1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/memblock.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 17 #include "internal.h" 18 #include <asm/dma.h> 19 #include <asm/pgalloc.h> 20 21 /* 22 * Permanent SPARSEMEM data: 23 * 24 * 1) mem_section - memory sections, mem_map's for valid memory 25 */ 26 #ifdef CONFIG_SPARSEMEM_EXTREME 27 struct mem_section **mem_section; 28 #else 29 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 30 ____cacheline_internodealigned_in_smp; 31 #endif 32 EXPORT_SYMBOL(mem_section); 33 34 #ifdef NODE_NOT_IN_PAGE_FLAGS 35 /* 36 * If we did not store the node number in the page then we have to 37 * do a lookup in the section_to_node_table in order to find which 38 * node the page belongs to. 39 */ 40 #if MAX_NUMNODES <= 256 41 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 42 #else 43 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 44 #endif 45 46 int page_to_nid(const struct page *page) 47 { 48 return section_to_node_table[page_to_section(page)]; 49 } 50 EXPORT_SYMBOL(page_to_nid); 51 52 static void set_section_nid(unsigned long section_nr, int nid) 53 { 54 section_to_node_table[section_nr] = nid; 55 } 56 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 57 static inline void set_section_nid(unsigned long section_nr, int nid) 58 { 59 } 60 #endif 61 62 #ifdef CONFIG_SPARSEMEM_EXTREME 63 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 64 { 65 struct mem_section *section = NULL; 66 unsigned long array_size = SECTIONS_PER_ROOT * 67 sizeof(struct mem_section); 68 69 if (slab_is_available()) { 70 section = kzalloc_node(array_size, GFP_KERNEL, nid); 71 } else { 72 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES, 73 nid); 74 if (!section) 75 panic("%s: Failed to allocate %lu bytes nid=%d\n", 76 __func__, array_size, nid); 77 } 78 79 return section; 80 } 81 82 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 83 { 84 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 85 struct mem_section *section; 86 87 /* 88 * An existing section is possible in the sub-section hotplug 89 * case. First hot-add instantiates, follow-on hot-add reuses 90 * the existing section. 91 * 92 * The mem_hotplug_lock resolves the apparent race below. 93 */ 94 if (mem_section[root]) 95 return 0; 96 97 section = sparse_index_alloc(nid); 98 if (!section) 99 return -ENOMEM; 100 101 mem_section[root] = section; 102 103 return 0; 104 } 105 #else /* !SPARSEMEM_EXTREME */ 106 static inline int sparse_index_init(unsigned long section_nr, int nid) 107 { 108 return 0; 109 } 110 #endif 111 112 #ifdef CONFIG_SPARSEMEM_EXTREME 113 unsigned long __section_nr(struct mem_section *ms) 114 { 115 unsigned long root_nr; 116 struct mem_section *root = NULL; 117 118 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 119 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 120 if (!root) 121 continue; 122 123 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 124 break; 125 } 126 127 VM_BUG_ON(!root); 128 129 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 130 } 131 #else 132 unsigned long __section_nr(struct mem_section *ms) 133 { 134 return (unsigned long)(ms - mem_section[0]); 135 } 136 #endif 137 138 /* 139 * During early boot, before section_mem_map is used for an actual 140 * mem_map, we use section_mem_map to store the section's NUMA 141 * node. This keeps us from having to use another data structure. The 142 * node information is cleared just before we store the real mem_map. 143 */ 144 static inline unsigned long sparse_encode_early_nid(int nid) 145 { 146 return (nid << SECTION_NID_SHIFT); 147 } 148 149 static inline int sparse_early_nid(struct mem_section *section) 150 { 151 return (section->section_mem_map >> SECTION_NID_SHIFT); 152 } 153 154 /* Validate the physical addressing limitations of the model */ 155 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 156 unsigned long *end_pfn) 157 { 158 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 159 160 /* 161 * Sanity checks - do not allow an architecture to pass 162 * in larger pfns than the