xref: /openbmc/linux/mm/sparse.c (revision e6dec923)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/compiler.h>
9 #include <linux/highmem.h>
10 #include <linux/export.h>
11 #include <linux/spinlock.h>
12 #include <linux/vmalloc.h>
13 
14 #include "internal.h"
15 #include <asm/dma.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
18 
19 /*
20  * Permanent SPARSEMEM data:
21  *
22  * 1) mem_section	- memory sections, mem_map's for valid memory
23  */
24 #ifdef CONFIG_SPARSEMEM_EXTREME
25 struct mem_section *mem_section[NR_SECTION_ROOTS]
26 	____cacheline_internodealigned_in_smp;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 	____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32 
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44 
45 int page_to_nid(const struct page *page)
46 {
47 	return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50 
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 	section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60 
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 	struct mem_section *section = NULL;
65 	unsigned long array_size = SECTIONS_PER_ROOT *
66 				   sizeof(struct mem_section);
67 
68 	if (slab_is_available()) {
69 		if (node_state(nid, N_HIGH_MEMORY))
70 			section = kzalloc_node(array_size, GFP_KERNEL, nid);
71 		else
72 			section = kzalloc(array_size, GFP_KERNEL);
73 	} else {
74 		section = memblock_virt_alloc_node(array_size, nid);
75 	}
76 
77 	return section;
78 }
79 
80 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
81 {
82 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
83 	struct mem_section *section;
84 
85 	if (mem_section[root])
86 		return -EEXIST;
87 
88 	section = sparse_index_alloc(nid);
89 	if (!section)
90 		return -ENOMEM;
91 
92 	mem_section[root] = section;
93 
94 	return 0;
95 }
96 #else /* !SPARSEMEM_EXTREME */
97 static inline int sparse_index_init(unsigned long section_nr, int nid)
98 {
99 	return 0;
100 }
101 #endif
102 
103 #ifdef CONFIG_SPARSEMEM_EXTREME
104 int __section_nr(struct mem_section* ms)
105 {
106 	unsigned long root_nr;
107 	struct mem_section* root;
108 
109 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
110 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
111 		if (!root)
112 			continue;
113 
114 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
115 		     break;
116 	}
117 
118 	VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
119 
120 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
121 }
122 #else
123 int __section_nr(struct mem_section* ms)
124 {
125 	return (int)(ms - mem_section[0]);
126 }
127 #endif
128 
129 /*
130  * During early boot, before section_mem_map is used for an actual
131  * mem_map, we use section_mem_map to store the section's NUMA
132  * node.  This keeps us from having to use another data structure.  The
133  * node information is cleared just before we store the real mem_map.
134  */
135 static inline unsigned long sparse_encode_early_nid(int nid)
136 {
137 	return (nid << SECTION_NID_SHIFT);
138 }
139 
140 static inline int sparse_early_nid(struct mem_section *section)
141 {
142 	return (section->section_mem_map >> SECTION_NID_SHIFT);
143 }
144 
145 /* Validate the physical addressing limitations of the model */
146 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
147 						unsigned long *end_pfn)
148 {
149 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
150 
151 	/*
152 	 * Sanity checks - do not allow an architecture to pass
153 	 * in larger pfns than the maximum scope of sparsemem:
154 	 */
155 	if (*start_pfn > max_sparsemem_pfn) {
156 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
157 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
158 			*start_pfn, *end_pfn, max_sparsemem_pfn);
159 		WARN_ON_ONCE(1);
160 		*start_pfn = max_sparsemem_pfn;
161 		*end_pfn = max_sparsemem_pfn;
162 	} else if (*end_pfn > max_sparsemem_pfn) {
163 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
164 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
165 			*start_pfn, *end_pfn, max_sparsemem_pfn);
166 		WARN_ON_ONCE(1);
167 		*end_pfn = max_sparsemem_pfn;
168 	}
169 }
170 
171 /*
172  * There are a number of times that we loop over NR_MEM_SECTIONS,
173  * looking for section_present() on each.  But, when we have very
174  * large physical address spaces, NR_MEM_SECTIONS can also be
175  * very large which makes the loops quite long.
