xref: /openbmc/linux/mm/sparse.c (revision f30828a6)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
11 #include "internal.h"
12 #include <asm/dma.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 
16 /*
17  * Permanent SPARSEMEM data:
18  *
19  * 1) mem_section	- memory sections, mem_map's for valid memory
20  */
21 #ifdef CONFIG_SPARSEMEM_EXTREME
22 struct mem_section *mem_section[NR_SECTION_ROOTS]
23 	____cacheline_internodealigned_in_smp;
24 #else
25 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
26 	____cacheline_internodealigned_in_smp;
27 #endif
28 EXPORT_SYMBOL(mem_section);
29 
30 #ifdef NODE_NOT_IN_PAGE_FLAGS
31 /*
32  * If we did not store the node number in the page then we have to
33  * do a lookup in the section_to_node_table in order to find which
34  * node the page belongs to.
35  */
36 #if MAX_NUMNODES <= 256
37 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
38 #else
39 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
40 #endif
41 
42 int page_to_nid(struct page *page)
43 {
44 	return section_to_node_table[page_to_section(page)];
45 }
46 EXPORT_SYMBOL(page_to_nid);
47 
48 static void set_section_nid(unsigned long section_nr, int nid)
49 {
50 	section_to_node_table[section_nr] = nid;
51 }
52 #else /* !NODE_NOT_IN_PAGE_FLAGS */
53 static inline void set_section_nid(unsigned long section_nr, int nid)
54 {
55 }
56 #endif
57 
58 #ifdef CONFIG_SPARSEMEM_EXTREME
59 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
60 {
61 	struct mem_section *section = NULL;
62 	unsigned long array_size = SECTIONS_PER_ROOT *
63 				   sizeof(struct mem_section);
64 
65 	if (slab_is_available())
66 		section = kmalloc_node(array_size, GFP_KERNEL, nid);
67 	else
68 		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
69 
70 	if (section)
71 		memset(section, 0, array_size);
72 
73 	return section;
74 }
75 
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78 	static DEFINE_SPINLOCK(index_init_lock);
79 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
80 	struct mem_section *section;
81 	int ret = 0;
82 
83 	if (mem_section[root])
84 		return -EEXIST;
85 
86 	section = sparse_index_alloc(nid);
87 	if (!section)
88 		return -ENOMEM;
89 	/*
90 	 * This lock keeps two different sections from
91 	 * reallocating for the same index
92 	 */
93 	spin_lock(&index_init_lock);
94 
95 	if (mem_section[root]) {
96 		ret = -EEXIST;
97 		goto out;
98 	}
99 
100 	mem_section[root] = section;
101 out:
102 	spin_unlock(&index_init_lock);
103 	return ret;
104 }
105 #else /* !SPARSEMEM_EXTREME */
106 static inline int sparse_index_init(unsigned long section_nr, int nid)
107 {
108 	return 0;
109 }
110 #endif
111 
112 /*
113  * Although written for the SPARSEMEM_EXTREME case, this happens
114  * to also work for the flat array case because
115  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
116  */
117 int __section_nr(struct mem_section* ms)
118 {
119 	unsigned long root_nr;
120 	struct mem_section* root;
121 
122 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
123 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
124 		if (!root)
125 			continue;
126 
127 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
128 		     break;
129 	}
130 
131 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
132 }
133 
134 /*
135  * During early boot, before section_mem_map is used for an actual
136  * mem_map, we use section_mem_map to store the section's NUMA
137  * node.  This keeps us from having to use another data structure.  The
138  * node information is cleared just before we store the real mem_map.
139  */
140 static inline unsigned long sparse_encode_early_nid(int nid)
141 {
142 	return (nid << SECTION_NID_SHIFT);
143 }
144 
145 static inline int sparse_early_nid(struct mem_section *section)
146 {
147 	return (section->section_mem_map >> SECTION_NID_SHIFT);
148 }
149 
150 /* Record a memory area against a node. */
151 void __init memory_present(int nid, unsigned long start, unsigned long end)
152 {
153 	unsigned long max_arch_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
154 	unsigned long pfn;
155 
156 	/*
157 	 * Sanity checks - do not allow an architecture to pass
158 	 * in larger pfns than the maximum scope of sparsemem:
159 	 */
160 	if (start >= max_arch_pfn)
161 		return;
162 	if (end >= max_arch_pfn)
163 		end = max_arch_pfn;
164 
165 	start &= PAGE_SECTION_MASK;
166 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
167 		unsigned long section = pfn_to_section_nr(pfn);
168 		struct mem_section *ms;
169 
170 		sparse_index_init(section, nid);
171 		set_section_nid(section, nid);
172 
173 		ms = __nr_to_section(section);
174 		if (!ms->section_mem_map)
175 			ms->section_mem_map = sparse_encode_early_nid(nid) |
176 							SECTION_MARKED_PRESENT;
177 	}
178 }
179 
180 /*
181  * Only used by the i386 NUMA architecures, but relatively
182  * generic code.