maximum scope of sparsemem: 163 */ 164 if (*start_pfn > max_sparsemem_pfn) { 165 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 166 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 167 *start_pfn, *end_pfn, max_sparsemem_pfn); 168 WARN_ON_ONCE(1); 169 *start_pfn = max_sparsemem_pfn; 170 *end_pfn = max_sparsemem_pfn; 171 } else if (*end_pfn > max_sparsemem_pfn) { 172 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 173 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 174 *start_pfn, *end_pfn, max_sparsemem_pfn); 175 WARN_ON_ONCE(1); 176 *end_pfn = max_sparsemem_pfn; 177 } 178 } 179 180 /* 181 * There are a number of times that we loop over NR_MEM_SECTIONS, 182 * looking for section_present() on each. But, when we have very 183 * large physical address spaces, NR_MEM_SECTIONS can also be 184 * very large which makes the loops quite long. 185 * 186 * Keeping track of this gives us an easy way to break out of 187 * those loops early. 188 */ 189 unsigned long __highest_present_section_nr; 190 static void section_mark_present(struct mem_section *ms) 191 { 192 unsigned long section_nr = __section_nr(ms); 193 194 if (section_nr > __highest_present_section_nr) 195 __highest_present_section_nr = section_nr; 196 197 ms->section_mem_map |= SECTION_MARKED_PRESENT; 198 } 199 200 #define for_each_present_section_nr(start, section_nr) \ 201 for (section_nr = next_present_section_nr(start-1); \ 202 ((section_nr != -1) && \ 203 (section_nr <= __highest_present_section_nr)); \ 204 section_nr = next_present_section_nr(section_nr)) 205 206 static inline unsigned long first_present_section_nr(void) 207 { 208 return next_present_section_nr(-1); 209 } 210 211 #ifdef CONFIG_SPARSEMEM_VMEMMAP 212 static void subsection_mask_set(unsigned long *map, unsigned long pfn, 213 unsigned long nr_pages) 214 { 215 int idx = subsection_map_index(pfn); 216 int end = subsection_map_index(pfn + nr_pages - 1); 217 218 bitmap_set(map, idx, end - idx + 1); 219 } 220 221 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 222 { 223 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 224 unsigned long nr, start_sec = pfn_to_section_nr(pfn); 225 226 if (!nr_pages) 227 return; 228 229 for (nr = start_sec; nr <= end_sec; nr++) { 230 struct mem_section *ms; 231 unsigned long pfns; 232 233 pfns = min(nr_pages, PAGES_PER_SECTION 234 - (pfn & ~PAGE_SECTION_MASK)); 235 ms = __nr_to_section(nr); 236 subsection_mask_set(ms->usage->subsection_map, pfn, pfns); 237 238 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr, 239 pfns, subsection_map_index(pfn), 240 subsection_map_index(pfn + pfns - 1)); 241 242 pfn += pfns; 243 nr_pages -= pfns; 244 } 245 } 246 #else 247 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 248 { 249 } 250 #endif 251 252 /* Record a memory area against a node. */ 253 void __init memory_present(int nid, unsigned long start, unsigned long end) 254 { 255 unsigned long pfn; 256 257 #ifdef CONFIG_SPARSEMEM_EXTREME 258 if (unlikely(!mem_section)) { 259 unsigned long size, align; 260 261 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS; 262 align = 1 << (INTERNODE_CACHE_SHIFT); 263 mem_section = memblock_alloc(size, align); 264 if (!mem_section) 265 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 266 __func__, size, align); 267 } 268 #endif 269 270 start &= PAGE_SECTION_MASK; 271 mminit_validate_memmodel_limits(&start, &end); 272 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 273 unsigned long section = pfn_to_section_nr(pfn); 274 struct mem_section *ms; 275 276 sparse_index_init(section, nid); 277 set_section_nid(section, nid); 278 279 ms = __nr_to_section(section); 280 if (!ms->section_mem_map) { 281 ms->section_mem_map = sparse_encode_early_nid(nid) | 282 SECTION_IS_ONLINE; 283 section_mark_present(ms); 284 } 285 } 286 } 287 288 /* 289 * Mark all memblocks as present using memory_present(). This is a 290 * convenience function that is useful for a number of arches 291 * to mark all of the systems memory as present during initialization. 