176  *
177  * Keeping track of this gives us an easy way to break out of
178  * those loops early.
179  */
180 int __highest_present_section_nr;
181 static void section_mark_present(struct mem_section *ms)
182 {
183 	int section_nr = __section_nr(ms);
184 
185 	if (section_nr > __highest_present_section_nr)
186 		__highest_present_section_nr = section_nr;
187 
188 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
189 }
190 
191 static inline int next_present_section_nr(int section_nr)
192 {
193 	do {
194 		section_nr++;
195 		if (present_section_nr(section_nr))
196 			return section_nr;
197 	} while ((section_nr < NR_MEM_SECTIONS) &&
198 		 (section_nr <= __highest_present_section_nr));
199 
200 	return -1;
201 }
202 #define for_each_present_section_nr(start, section_nr)		\
203 	for (section_nr = next_present_section_nr(start-1);	\
204 	     ((section_nr >= 0) &&				\
205 	      (section_nr < NR_MEM_SECTIONS) &&			\
206 	      (section_nr <= __highest_present_section_nr));	\
207 	     section_nr = next_present_section_nr(section_nr))
208 
209 /* Record a memory area against a node. */
210 void __init memory_present(int nid, unsigned long start, unsigned long end)
211 {
212 	unsigned long pfn;
213 
214 	start &= PAGE_SECTION_MASK;
215 	mminit_validate_memmodel_limits(&start, &end);
216 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
217 		unsigned long section = pfn_to_section_nr(pfn);
218 		struct mem_section *ms;
219 
220 		sparse_index_init(section, nid);
221 		set_section_nid(section, nid);
222 
223 		ms = __nr_to_section(section);
224 		if (!ms->section_mem_map) {
225 			ms->section_mem_map = sparse_encode_early_nid(nid) |
226 							SECTION_IS_ONLINE;
227 			section_mark_present(ms);
228 		}
229 	}
230 }
231 
232 /*
233  * Only used by the i386 NUMA architecures, but relatively
234  * generic code.
235  */
236 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
237 						     unsigned long end_pfn)
238 {
239 	unsigned long pfn;
240 	unsigned long nr_pages = 0;
241 
242 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
243 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
244 		if (nid != early_pfn_to_nid(pfn))
245 			continue;
246 
247 		if (pfn_present(pfn))
248 			nr_pages += PAGES_PER_SECTION;
249 	}
250 
251 	return nr_pages * sizeof(struct page);
252 }
253 
254 /*
255  * Subtle, we encode the real pfn into the mem_map such that
256  * the identity pfn - section_mem_map will return the actual
257  * physical page frame number.
258  */
259 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
260 {
261 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
262 }
263 
264 /*
265  * Decode mem_map from the coded memmap
266  */
267 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
268 {
269 	/* mask off the extra low bits of information */
270 	coded_mem_map &= SECTION_MAP_MASK;
271 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
272 }
273 
274 static int __meminit sparse_init_one_section(struct mem_section *ms,
275 		unsigned long pnum, struct page *mem_map,
276 		unsigned long *pageblock_bitmap)
277 {
278 	if (!present_section(ms))
279 		return -EINVAL;
280 
281 	ms->section_mem_map &= ~SECTION_MAP_MASK;
282 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
283 							SECTION_HAS_MEM_MAP;
284  	ms->pageblock_flags = pageblock_bitmap;
285 
286 	return 1;
287 }
288 
289 unsigned long usemap_size(void)
290 {
291 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
292 }
293 
294 #ifdef CONFIG_MEMORY_HOTPLUG
295 static unsigned long *__kmalloc_section_usemap(void)
296 {
297 	return kmalloc(usemap_size(), GFP_KERNEL);
298 }
299 #endif /* CONFIG_MEMORY_HOTPLUG */
300 
301 #ifdef CONFIG_MEMORY_HOTREMOVE
302 static unsigned long * __init
303 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
304 					 unsigned long size)
305 {
306 	unsigned long goal, limit;
307 	unsigned long *p;
308 	int nid;
309 	/*
310 	 * A page may contain usemaps for other sections preventing the
311 	 * page being freed and making a section unremovable while
312 	 * other sections referencing the usemap remain active. Similarly,
313 	 * a pgdat can prevent a section being removed. If section A
314 	 * contains a pgdat and section B contains the usemap, both
315 	 * sections become inter-dependent. This allocates usemaps
316 	 * from the same section as the pgdat where possible to avoid
317 	 * this problem.