183  */
184 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
185 						     unsigned long end_pfn)
186 {
187 	unsigned long pfn;
188 	unsigned long nr_pages = 0;
189 
190 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
191 		if (nid != early_pfn_to_nid(pfn))
192 			continue;
193 
194 		if (pfn_present(pfn))
195 			nr_pages += PAGES_PER_SECTION;
196 	}
197 
198 	return nr_pages * sizeof(struct page);
199 }
200 
201 /*
202  * Subtle, we encode the real pfn into the mem_map such that
203  * the identity pfn - section_mem_map will return the actual
204  * physical page frame number.
205  */
206 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
207 {
208 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
209 }
210 
211 /*
212  * Decode mem_map from the coded memmap
213  */
214 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
215 {
216 	/* mask off the extra low bits of information */
217 	coded_mem_map &= SECTION_MAP_MASK;
218 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
219 }
220 
221 static int __meminit sparse_init_one_section(struct mem_section *ms,
222 		unsigned long pnum, struct page *mem_map,
223 		unsigned long *pageblock_bitmap)
224 {
225 	if (!present_section(ms))
226 		return -EINVAL;
227 
228 	ms->section_mem_map &= ~SECTION_MAP_MASK;
229 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
230 							SECTION_HAS_MEM_MAP;
231  	ms->pageblock_flags = pageblock_bitmap;
232 
233 	return 1;
234 }
235 
236 unsigned long usemap_size(void)
237 {
238 	unsigned long size_bytes;
239 	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
240 	size_bytes = roundup(size_bytes, sizeof(unsigned long));
241 	return size_bytes;
242 }
243 
244 #ifdef CONFIG_MEMORY_HOTPLUG
245 static unsigned long *__kmalloc_section_usemap(void)
246 {
247 	return kmalloc(usemap_size(), GFP_KERNEL);
248 }
249 #endif /* CONFIG_MEMORY_HOTPLUG */
250 
251 static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
252 {
253 	unsigned long *usemap;
254 	struct mem_section *ms = __nr_to_section(pnum);
255 	int nid = sparse_early_nid(ms);
256 
257 	usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
258 	if (usemap)
259 		return usemap;
260 
261 	/* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
262 	nid = 0;
263 
264 	printk(KERN_WARNING "%s: allocation failed\n", __func__);
265 	return NULL;
266 }
267 
268 #ifndef CONFIG_SPARSEMEM_VMEMMAP
269 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
270 {
271 	struct page *map;
272 
273 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
274 	if (map)
275 		return map;
276 
277 	map = alloc_bootmem_pages_node(NODE_DATA(nid),
278 		       PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
279 	return map;
280 }
281 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
282 
283 struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
284 {
285 	struct page *map;
286 	struct mem_section *ms = __nr_to_section(pnum);
287 	int nid = sparse_early_nid(ms);
288 
289 	map = sparse_mem_map_populate(pnum, nid);
290 	if (map)
291 		return map;
292 
293 	printk(KERN_ERR "%s: sparsemem memory map backing failed "
294 			"some memory will not be available.\n", __func__);
295 	ms->section_mem_map = 0;
296 	return NULL;
297 }
298 
299 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
300 {
301 }
302 /*
303  * Allocate the accumulated non-linear sections, allocate a mem_map
304  * for each and record the physical to section mapping.
305  */
306 void __init sparse_init(void)
307 {
308 	unsigned long pnum;
309 	struct page *map;
310 	unsigned long *usemap;
311 	unsigned long **usemap_map;
312 	int size;
313 
314 	/*
315 	 * map is using big page (aka 2M in x86 64 bit)
316 	 * usemap is less one page (aka 24 bytes)
317 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
318 	 * make next 2M slip to one more 2M later.
319 	 * then in big system, the memory will have a lot of holes...
320 	 * here try to allocate 2M pages continously.