292 */ 293 void __init memblocks_present(void) 294 { 295 struct memblock_region *reg; 296 297 for_each_memblock(memory, reg) { 298 memory_present(memblock_get_region_node(reg), 299 memblock_region_memory_base_pfn(reg), 300 memblock_region_memory_end_pfn(reg)); 301 } 302 } 303 304 /* 305 * Subtle, we encode the real pfn into the mem_map such that 306 * the identity pfn - section_mem_map will return the actual 307 * physical page frame number. 308 */ 309 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 310 { 311 unsigned long coded_mem_map = 312 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 313 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); 314 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 315 return coded_mem_map; 316 } 317 318 /* 319 * Decode mem_map from the coded memmap 320 */ 321 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 322 { 323 /* mask off the extra low bits of information */ 324 coded_mem_map &= SECTION_MAP_MASK; 325 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 326 } 327 328 static void __meminit sparse_init_one_section(struct mem_section *ms, 329 unsigned long pnum, struct page *mem_map, 330 struct mem_section_usage *usage, unsigned long flags) 331 { 332 ms->section_mem_map &= ~SECTION_MAP_MASK; 333 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) 334 | SECTION_HAS_MEM_MAP | flags; 335 ms->usage = usage; 336 } 337 338 static unsigned long usemap_size(void) 339 { 340 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 341 } 342 343 size_t mem_section_usage_size(void) 344 { 345 return sizeof(struct mem_section_usage) + usemap_size(); 346 } 347 348 #ifdef CONFIG_MEMORY_HOTREMOVE 349 static struct mem_section_usage * __init 350 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 351 unsigned long size) 352 { 353 struct mem_section_usage *usage; 354 unsigned long goal, limit; 355 int nid; 356 /* 357 * A page may contain usemaps for other sections preventing the 358 * page being freed and making a section unremovable while 359 * other sections referencing the usemap remain active. Similarly, 360 * a pgdat can prevent a section being removed. If section A 361 * contains a pgdat and section B contains the usemap, both 362 * sections become inter-dependent. This allocates usemaps 363 * from the same section as the pgdat where possible to avoid 364 * this problem. 365 */ 366 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 367 limit = goal + (1UL << PA_SECTION_SHIFT); 368 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 369 again: 370 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid); 371 if (!usage && limit) { 372 limit = 0; 373 goto again; 374 } 375 return usage; 376 } 377 378 static void __init check_usemap_section_nr(int nid, 379 struct mem_section_usage *usage) 380 { 381 unsigned long usemap_snr, pgdat_snr; 382 static unsigned long old_usemap_snr; 383 static unsigned long old_pgdat_snr; 384 struct pglist_data *pgdat = NODE_DATA(nid); 385 int usemap_nid; 386 387 /* First call */ 388 if (!old_usemap_snr) { 389 old_usemap_snr = NR_MEM_SECTIONS; 390 old_pgdat_snr = NR_MEM_SECTIONS; 391 } 392 393 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT); 394 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 395 if (usemap_snr == pgdat_snr) 396 return; 397 398 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 399 /* skip redundant message */ 400 return; 401 402 old_usemap_snr = usemap_snr; 403 old_pgdat_snr = pgdat_snr; 404 405 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 406 if (usemap_nid != nid) { 407 pr_info("node %d must be removed before remove section %ld\n", 408 nid, usemap_snr); 409 return; 410 } 411 /* 412 * There is a circular dependency. 413 * Some platforms allow un-removable section because they will just 414 * gather other removable sections for dynamic partitioning. 