318 	 */
319 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
320 	limit = goal + (1UL << PA_SECTION_SHIFT);
321 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
322 again:
323 	p = memblock_virt_alloc_try_nid_nopanic(size,
324 						SMP_CACHE_BYTES, goal, limit,
325 						nid);
326 	if (!p && limit) {
327 		limit = 0;
328 		goto again;
329 	}
330 	return p;
331 }
332 
333 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
334 {
335 	unsigned long usemap_snr, pgdat_snr;
336 	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
337 	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
338 	struct pglist_data *pgdat = NODE_DATA(nid);
339 	int usemap_nid;
340 
341 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
342 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
343 	if (usemap_snr == pgdat_snr)
344 		return;
345 
346 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
347 		/* skip redundant message */
348 		return;
349 
350 	old_usemap_snr = usemap_snr;
351 	old_pgdat_snr = pgdat_snr;
352 
353 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
354 	if (usemap_nid != nid) {
355 		pr_info("node %d must be removed before remove section %ld\n",
356 			nid, usemap_snr);
357 		return;
358 	}
359 	/*
360 	 * There is a circular dependency.
361 	 * Some platforms allow un-removable section because they will just
362 	 * gather other removable sections for dynamic partitioning.
363 	 * Just notify un-removable section's number here.
364 	 */
365 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
366 		usemap_snr, pgdat_snr, nid);
367 }
368 #else
369 static unsigned long * __init
370 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
371 					 unsigned long size)
372 {
373 	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
374 }
375 
376 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
377 {
378 }
379 #endif /* CONFIG_MEMORY_HOTREMOVE */
380 
381 static void __init sparse_early_usemaps_alloc_node(void *data,
382 				 unsigned long pnum_begin,
383 				 unsigned long pnum_end,
384 				 unsigned long usemap_count, int nodeid)
385 {
386 	void *usemap;
387 	unsigned long pnum;
388 	unsigned long **usemap_map = (unsigned long **)data;
389 	int size = usemap_size();
390 
391 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
392 							  size * usemap_count);
393 	if (!usemap) {
394 		pr_warn("%s: allocation failed\n", __func__);
395 		return;
396 	}
397 
398 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
399 		if (!present_section_nr(pnum))
400 			continue;
401 		usemap_map[pnum] = usemap;
402 		usemap += size;
403 		check_usemap_section_nr(nodeid, usemap_map[pnum]);
404 	}
405 }
406 
407 #ifndef CONFIG_SPARSEMEM_VMEMMAP
408 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
409 {
410 	struct page *map;
411 	unsigned long size;
412 
413 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
414 	if (map)
415 		return map;
416 
417 	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
418 	map = memblock_virt_alloc_try_nid(size,
419 					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
420 					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
421 	return map;
422 }
423 void __init sparse_mem_maps_populate_node(struct page **map_map,
424 					  unsigned long pnum_begin,
425 					  unsigned long pnum_end,
426 					  unsigned long map_count, int nodeid)
427 {
428 	void *map;
429 	unsigned long pnum;
430 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
431 
432 	map = alloc_remap(nodeid, size * map_count);
433 	if (map) {
434 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
435 			if (!present_section_nr(pnum))
436 				continue;
437 			map_map[pnum] = map;
438 			map += size;
439 		}
440 		return;
441 	}
442 
443 	size = PAGE_ALIGN(size);
444 	map = memblock_virt_alloc_try_nid(size * map_count,
445 					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