321 	 *
322 	 * powerpc need to call sparse_init_one_section right after each
323 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
324 	 */
325 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
326 	usemap_map = alloc_bootmem(size);
327 	if (!usemap_map)
328 		panic("can not allocate usemap_map\n");
329 
330 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
331 		if (!present_section_nr(pnum))
332 			continue;
333 		usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
334 	}
335 
336 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
337 		if (!present_section_nr(pnum))
338 			continue;
339 
340 		usemap = usemap_map[pnum];
341 		if (!usemap)
342 			continue;
343 
344 		map = sparse_early_mem_map_alloc(pnum);
345 		if (!map)
346 			continue;
347 
348 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
349 								usemap);
350 	}
351 
352 	vmemmap_populate_print_last();
353 
354 	free_bootmem(__pa(usemap_map), size);
355 }
356 
357 #ifdef CONFIG_MEMORY_HOTPLUG
358 #ifdef CONFIG_SPARSEMEM_VMEMMAP
359 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
360 						 unsigned long nr_pages)
361 {
362 	/* This will make the necessary allocations eventually. */
363 	return sparse_mem_map_populate(pnum, nid);
364 }
365 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
366 {
367 	return; /* XXX: Not implemented yet */
368 }
369 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
370 {
371 }
372 #else
373 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
374 {
375 	struct page *page, *ret;
376 	unsigned long memmap_size = sizeof(struct page) * nr_pages;
377 
378 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
379 	if (page)
380 		goto got_map_page;
381 
382 	ret = vmalloc(memmap_size);
383 	if (ret)
384 		goto got_map_ptr;
385 
386 	return NULL;
387 got_map_page:
388 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
389 got_map_ptr:
390 	memset(ret, 0, memmap_size);
391 
392 	return ret;
393 }
394 
395 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
396 						  unsigned long nr_pages)
397 {
398 	return __kmalloc_section_memmap(nr_pages);
399 }
400 
401 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
402 {
403 	if (is_vmalloc_addr(memmap))
404 		vfree(memmap);
405 	else
406 		free_pages((unsigned long)memmap,
407 			   get_order(sizeof(struct page) * nr_pages));
408 }
409 
410 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
411 {
412 	unsigned long maps_section_nr, removing_section_nr, i;
413 	int magic;
414 
415 	for (i = 0; i < nr_pages; i++, page++) {
416 		magic = atomic_read(&page->_mapcount);
417 
418 		BUG_ON(magic == NODE_INFO);
419 
420 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
421 		removing_section_nr = page->private;
422 
423 		/*
424 		 * When this function is called, the removing section is
425 		 * logical offlined state. This means all pages are isolated
426 		 * from page allocator. If removing section's memmap is placed
427 		 * on the same section, it must not be freed.
428 		 * If it is freed, page allocator may allocate it which will
429 		 * be removed physically soon.
430 		 */
431 		if (maps_section_nr != removing_section_nr)
432 			put_page_bootmem(page);
433 	}
434 }
435 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
436 
437 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
438 {
439 	struct page *usemap_page;
440 	unsigned long nr_pages;
441 
442 	if (!usemap)
443 		return;
444 
445 	usemap_page = virt_to_page(usemap);
446 	/*
447 	 * Check to see if allocation came from hot-plug-add
448 	 */
449 	if (PageSlab(usemap_page)) {
450 		kfree(usemap);
451 		if (memmap)
452 			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
453 		return;
454 	}
455 
456 	/*
457 	 * The usemap came from bootmem. This is packed with other usemaps
458 	 * on the section which has pgdat at boot time. Just keep it as is now.
459 	 */
460 
461 	if (memmap) {
462 		struct page *memmap_page;
463 		memmap_page = virt_to_page(memmap);
464 
465 		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
466 			>> PAGE_SHIFT;
467 
468 		free_map_bootmem(memmap_page, nr_pages);
469 	}
470 }
471 
472 /*
473  * returns the number of sections whose mem_maps were properly
474  * set.  If this is <=0, then that means that the passed-in
475  * map was not consumed and must be freed.
476  */
477 int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
478 			   int nr_pages)
479 {
480 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
481 	struct pglist_data *pgdat = zone->zone_pgdat;
482 	struct mem_section *ms;
483 	struct page *memmap;
484 	unsigned long *usemap;
485 	unsigned long flags;
486 	int ret;
487 
488 	/*
489 	 * no locking for this, because it does its own
490 	 * plus, it does a kmalloc
491 	 */
492 	ret = sparse_index_init(section_nr, pgdat->node_id);
493 	if (ret < 0 && ret != -EEXIST)
494 		return ret;
495 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
496 	if (!memmap)
497 		return -ENOMEM;
498 	usemap = __kmalloc_section_usemap();
499 	if (!usemap) {
500 		__kfree_section_memmap(memmap, nr_pages);
501 		return -ENOMEM;
502 	}
503 
504 	pgdat_resize_lock(pgdat, &flags);
505 
506 	ms = __pfn_to_section(start_pfn);
507 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
508 		ret = -EEXIST;
509 		goto out;
510 	}
511 
512 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
513 
514 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
515 
516 out:
517 	pgdat_resize_unlock(pgdat, &flags);
518 	if (ret <= 0) {
519 		kfree(usemap);
520 		__kfree_section_memmap(memmap, nr_pages);
521 	}
522 	return ret;
523 }
524 
525 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
526 {
527 	struct page *memmap = NULL;
528 	unsigned long *usemap = NULL;
529 
530 	if (ms->section_mem_map) {
531 		usemap = ms->pageblock_flags;
532 		memmap = sparse_decode_mem_map(ms->section_mem_map,
533 						__section_nr(ms));
534 		ms->section_mem_map = 0;
535 		ms->pageblock_flags = NULL;
536 	}
537 
538 	free_section_usemap(memmap, usemap);
539 }
540 #endif
541