415 * Just notify un-removable section's number here. 416 */ 417 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 418 usemap_snr, pgdat_snr, nid); 419 } 420 #else 421 static struct mem_section_usage * __init 422 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 423 unsigned long size) 424 { 425 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id); 426 } 427 428 static void __init check_usemap_section_nr(int nid, 429 struct mem_section_usage *usage) 430 { 431 } 432 #endif /* CONFIG_MEMORY_HOTREMOVE */ 433 434 #ifdef CONFIG_SPARSEMEM_VMEMMAP 435 static unsigned long __init section_map_size(void) 436 { 437 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); 438 } 439 440 #else 441 static unsigned long __init section_map_size(void) 442 { 443 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 444 } 445 446 struct page __init *__populate_section_memmap(unsigned long pfn, 447 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 448 { 449 unsigned long size = section_map_size(); 450 struct page *map = sparse_buffer_alloc(size); 451 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 452 453 if (map) 454 return map; 455 456 map = memblock_alloc_try_nid_raw(size, size, addr, 457 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 458 if (!map) 459 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n", 460 __func__, size, PAGE_SIZE, nid, &addr); 461 462 return map; 463 } 464 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 465 466 static void *sparsemap_buf __meminitdata; 467 static void *sparsemap_buf_end __meminitdata; 468 469 static inline void __meminit sparse_buffer_free(unsigned long size) 470 { 471 WARN_ON(!sparsemap_buf || size == 0); 472 memblock_free_early(__pa(sparsemap_buf), size); 473 } 474 475 static void __init sparse_buffer_init(unsigned long size, int nid) 476 { 477 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 478 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */ 479 /* 480 * Pre-allocated buffer is mainly used by __populate_section_memmap 481 * and we want it to be properly aligned to the section size - this is 482 * especially the case for VMEMMAP which maps memmap to PMDs 483 */ 484 sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(), 485 addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 486 sparsemap_buf_end = sparsemap_buf + size; 487 } 488 489 static void __init sparse_buffer_fini(void) 490 { 491 unsigned long size = sparsemap_buf_end - sparsemap_buf; 492 493 if (sparsemap_buf && size > 0) 494 sparse_buffer_free(size); 495 sparsemap_buf = NULL; 496 } 497 498 void * __meminit sparse_buffer_alloc(unsigned long size) 499 { 500 void *ptr = NULL; 501 502 if (sparsemap_buf) { 503 ptr = (void *) roundup((unsigned long)sparsemap_buf, size); 504 if (ptr + size > sparsemap_buf_end) 505 ptr = NULL; 506 else { 507 /* Free redundant aligned space */ 508 if ((unsigned long)(ptr - sparsemap_buf) > 0) 509 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf)); 510 sparsemap_buf = ptr + size; 511 } 512 } 513 return ptr; 514 } 515 516 void __weak __meminit vmemmap_populate_print_last(void) 517 { 518 } 519 520 /* 521 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) 522 * And number of present sections in this node is map_count. 523 */ 524 static void __init sparse_init_nid(int nid, unsigned long pnum_begin, 525 unsigned long pnum_end, 526 unsigned long map_count) 527 { 528 struct mem_section_usage *usage; 529 unsigned long pnum; 530 struct page *map; 531 532 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid), 533 mem_section_usage_size() * map_count); 534 if (!usage) { 535 pr_err("%s: node[%d] usemap allocation failed", __func__, nid); 536 goto failed; 537 } 538 sparse_buffer_init(map_count * section_map_size(), nid); 539 for_each_present_section_nr(pnum_begin, pnum) { 540 unsigned long pfn = section_nr_to_pfn(pnum); 541 542 if (pnum >= pnum_end) 543 break; 544 545 map = __populate_section_memmap(pfn, PAGES_PER_SECTION, 546 nid, NULL); 547 if (!map) { 548 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", 549 __func__, nid); 550 pnum_begin = pnum; 551 goto failed; 552 } 553 check_usemap_section_nr(nid, usage); 554 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage, 555 SECTION_IS_EARLY); 556 usage = (void *) usage + mem_section_usage_size(); 557 } 558 sparse_buffer_fini(); 559 return; 560 failed: 561 /* We failed to allocate, mark all the following pnums as not present */ 562 for_each_present_section_nr(pnum_begin, pnum) { 563 struct mem_section *ms; 564 565 if (pnum >= pnum_end) 566 break; 567 ms = __nr_to_section(pnum); 568 ms->section_mem_map = 0; 569 } 570 } 571 572 /* 573 * Allocate the accumulated non-linear sections, allocate a mem_map 574 * for each and record the physical to section mapping. 