin_lock_irq(&zone->lru_lock);
467 	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
468 	spin_unlock_irq(&zone->lru_lock);
469 }
470 #endif
471 
472 static void __lru_cache_activate_page(struct page *page)
473 {
474 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
475 	int i;
476 
477 	/*
478 	 * Search backwards on the optimistic assumption that the page being
479 	 * activated has just been added to this pagevec. Note that only
480 	 * the local pagevec is examined as a !PageLRU page could be in the
481 	 * process of being released, reclaimed, migrated or on a remote
482 	 * pagevec that is currently being drained. Furthermore, marking
483 	 * a remote pagevec's page PageActive potentially hits a race where
484 	 * a page is marked PageActive just after it is added to the inactive
485 	 * list causing accounting errors and BUG_ON checks to trigger.
486 	 */
487 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
488 		struct page *pagevec_page = pvec->pages[i];
489 
490 		if (pagevec_page == page) {
491 			SetPageActive(page);
492 			break;
493 		}
494 	}
495 
496 	put_cpu_var(lru_add_pvec);
497 }
498 
499 /*
500  * Mark a page as having seen activity.
501  *
502  * inactive,unreferenced	->	inactive,referenced
503  * inactive,referenced		->	active,unreferenced
504  * active,unreferenced		->	active,referenced
505  */
506 void mark_page_accessed(struct page *page)
507 {
508 	if (!PageActive(page) && !PageUnevictable(page) &&
509 			PageReferenced(page)) {
510 
511 		/*
512 		 * If the page is on the LRU, queue it for activation via
513 		 * activate_page_pvecs. Otherwise, assume the page is on a
514 		 * pagevec, mark it active and it'll be moved to the active
515 		 * LRU on the next drain.
516 		 */
517 		if (PageLRU(page))
518 			activate_page(page);
519 		else
520 			__lru_cache_activate_page(page);
521 		ClearPageReferenced(page);
522 	} else if (!PageReferenced(page)) {
523 		SetPageReferenced(page);
524 	}
525 }
526 EXPORT_SYMBOL(mark_page_accessed);
527 
528 /*
529  * Queue the page for addition to the LRU via pagevec. The decision on whether
530  * to add the page to the [in]active [file|anon] list is deferred until the
531  * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
532  * have the page added to the active list using mark_page_accessed().
533  */
534 void __lru_cache_add(struct page *page)
535 {
536 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
537 
538 	page_cache_get(page);
539 	if (!pagevec_space(pvec))
540 		__pagevec_lru_add(pvec);
541 	pagevec_add(pvec, page);
542 	put_cpu_var(lru_add_pvec);
543 }
544 EXPORT_SYMBOL(__lru_cache_add);
545 
546 /**
547  * lru_cache_add - add a page to a page list
548  * @page: the page to be added to the LRU.
549  */
550 void lru_cache_add(struct page *page)
551 {
552 	VM_BUG_ON(PageActive(page) && PageUnevictable(page));
553 	VM_BUG_ON(PageLRU(page));
554 	__lru_cache_add(page);
555 }
556 
557 /**
558  * add_page_to_unevictable_list - add a page to the unevictable list
559  * @page:  the page to be added to the unevictable list
560  *
561  * Add page directly to its zone's unevictable list.  To avoid races with
562  * tasks that might be making the page evictable, through eg. munlock,
563  * munmap or exit, while it's not on the lru, we want to add the page
564  * while it's locked or otherwise "invisible" to other tasks.  This is
565  * difficult to do when using the pagevec cache, so bypass that.
566  */
567 void add_page_to_unevictable_list(struct page *page)
568 {
569 	struct zone *zone = page_zone(page);
570 	struct lruvec *lruvec;
571 
572 	spin_lock_irq(&zone->lru_lock);
573 	lruvec = mem_cgroup_page_lruvec(page, zone);
574 	ClearPageActive(page);
575 	SetPageUnevictable(page);
576 	SetPageLRU(page);
577 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
578 	spin_unlock_irq(&zone->lru_lock);
579 }
580 
581 /*
582  * If the page can not be invalidated, it is moved to the
583  * inactive list to speed up its reclaim.  It is moved to the
584  * head of the list, rather than the tail, to give the flusher
585  * threads some time to write it out, as this is much more
586  * effective than the single-page writeout from reclaim.
