xref: /openbmc/linux/mm/sparse.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 
17 #include "internal.h"
18 #include <asm/dma.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pgtable.h>
21 
22 /*
23  * Permanent SPARSEMEM data:
24  *
25  * 1) mem_section	- memory sections, mem_map's for valid memory
26  */
27 #ifdef CONFIG_SPARSEMEM_EXTREME
28 struct mem_section **mem_section;
29 #else
30 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
31 	____cacheline_internodealigned_in_smp;
32 #endif
33 EXPORT_SYMBOL(mem_section);
34 
35 #ifdef NODE_NOT_IN_PAGE_FLAGS
36 /*
37  * If we did not store the node number in the page then we have to
38  * do a lookup in the section_to_node_table in order to find which
39  * node the page belongs to.
40  */
41 #if MAX_NUMNODES <= 256
42 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #else
44 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
45 #endif
46 
47 int page_to_nid(const struct page *page)
48 {
49 	return section_to_node_table[page_to_section(page)];
50 }
51 EXPORT_SYMBOL(page_to_nid);
52 
53 static void set_section_nid(unsigned long section_nr, int nid)
54 {
55 	section_to_node_table[section_nr] = nid;
56 }
57 #else /* !NODE_NOT_IN_PAGE_FLAGS */
58 static inline void set_section_nid(unsigned long section_nr, int nid)
59 {
60 }
61 #endif
62 
63 #ifdef CONFIG_SPARSEMEM_EXTREME
64 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
65 {
66 	struct mem_section *section = NULL;
67 	unsigned long array_size = SECTIONS_PER_ROOT *
68 				   sizeof(struct mem_section);
69 
70 	if (slab_is_available()) {
71 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
72 	} else {
73 		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
74 					      nid);
75 		if (!section)
76 			panic("%s: Failed to allocate %lu bytes nid=%d\n",
77 			      __func__, array_size, nid);
78 	}
79 
80 	return section;
81 }
82 
83 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
84 {
85 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
86 	struct mem_section *section;
87 
88 	/*
89 	 * An existing section is possible in the sub-section hotplug
90 	 * case. First hot-add instantiates, follow-on hot-add reuses
91 	 * the existing section.
92 	 *
93 	 * The mem_hotplug_lock resolves the apparent race below.
94 	 */
95 	if (mem_section[root])
96 		return 0;
97 
98 	section = sparse_index_alloc(nid);
99 	if (!section)
100 		return -ENOMEM;
101 
102 	mem_section[root] = section;
103 
104 	return 0;
105 }
106 #else /* !SPARSEMEM_EXTREME */
107 static inline int sparse_index_init(unsigned long section_nr, int nid)
108 {
109 	return 0;
110 }
111 #endif
112 
113 #ifdef CONFIG_SPARSEMEM_EXTREME
114 unsigned long __section_nr(struct mem_section *ms)
115 {
116 	unsigned long root_nr;
117 	struct mem_section *root = NULL;
118 
119 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
120 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
121 		if (!root)
122 			continue;
123 
124 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
125 		     break;
126 	}
127 
128 	VM_BUG_ON(!root);
129 
130 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
131 }
132 #else
133 unsigned long __section_nr(struct mem_section *ms)
134 {
135 	return (unsigned long)(ms - mem_section[0]);
136 }
137 #endif
138 
139 /*
140  * During early boot, before section_mem_map is used for an actual
141  * mem_map, we use section_mem_map to store the section's NUMA
142  * node.  This keeps us from having to use another data structure.  The
143  * node information is cleared just before we store the real mem_map.
144  */
145 static inline unsigned long sparse_encode_early_nid(int nid)
146 {
147 	return (nid << SECTION_NID_SHIFT);
148 }
149 
150 static inline int sparse_early_nid(struct mem_section *section)
151 {
152 	return (section->section_mem_map >> SECTION_NID_SHIFT);
153 }
154 
155 /* Validate the physical addressing limitations of the model */
156 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
157 						unsigned long *end_pfn)
158 {
159 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
160 
161 	/*
162 	 * Sanity checks - do not allow an architecture to pass
163 	 * in larger pfns than the maximum scope of sparsemem:
164 	 */
165 	if (*start_pfn > max_sparsemem_pfn) {
166 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
167 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
168 			*start_pfn, *end_pfn, max_sparsemem_pfn);
169 		WARN_ON_ONCE(1);
170 		*start_pfn = max_sparsemem_pfn;
171 		*end_pfn = max_sparsemem_pfn;
172 	} else if (*end_pfn > max_sparsemem_pfn) {
173 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
174 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
175 			*start_pfn, *end_pfn, max_sparsemem_pfn);
176 		WARN_ON_ONCE(1);
177 		*end_pfn = max_sparsemem_pfn;
178 	}
179 }
180 
181 /*
182  * There are a number of times that we loop over NR_MEM_SECTIONS,
183  * looking for section_present() on each.  But, when we have very
184  * large physical address spaces, NR_MEM_SECTIONS can also be
185  * very large which makes the loops quite long.