446 					  BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
447 	if (map) {
448 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
449 			if (!present_section_nr(pnum))
450 				continue;
451 			map_map[pnum] = map;
452 			map += size;
453 		}
454 		return;
455 	}
456 
457 	/* fallback */
458 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
459 		struct mem_section *ms;
460 
461 		if (!present_section_nr(pnum))
462 			continue;
463 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
464 		if (map_map[pnum])
465 			continue;
466 		ms = __nr_to_section(pnum);
467 		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
468 		       __func__);
469 		ms->section_mem_map = 0;
470 	}
471 }
472 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
473 
474 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
475 static void __init sparse_early_mem_maps_alloc_node(void *data,
476 				 unsigned long pnum_begin,
477 				 unsigned long pnum_end,
478 				 unsigned long map_count, int nodeid)
479 {
480 	struct page **map_map = (struct page **)data;
481 	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
482 					 map_count, nodeid);
483 }
484 #else
485 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
486 {
487 	struct page *map;
488 	struct mem_section *ms = __nr_to_section(pnum);
489 	int nid = sparse_early_nid(ms);
490 
491 	map = sparse_mem_map_populate(pnum, nid);
492 	if (map)
493 		return map;
494 
495 	pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
496 	       __func__);
497 	ms->section_mem_map = 0;
498 	return NULL;
499 }
500 #endif
501 
502 void __weak __meminit vmemmap_populate_print_last(void)
503 {
504 }
505 
506 /**
507  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
508  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
509  */
510 static void __init alloc_usemap_and_memmap(void (*alloc_func)
511 					(void *, unsigned long, unsigned long,
512 					unsigned long, int), void *data)
513 {
514 	unsigned long pnum;
515 	unsigned long map_count;
516 	int nodeid_begin = 0;
517 	unsigned long pnum_begin = 0;
518 
519 	for_each_present_section_nr(0, pnum) {
520 		struct mem_section *ms;
521 
522 		ms = __nr_to_section(pnum);
523 		nodeid_begin = sparse_early_nid(ms);
524 		pnum_begin = pnum;
525 		break;
526 	}
527 	map_count = 1;
528 	for_each_present_section_nr(pnum_begin + 1, pnum) {
529 		struct mem_section *ms;
530 		int nodeid;
531 
532 		ms = __nr_to_section(pnum);
533 		nodeid = sparse_early_nid(ms);
534 		if (nodeid == nodeid_begin) {
535 			map_count++;
536 			continue;
537 		}
538 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
539 		alloc_func(data, pnum_begin, pnum,
540 						map_count, nodeid_begin);
541 		/* new start, update count etc*/
542 		nodeid_begin = nodeid;
543 		pnum_begin = pnum;
544 		map_count = 1;
545 	}
546 	/* ok, last chunk */
547 	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
548 						map_count, nodeid_begin);
549 }
550 
551 /*
552  * Allocate the accumulated non-linear sections, allocate a mem_map
553  * for each and record the physical to section mapping.
554  */
555 void __init sparse_init(void)
556 {
557 	unsigned long pnum;
558 	struct page *map;
559 	unsigned long *usemap;
560 	unsigned long **usemap_map;
561 	int size;
562 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
563 	int size2;
564 	struct page **map_map;
565 #endif
566 
567 	/* see include/linux/mmzone.h 'struct mem_section' definition */
568 	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
569 
570 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
571 	set_pageblock_order();
572 
573 	/*
574 	 * map is using big page (aka 2M in x86 64 bit)
575 	 * usemap is less one page (aka 24 bytes)
576 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
577 	 * make next 2M slip to one more 2M later.
578 	 * then in big system, the memory will have a lot of holes...
579 	 * here try to allocate 2M pages continuously.