587  *
588  * If the page isn't page_mapped and dirty/writeback, the page
589  * could reclaim asap using PG_reclaim.
590  *
591  * 1. active, mapped page -> none
592  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
593  * 3. inactive, mapped page -> none
594  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
595  * 5. inactive, clean -> inactive, tail
596  * 6. Others -> none
597  *
598  * In 4, why it moves inactive's head, the VM expects the page would
599  * be write it out by flusher threads as this is much more effective
600  * than the single-page writeout from reclaim.
601  */
602 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
603 			      void *arg)
604 {
605 	int lru, file;
606 	bool active;
607 
608 	if (!PageLRU(page))
609 		return;
610 
611 	if (PageUnevictable(page))
612 		return;
613 
614 	/* Some processes are using the page */
615 	if (page_mapped(page))
616 		return;
617 
618 	active = PageActive(page);
619 	file = page_is_file_cache(page);
620 	lru = page_lru_base_type(page);
621 
622 	del_page_from_lru_list(page, lruvec, lru + active);
623 	ClearPageActive(page);
624 	ClearPageReferenced(page);
625 	add_page_to_lru_list(page, lruvec, lru);
626 
627 	if (PageWriteback(page) || PageDirty(page)) {
628 		/*
629 		 * PG_reclaim could be raced with end_page_writeback
630 		 * It can make readahead confusing.  But race window
631 		 * is _really_ small and  it's non-critical problem.
632 		 */
633 		SetPageReclaim(page);
634 	} else {
635 		/*
636 		 * The page's writeback ends up during pagevec
637 		 * We moves tha page into tail of inactive.
638 		 */
639 		list_move_tail(&page->lru, &lruvec->lists[lru]);
640 		__count_vm_event(PGROTATED);
641 	}
642 
643 	if (active)
644 		__count_vm_event(PGDEACTIVATE);
645 	update_page_reclaim_stat(lruvec, file, 0);
646 }
647 
648 /*
649  * Drain pages out of the cpu's pagevecs.
650  * Either "cpu" is the current CPU, and preemption has already been
651  * disabled; or "cpu" is being hot-unplugged, and is already dead.
652  */
653 void lru_add_drain_cpu(int cpu)
654 {
655 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
656 
657 	if (pagevec_count(pvec))
658 		__pagevec_lru_add(pvec);
659 
660 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
661 	if (pagevec_count(pvec)) {
662 		unsigned long flags;
663 
664 		/* No harm done if a racing interrupt already did this */
665 		local_irq_save(flags);
666 		pagevec_move_tail(pvec);
667 		local_irq_restore(flags);
668 	}
669 
670 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
671 	if (pagevec_count(pvec))
672 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
673 
674 	activate_page_drain(cpu);
675 }
676 
677 /**
678  * deactivate_page - forcefully deactivate a page
679  * @page: page to deactivate
680  *
681  * This function hints the VM that @page is a good reclaim candidate,
682  * for example if its invalidation fails due to the page being dirty
683  * or under writeback.
684  */
685 void deactivate_page(struct page *page)
686 {
687 	/*
688 	 * In a workload with many unevictable page such as mprotect, unevictable
689 	 * page deactivation for accelerating reclaim is pointless.