186  *
187  * Keeping track of this gives us an easy way to break out of
188  * those loops early.
189  */
190 unsigned long __highest_present_section_nr;
191 static void section_mark_present(struct mem_section *ms)
192 {
193 	unsigned long section_nr = __section_nr(ms);
194 
195 	if (section_nr > __highest_present_section_nr)
196 		__highest_present_section_nr = section_nr;
197 
198 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
199 }
200 
201 #define for_each_present_section_nr(start, section_nr)		\
202 	for (section_nr = next_present_section_nr(start-1);	\
203 	     ((section_nr != -1) &&				\
204 	      (section_nr <= __highest_present_section_nr));	\
205 	     section_nr = next_present_section_nr(section_nr))
206 
207 static inline unsigned long first_present_section_nr(void)
208 {
209 	return next_present_section_nr(-1);
210 }
211 
212 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
213 		unsigned long nr_pages)
214 {
215 	int idx = subsection_map_index(pfn);
216 	int end = subsection_map_index(pfn + nr_pages - 1);
217 
218 	bitmap_set(map, idx, end - idx + 1);
219 }
220 
221 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
222 {
223 	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
224 	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
225 
226 	if (!nr_pages)
227 		return;
228 
229 	for (nr = start_sec; nr <= end_sec; nr++) {
230 		struct mem_section *ms;
231 		unsigned long pfns;
232 
233 		pfns = min(nr_pages, PAGES_PER_SECTION
234 				- (pfn & ~PAGE_SECTION_MASK));
235 		ms = __nr_to_section(nr);
236 		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
237 
238 		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
239 				pfns, subsection_map_index(pfn),
240 				subsection_map_index(pfn + pfns - 1));
241 
242 		pfn += pfns;
243 		nr_pages -= pfns;
244 	}
245 }
246 
247 /* Record a memory area against a node. */
248 void __init memory_present(int nid, unsigned long start, unsigned long end)
249 {
250 	unsigned long pfn;
251 
252 #ifdef CONFIG_SPARSEMEM_EXTREME
253 	if (unlikely(!mem_section)) {
254 		unsigned long size, align;
255 
256 		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
257 		align = 1 << (INTERNODE_CACHE_SHIFT);
258 		mem_section = memblock_alloc(size, align);
259 		if (!mem_section)
260 			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
261 			      __func__, size, align);
262 	}
263 #endif
264 
265 	start &= PAGE_SECTION_MASK;
266 	mminit_validate_memmodel_limits(&start, &end);
267 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
268 		unsigned long section = pfn_to_section_nr(pfn);
269 		struct mem_section *ms;
270 
271 		sparse_index_init(section, nid);
272 		set_section_nid(section, nid);
273 
274 		ms = __nr_to_section(section);
275 		if (!ms->section_mem_map) {
276 			ms->section_mem_map = sparse_encode_early_nid(nid) |
277 							SECTION_IS_ONLINE;
278 			section_mark_present(ms);
279 		}
280 	}
281 }
282 
283 /*
284  * Mark all memblocks as present using memory_present(). This is a
285  * convienence function that is useful for a number of arches
286  * to mark all of the systems memory as present during initialization.
287  */
288 void __init memblocks_present(void)
289 {
290 	struct memblock_region *reg;
291 
292 	for_each_memblock(memory, reg) {
293 		memory_present(memblock_get_region_node(reg),
294 			       memblock_region_memory_base_pfn(reg),
295 			       memblock_region_memory_end_pfn(reg));
296 	}
297 }
298 
299 /*
300  * Subtle, we encode the real pfn into the mem_map such that
301  * the identity pfn - section_mem_map will return the actual
302  * physical page frame number.