580 	 *
581 	 * powerpc need to call sparse_init_one_section right after each
582 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
583 	 */
584 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
585 	usemap_map = memblock_virt_alloc(size, 0);
586 	if (!usemap_map)
587 		panic("can not allocate usemap_map\n");
588 	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
589 							(void *)usemap_map);
590 
591 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
592 	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
593 	map_map = memblock_virt_alloc(size2, 0);
594 	if (!map_map)
595 		panic("can not allocate map_map\n");
596 	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
597 							(void *)map_map);
598 #endif
599 
600 	for_each_present_section_nr(0, pnum) {
601 		usemap = usemap_map[pnum];
602 		if (!usemap)
603 			continue;
604 
605 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
606 		map = map_map[pnum];
607 #else
608 		map = sparse_early_mem_map_alloc(pnum);
609 #endif
610 		if (!map)
611 			continue;
612 
613 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
614 								usemap);
615 	}
616 
617 	vmemmap_populate_print_last();
618 
619 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
620 	memblock_free_early(__pa(map_map), size2);
621 #endif
622 	memblock_free_early(__pa(usemap_map), size);
623 }
624 
625 #ifdef CONFIG_MEMORY_HOTPLUG
626 
627 /* Mark all memory sections within the pfn range as online */
628 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
629 {
630 	unsigned long pfn;
631 
632 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
633 		unsigned long section_nr = pfn_to_section_nr(start_pfn);
634 		struct mem_section *ms;
635 
636 		/* onlining code should never touch invalid ranges */
637 		if (WARN_ON(!valid_section_nr(section_nr)))
638 			continue;
639 
640 		ms = __nr_to_section(section_nr);
641 		ms->section_mem_map |= SECTION_IS_ONLINE;
642 	}
643 }
644 
645 #ifdef CONFIG_MEMORY_HOTREMOVE
646 /* Mark all memory sections within the pfn range as online */
647 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
648 {
649 	unsigned long pfn;
650 
651 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
652 		unsigned long section_nr = pfn_to_section_nr(start_pfn);
653 		struct mem_section *ms;
654 
655 		/*
656 		 * TODO this needs some double checking. Offlining code makes
657 		 * sure to check pfn_valid but those checks might be just bogus
658 		 */
659 		if (WARN_ON(!valid_section_nr(section_nr)))
660 			continue;
661 
662 		ms = __nr_to_section(section_nr);
663 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
664 	}
665 }
666 #endif
667 
668 #ifdef CONFIG_SPARSEMEM_VMEMMAP
669 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
670 {
671 	/* This will make the necessary allocations eventually. */
672 	return sparse_mem_map_populate(pnum, nid);
673 }
674 static void __kfree_section_memmap(struct page *memmap)
675 {
676 	unsigned long start = (unsigned long)memmap;
677 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
678 
679 	vmemmap_free(start, end);
680 }
681 #ifdef CONFIG_MEMORY_HOTREMOVE
682 static void free_map_bootmem(struct page *memmap)
683 {
684 	unsigned long start = (unsigned long)memmap;
685 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
686 
687 	vmemmap_free(start, end);
688 }
689 #endif /* CONFIG_MEMORY_HOTREMOVE */
690 #else
691 static struct page *__kmalloc_section_memmap(void)
692 {
693 	struct page *page, *ret;
694 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
695 
696 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
697 	if (page)
698 		goto got_map_page;
699 
700 	ret = vmalloc(memmap_size);
701 	if (ret)
702 		goto got_map_ptr;
703 
704 	return NULL;
705 got_map_page:
706 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
707 got_map_ptr:
708 
709 	return ret;
710 }
711 
712 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
713 {
714 	return __kmalloc_section_memmap();
715 }
716 
717 static void __kfree_section_memmap(struct page *memmap)
718 {
719 	if (is_vmalloc_addr(memmap))
720 		vfree(memmap);
721 	else
722 		free_pages((unsigned long)memmap,
723 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
724 }
725 
726 #ifdef CONFIG_MEMORY_HOTREMOVE
727 static void free_map_bootmem(struct page *memmap)
728 {
729 	unsigned long maps_section_nr, removing_section_nr, i;
730 	unsigned long magic, nr_pages;
731 	struct page *page = virt_to_page(memmap);
732 
733 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
734 		>> PAGE_SHIFT;
735 
736 	for (i = 0; i < nr_pages; i++, page++) {
737 		magic = (unsigned long) page->freelist;
738 
739 		BUG_ON(magic == NODE_INFO);
740 
741 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
742 		removing_section_nr = page_private(page);
743 
744 		/*
745 		 * When this function is called, the removing section is
746 		 * logical offlined state. This means all pages are isolated
747 		 * from page allocator. If removing section's memmap is placed
748 		 * on the same section, it must not be freed.