690 	 */
691 	if (PageUnevictable(page))
692 		return;
693 
694 	if (likely(get_page_unless_zero(page))) {
695 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
696 
697 		if (!pagevec_add(pvec, page))
698 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
699 		put_cpu_var(lru_deactivate_pvecs);
700 	}
701 }
702 
703 void lru_add_drain(void)
704 {
705 	lru_add_drain_cpu(get_cpu());
706 	put_cpu();
707 }
708 
709 static void lru_add_drain_per_cpu(struct work_struct *dummy)
710 {
711 	lru_add_drain();
712 }
713 
714 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
715 
716 void lru_add_drain_all(void)
717 {
718 	static DEFINE_MUTEX(lock);
719 	static struct cpumask has_work;
720 	int cpu;
721 
722 	mutex_lock(&lock);
723 	get_online_cpus();
724 	cpumask_clear(&has_work);
725 
726 	for_each_online_cpu(cpu) {
727 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
728 
729 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
730 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
731 		    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
732 		    need_activate_page_drain(cpu)) {
733 			INIT_WORK(work, lru_add_drain_per_cpu);
734 			schedule_work_on(cpu, work);
735 			cpumask_set_cpu(cpu, &has_work);
736 		}
737 	}
738 
739 	for_each_cpu(cpu, &has_work)
740 		flush_work(&per_cpu(lru_add_drain_work, cpu));
741 
742 	put_online_cpus();
743 	mutex_unlock(&lock);
744 }
745 
746 /*
747  * Batched page_cache_release().  Decrement the reference count on all the
748  * passed pages.  If it fell to zero then remove the page from the LRU and
749  * free it.
750  *
751  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
752  * for the remainder of the operation.
753  *
754  * The locking in this function is against shrink_inactive_list(): we recheck
755  * the page count inside the lock to see whether shrink_inactive_list()
756  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
757  * will free it.
758  */
759 void release_pages(struct page **pages, int nr, int cold)
760 {
761 	int i;
762 	LIST_HEAD(pages_to_free);
763 	struct zone *zone = NULL;
764 	struct lruvec *lruvec;
765 	unsigned long uninitialized_var(flags);
766 
767 	for (i = 0; i < nr; i++) {
768 		struct page *page = pages[i];
769 
770 		if (unlikely(PageCompound(page))) {
771 			if (zone) {
772 				spin_unlock_irqrestore(&zone->lru_lock, flags);
773 				zone = NULL;
774 			}
775 			put_compound_page(page);
776 			continue;
777 		}
778 
779 		if (!put_page_testzero(page))
780 			continue;
781 
782 		if (PageLRU(page)) {
783 			struct zone *pagezone = page_zone(page);
784 
785 			if (pagezone != zone) {
786 				if (zone)
787 					spin_unlock_irqrestore(&zone->lru_lock,
788 									flags);
789 				zone = pagezone;
790 				spin_lock_irqsave(&zone->lru_lock, flags);
791 			}
792 
793 			lruvec = mem_cgroup_page_lruvec(page, zone);
794 			VM_BUG_ON(!PageLRU(page));
795 			__ClearPageLRU(page);
796 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
797 		}
798 
799 		/* Clear Active bit in case of parallel mark_page_accessed */
800 		ClearPageActive(page);
801 
802 		list_add(&page->lru, &pages_to_free);
803 	}
804 	if (zone)
805 		spin_unlock_irqrestore(&zone->lru_lock, flags);
806 
807 	free_hot_cold_page_list(&pages_to_free, cold);
808 }
809 EXPORT_SYMBOL(release_pages);
810 
811 /*
812  * The pages which we're about to release may be in the deferred lru-addition
813  * queues.  That would prevent them from really being freed right now.  That's
814  * OK from a correctness point of view but is inefficient - those pages may be
815  * cache-warm and we want to give them back to the page allocator ASAP.
816  *
817  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
818  * and __pagevec_lru_add_active() call release_pages() directly to avoid
819  * mutual recursion.