575 */ 576 void __init sparse_init(void) 577 { 578 unsigned long pnum_begin = first_present_section_nr(); 579 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); 580 unsigned long pnum_end, map_count = 1; 581 582 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 583 set_pageblock_order(); 584 585 for_each_present_section_nr(pnum_begin + 1, pnum_end) { 586 int nid = sparse_early_nid(__nr_to_section(pnum_end)); 587 588 if (nid == nid_begin) { 589 map_count++; 590 continue; 591 } 592 /* Init node with sections in range [pnum_begin, pnum_end) */ 593 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 594 nid_begin = nid; 595 pnum_begin = pnum_end; 596 map_count = 1; 597 } 598 /* cover the last node */ 599 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 600 vmemmap_populate_print_last(); 601 } 602 603 #ifdef CONFIG_MEMORY_HOTPLUG 604 605 /* Mark all memory sections within the pfn range as online */ 606 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 607 { 608 unsigned long pfn; 609 610 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 611 unsigned long section_nr = pfn_to_section_nr(pfn); 612 struct mem_section *ms; 613 614 /* onlining code should never touch invalid ranges */ 615 if (WARN_ON(!valid_section_nr(section_nr))) 616 continue; 617 618 ms = __nr_to_section(section_nr); 619 ms->section_mem_map |= SECTION_IS_ONLINE; 620 } 621 } 622 623 #ifdef CONFIG_MEMORY_HOTREMOVE 624 /* Mark all memory sections within the pfn range as offline */ 625 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 626 { 627 unsigned long pfn; 628 629 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 630 unsigned long section_nr = pfn_to_section_nr(pfn); 631 struct mem_section *ms; 632 633 /* 634 * TODO this needs some double checking. Offlining code makes 635 * sure to check pfn_valid but those checks might be just bogus 636 */ 637 if (WARN_ON(!valid_section_nr(section_nr))) 638 continue; 639 640 ms = __nr_to_section(section_nr); 641 ms->section_mem_map &= ~SECTION_IS_ONLINE; 642 } 643 } 644 #endif 645 646 #ifdef CONFIG_SPARSEMEM_VMEMMAP 647 static struct page * __meminit populate_section_memmap(unsigned long pfn, 648 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 649 { 650 return __populate_section_memmap(pfn, nr_pages, nid, altmap); 651 } 652 653 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 654 struct vmem_altmap *altmap) 655 { 656 unsigned long start = (unsigned long) pfn_to_page(pfn); 657 unsigned long end = start + nr_pages * sizeof(struct page); 658 659 vmemmap_free(start, end, altmap); 660 } 661 static void free_map_bootmem(struct page *memmap) 662 { 663 unsigned long start = (unsigned long)memmap; 664 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 665 666 vmemmap_free(start, end, NULL); 667 } 668 669 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 670 { 671 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 672 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 }; 673 struct mem_section *ms = __pfn_to_section(pfn); 674 unsigned long *subsection_map = ms->usage 675 ? &ms->usage->subsection_map[0] : NULL; 676 677 subsection_mask_set(map, pfn, nr_pages); 678 if (subsection_map) 679 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION); 680 681 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION), 682 "section already deactivated (%#lx + %ld)\n", 683 pfn, nr_pages)) 684 return -EINVAL; 685 686 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION); 687 return 0; 688 } 689 690 static bool is_subsection_map_empty(struct mem_section *ms) 691 { 692 return bitmap_empty(&ms->usage->subsection_map[0], 693 SUBSECTIONS_PER_SECTION); 