749 		 * If it is freed, page allocator may allocate it which will
750 		 * be removed physically soon.
751 		 */
752 		if (maps_section_nr != removing_section_nr)
753 			put_page_bootmem(page);
754 	}
755 }
756 #endif /* CONFIG_MEMORY_HOTREMOVE */
757 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
758 
759 /*
760  * returns the number of sections whose mem_maps were properly
761  * set.  If this is <=0, then that means that the passed-in
762  * map was not consumed and must be freed.
763  */
764 int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn)
765 {
766 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
767 	struct mem_section *ms;
768 	struct page *memmap;
769 	unsigned long *usemap;
770 	unsigned long flags;
771 	int ret;
772 
773 	/*
774 	 * no locking for this, because it does its own
775 	 * plus, it does a kmalloc
776 	 */
777 	ret = sparse_index_init(section_nr, pgdat->node_id);
778 	if (ret < 0 && ret != -EEXIST)
779 		return ret;
780 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
781 	if (!memmap)
782 		return -ENOMEM;
783 	usemap = __kmalloc_section_usemap();
784 	if (!usemap) {
785 		__kfree_section_memmap(memmap);
786 		return -ENOMEM;
787 	}
788 
789 	pgdat_resize_lock(pgdat, &flags);
790 
791 	ms = __pfn_to_section(start_pfn);
792 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
793 		ret = -EEXIST;
794 		goto out;
795 	}
796 
797 	memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
798 
799 	section_mark_present(ms);
800 
801 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
802 
803 out:
804 	pgdat_resize_unlock(pgdat, &flags);
805 	if (ret <= 0) {
806 		kfree(usemap);
807 		__kfree_section_memmap(memmap);
808 	}
809 	return ret;
810 }
811 
812 #ifdef CONFIG_MEMORY_HOTREMOVE
813 #ifdef CONFIG_MEMORY_FAILURE
814 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
815 {
816 	int i;
817 
818 	if (!memmap)
819 		return;
820 
821 	for (i = 0; i < nr_pages; i++) {
822 		if (PageHWPoison(&memmap[i])) {
823 			atomic_long_sub(1, &num_poisoned_pages);
824 			ClearPageHWPoison(&memmap[i]);
825 		}
826 	}
827 }
828 #else
829 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
830 {
831 }
832 #endif
833 
834 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
835 {
836 	struct page *usemap_page;
837 
838 	if (!usemap)
839 		return;
840 
841 	usemap_page = virt_to_page(usemap);
842 	/*
843 	 * Check to see if allocation came from hot-plug-add
844 	 */
845 	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
846 		kfree(usemap);
847 		if (memmap)
848 			__kfree_section_memmap(memmap);
849 		return;
850 	}
851 
852 	/*
853 	 * The usemap came from bootmem. This is packed with other usemaps
854 	 * on the section which has pgdat at boot time. Just keep it as is now.
855 	 */
856 
857 	if (memmap)
858 		free_map_bootmem(memmap);
859 }
860 
861 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
862 		unsigned long map_offset)
863 {
864 	struct page *memmap = NULL;
865 	unsigned long *usemap = NULL, flags;
866 	struct pglist_data *pgdat = zone->zone_pgdat;
867 
868 	pgdat_resize_lock(pgdat, &flags);
869 	if (ms->section_mem_map) {
870 		usemap = ms->pageblock_flags;
871 		memmap = sparse_decode_mem_map(ms->section_mem_map,
872 						__section_nr(ms));
873 		ms->section_mem_map = 0;
874 		ms->pageblock_flags = NULL;
875 	}
876 	pgdat_resize_unlock(pgdat, &flags);
877 
878 	clear_hwpoisoned_pages(memmap + map_offset,
879 			PAGES_PER_SECTION - map_offset);
880 	free_section_usemap(memmap, usemap);
881 }
882 #endif /* CONFIG_MEMORY_HOTREMOVE */
883 #endif /* CONFIG_MEMORY_HOTPLUG */
884