820  */
821 void __pagevec_release(struct pagevec *pvec)
822 {
823 	lru_add_drain();
824 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
825 	pagevec_reinit(pvec);
826 }
827 EXPORT_SYMBOL(__pagevec_release);
828 
829 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
830 /* used by __split_huge_page_refcount() */
831 void lru_add_page_tail(struct page *page, struct page *page_tail,
832 		       struct lruvec *lruvec, struct list_head *list)
833 {
834 	const int file = 0;
835 
836 	VM_BUG_ON(!PageHead(page));
837 	VM_BUG_ON(PageCompound(page_tail));
838 	VM_BUG_ON(PageLRU(page_tail));
839 	VM_BUG_ON(NR_CPUS != 1 &&
840 		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
841 
842 	if (!list)
843 		SetPageLRU(page_tail);
844 
845 	if (likely(PageLRU(page)))
846 		list_add_tail(&page_tail->lru, &page->lru);
847 	else if (list) {
848 		/* page reclaim is reclaiming a huge page */
849 		get_page(page_tail);
850 		list_add_tail(&page_tail->lru, list);
851 	} else {
852 		struct list_head *list_head;
853 		/*
854 		 * Head page has not yet been counted, as an hpage,
855 		 * so we must account for each subpage individually.
856 		 *
857 		 * Use the standard add function to put page_tail on the list,
858 		 * but then correct its position so they all end up in order.
859 		 */
860 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
861 		list_head = page_tail->lru.prev;
862 		list_move_tail(&page_tail->lru, list_head);
863 	}
864 
865 	if (!PageUnevictable(page))
866 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
867 }
868 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
869 
870 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
871 				 void *arg)
872 {
873 	int file = page_is_file_cache(page);
874 	int active = PageActive(page);
875 	enum lru_list lru = page_lru(page);
876 
877 	VM_BUG_ON(PageLRU(page));
878 
879 	SetPageLRU(page);
880 	add_page_to_lru_list(page, lruvec, lru);
881 	update_page_reclaim_stat(lruvec, file, active);
882 	trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
883 }
884 
885 /*
886  * Add the passed pages to the LRU, then drop the caller's refcount
887  * on them.  Reinitialises the caller's pagevec.
888  */
889 void __pagevec_lru_add(struct pagevec *pvec)
890 {
891 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
892 }
893 EXPORT_SYMBOL(__pagevec_lru_add);
894 
895 /**
896  * pagevec_lookup - gang pagecache lookup
897  * @pvec:	Where the resulting pages are placed
898  * @mapping:	The address_space to search
899  * @start:	The starting page index
900  * @nr_pages:	The maximum number of pages
901  *
902  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
903  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
904  * reference against the pages in @pvec.
905  *
906  * The search returns a group of mapping-contiguous pages with ascending
907  * indexes.  There may be holes in the indices due to not-present pages.
908  *
909  * pagevec_lookup() returns the number of pages which were found.
910  */
911 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
912 		pgoff_t start, unsigned nr_pages)
913 {
914 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
915 	return pagevec_count(pvec);
916 }
917 EXPORT_SYMBOL(pagevec_lookup);
918 
919 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
920 		pgoff_t *index, int tag, unsigned nr_pages)
921 {
922 	pvec->nr = find_get_pages_tag(mapping, index, tag,
923 					nr_pages, pvec->pages);
924 	return pagevec_count(pvec);
925 }
926 EXPORT_SYMBOL(pagevec_lookup_tag);
927 
928 /*
929  * Perform any setup for the swap system
930  */
931 void __init swap_setup(void)
932 {
933 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
934 #ifdef CONFIG_SWAP
935 	int i;
936 
937 	bdi_init(swapper_spaces[0].backing_dev_info);
938 	for (i = 0; i < MAX_SWAPFILES; i++) {
939 		spin_lock_init(&swapper_spaces[i].tree_lock);
940 		INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
941 	}
942 #endif
943 
944 	/* Use a smaller cluster for small-memory machines */
945 	if (megs < 16)
946 		page_cluster = 2;
947 	else
948 		page_cluster = 3;
949 	/*
950 	 * Right now other parts of the system means that we
951 	 * _really_ don't want to cluster much more
952 	 */
953 }
954