694 } 695 696 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 697 { 698 struct mem_section *ms = __pfn_to_section(pfn); 699 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 700 unsigned long *subsection_map; 701 int rc = 0; 702 703 subsection_mask_set(map, pfn, nr_pages); 704 705 subsection_map = &ms->usage->subsection_map[0]; 706 707 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION)) 708 rc = -EINVAL; 709 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION)) 710 rc = -EEXIST; 711 else 712 bitmap_or(subsection_map, map, subsection_map, 713 SUBSECTIONS_PER_SECTION); 714 715 return rc; 716 } 717 #else 718 struct page * __meminit populate_section_memmap(unsigned long pfn, 719 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 720 { 721 return kvmalloc_node(array_size(sizeof(struct page), 722 PAGES_PER_SECTION), GFP_KERNEL, nid); 723 } 724 725 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 726 struct vmem_altmap *altmap) 727 { 728 kvfree(pfn_to_page(pfn)); 729 } 730 731 static void free_map_bootmem(struct page *memmap) 732 { 733 unsigned long maps_section_nr, removing_section_nr, i; 734 unsigned long magic, nr_pages; 735 struct page *page = virt_to_page(memmap); 736 737 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 738 >> PAGE_SHIFT; 739 740 for (i = 0; i < nr_pages; i++, page++) { 741 magic = (unsigned long) page->freelist; 742 743 BUG_ON(magic == NODE_INFO); 744 745 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 746 removing_section_nr = page_private(page); 747 748 /* 749 * When this function is called, the removing section is 750 * logical offlined state. This means all pages are isolated 751 * from page allocator. If removing section's memmap is placed 752 * on the same section, it must not be freed. 753 * If it is freed, page allocator may allocate it which will 754 * be removed physically soon. 755 */ 756 if (maps_section_nr != removing_section_nr) 757 put_page_bootmem(page); 758 } 759 } 760 761 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 762 { 763 return 0; 764 } 765 766 static bool is_subsection_map_empty(struct mem_section *ms) 767 { 768 return true; 769 } 770 771 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 772 { 773 return 0; 774 } 775 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 776 777 /* 778 * To deactivate a memory region, there are 3 cases to handle across 779 * two configurations (SPARSEMEM_VMEMMAP={y,n}): 780 * 781 * 1. deactivation of a partial hot-added section (only possible in 782 * the SPARSEMEM_VMEMMAP=y case). 783 * a) section was present at memory init. 784 * b) section was hot-added post memory init. 785 * 2. deactivation of a complete hot-added section. 786 * 3. deactivation of a complete section from memory init. 787 * 788 * For 1, when subsection_map does not empty we will not be freeing the 789 * usage map, but still need to free the vmemmap range. 790 * 791 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified 792 */ 793 static void section_deactivate(unsigned long pfn, unsigned long nr_pages, 794 struct vmem_altmap *altmap) 795 { 796 struct mem_section *ms = __pfn_to_section(pfn); 797 bool section_is_early = early_section(ms); 798 struct page *memmap = NULL; 799 bool empty; 800 801 if (clear_subsection_map(pfn, nr_pages)) 802 return; 803 804 empty = is_subsection_map_empty(ms); 805 if (empty) { 806 unsigned long section_nr = pfn_to_section_nr(pfn); 807 808 /* 809 * When removing an early section, the usage map is kept (as the 810 * usage maps of other sections fall into the same page). It 811 * will be re-used when re-adding the section - which is then no 812 * longer an early section. If the usage map is PageReserved, it 813 * was allocated during boot. 814 */ 815 if (!PageReserved(virt_to_page(ms->usage))) { 816 kfree(ms->usage); 817 ms->usage = NULL; 818 } 819 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 820 /* 821 * Mark the section invalid so that valid_section() 822 * return false. This prevents code from dereferencing 823 * ms->usage array. 824 */ 825 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP; 826 } 827 828 if (section_is_early && memmap) 829 free_map_bootmem(memmap); 830 else 831 depopulate_section_memmap(pfn, nr_pages, altmap); 832 833 if (empty) 834 ms->section_mem_map = (unsigned long)NULL; 835 } 836 837 static struct page * __meminit section_activate(int nid, unsigned long pfn, 838 unsigned long nr_pages, struct vmem_altmap *altmap) 839 { 840 struct mem_section *ms = __pfn_to_section(pfn); 841 struct mem_section_usage *usage = NULL; 842 struct page *memmap; 843 int rc = 0; 844 845 if (!ms->usage) { 846 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL); 847 if (!usage) 848 return ERR_PTR(-ENOMEM); 849 ms->usage = usage; 850 } 851 852 rc = fill_subsection_map(pfn, nr_pages); 853 if (rc) { 854 if (usage) 855 ms->usage = NULL; 856 kfree(usage); 857 return ERR_PTR(rc); 858 } 859 860 /* 861 * The early init code does not consider partially populated 862 * initial sections, it simply assumes that memory will never be 863 * referenced. If we hot-add memory into such a section then we 864 * do not need to populate the memmap and can simply reuse what 865 * is already there. 866 */ 867 if (nr_pages < PAGES_PER_SECTION && early_section(ms)) 868 return pfn_to_page(pfn); 869 870 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap); 871 if (!memmap) { 872 section_deactivate(pfn, nr_pages, altmap); 873 return ERR_PTR(-ENOMEM); 874 } 875 876 return memmap; 877 } 878 879 /** 880 * sparse_add_section - add a memory section, or populate an existing one 881 * @nid: The node to add section on 882 * @start_pfn: start pfn of the memory range 883 * @nr_pages: number of pfns to add in the section 884 * @altmap: device page map 885 * 886 * This is only intended for hotplug. 887 * 888 * Note that only VMEMMAP supports sub-section aligned hotplug, 889 * the proper alignment and size are gated by check_pfn_span(). 890 * 891 * 892 * Return: 893 * * 0 - On success. 894 * * -EEXIST - Section has been present. 895 * * -ENOMEM - Out of memory. 896 */ 897 int __meminit sparse_add_section(int nid, unsigned long start_pfn, 898 unsigned long nr_pages, struct vmem_altmap *altmap) 899 { 900 unsigned long section_nr = pfn_to_section_nr(start_pfn); 901 struct mem_section *ms; 902 struct page *memmap; 903 int ret; 904 905 ret = sparse_index_init(section_nr, nid); 906 if (ret < 0) 907 return ret; 908 909 memmap = section_activate(nid, start_pfn, nr_pages, altmap); 910 if (IS_ERR(memmap)) 911 return PTR_ERR(memmap); 912 913 /* 914 * Poison uninitialized struct pages in order to catch invalid flags 915 * combinations. 916 */ 917 page_init_poison(memmap, sizeof(struct page) * nr_pages); 918 919 ms = __nr_to_section(section_nr); 920 set_section_nid(section_nr, nid); 921 section_mark_present(ms); 922 923 /* Align memmap to section boundary in the subsection case */ 924 if (section_nr_to_pfn(section_nr) != start_pfn) 925 memmap = pfn_to_page(section_nr_to_pfn(section_nr)); 926 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0); 927 928 return 0; 929 } 930 931 #ifdef CONFIG_MEMORY_FAILURE 932 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 933 { 934 int i; 935 936 /* 937 * A further optimization is to have per section refcounted 938 * num_poisoned_pages. But that would need more space per memmap, so 939 * for now just do a quick global check to speed up this routine in the 940 * absence of bad pages. 941 */ 942 if (atomic_long_read(&num_poisoned_pages) == 0) 943 return; 944 945 for (i = 0; i < nr_pages; i++) { 946 if (PageHWPoison(&memmap[i])) { 947 num_poisoned_pages_dec(); 948 ClearPageHWPoison(&memmap[i]); 949 } 950 } 951 } 952 #else 953 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 954 { 955 } 956 #endif 957 958 void sparse_remove_section(struct mem_section *ms, unsigned long pfn, 959 unsigned long nr_pages, unsigned long map_offset, 960 struct vmem_altmap *altmap) 961 { 962 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset, 963 nr_pages - map_offset); 964 section_deactivate(pfn, nr_pages, altmap); 965 } 966 #endif /* CONFIG_MEMORY_HOTPLUG */ 967