303  */
304 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
305 {
306 	unsigned long coded_mem_map =
307 		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
308 	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
309 	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
310 	return coded_mem_map;
311 }
312 
313 /*
314  * Decode mem_map from the coded memmap
315  */
316 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
317 {
318 	/* mask off the extra low bits of information */
319 	coded_mem_map &= SECTION_MAP_MASK;
320 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
321 }
322 
323 static void __meminit sparse_init_one_section(struct mem_section *ms,
324 		unsigned long pnum, struct page *mem_map,
325 		struct mem_section_usage *usage, unsigned long flags)
326 {
327 	ms->section_mem_map &= ~SECTION_MAP_MASK;
328 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
329 		| SECTION_HAS_MEM_MAP | flags;
330 	ms->usage = usage;
331 }
332 
333 static unsigned long usemap_size(void)
334 {
335 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
336 }
337 
338 size_t mem_section_usage_size(void)
339 {
340 	return sizeof(struct mem_section_usage) + usemap_size();
341 }
342 
343 #ifdef CONFIG_MEMORY_HOTREMOVE
344 static struct mem_section_usage * __init
345 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
346 					 unsigned long size)
347 {
348 	struct mem_section_usage *usage;
349 	unsigned long goal, limit;
350 	int nid;
351 	/*
352 	 * A page may contain usemaps for other sections preventing the
353 	 * page being freed and making a section unremovable while
354 	 * other sections referencing the usemap remain active. Similarly,
355 	 * a pgdat can prevent a section being removed. If section A
356 	 * contains a pgdat and section B contains the usemap, both
357 	 * sections become inter-dependent. This allocates usemaps
358 	 * from the same section as the pgdat where possible to avoid
359 	 * this problem.
360 	 */
361 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
362 	limit = goal + (1UL << PA_SECTION_SHIFT);
363 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
364 again:
365 	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
366 	if (!usage && limit) {
367 		limit = 0;
368 		goto again;
369 	}
370 	return usage;
371 }
372 
373 static void __init check_usemap_section_nr(int nid,
374 		struct mem_section_usage *usage)
375 {
376 	unsigned long usemap_snr, pgdat_snr;
377 	static unsigned long old_usemap_snr;
378 	static unsigned long old_pgdat_snr;
379 	struct pglist_data *pgdat = NODE_DATA(nid);
380 	int usemap_nid;
381 
382 	/* First call */
383 	if (!old_usemap_snr) {
384 		old_usemap_snr = NR_MEM_SECTIONS;
385 		old_pgdat_snr = NR_MEM_SECTIONS;
386 	}
387 
388 	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
389 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
390 	if (usemap_snr == pgdat_snr)
391 		return;
392 
393 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
394 		/* skip redundant message */
395 		return;
396 
397 	old_usemap_snr = usemap_snr;
398 	old_pgdat_snr = pgdat_snr;
399 
400 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
401 	if (usemap_nid != nid) {
402 		pr_info("node %d must be removed before remove section %ld\n",
403 			nid, usemap_snr);
404 		return;
405 	}
406 	/*
407 	 * There is a circular dependency.
408 	 * Some platforms allow un-removable section because they will just
409 	 * gather other removable sections for dynamic partitioning.
410 	 * Just notify un-removable section's number here.
411 	 */
412 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
413 		usemap_snr, pgdat_snr, nid);
414 }
415 #else
416 static struct mem_section_usage * __init
417 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
418 					 unsigned long size)
419 {
420 	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
421 }
422 
423 static void __init check_usemap_section_nr(int nid,
424 		struct mem_section_usage *usage)
425 {
426 }
427 #endif /* CONFIG_MEMORY_HOTREMOVE */
428 
429 #ifdef CONFIG_SPARSEMEM_VMEMMAP
430 static unsigned long __init section_map_size(void)
431 {
432 	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
433 }
434 
435 #else
436 static unsigned long __init section_map_size(void)
437 {
438 	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
439 }
440 
441 struct page __init *__populate_section_memmap(unsigned long pfn,
442 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
443 {
444 	unsigned long size = section_map_size();
445 	struct page *map = sparse_buffer_alloc(size);
446 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
447 
448 	if (map)
449 		return map;
450 
451 	map = memblock_alloc_try_nid_raw(size, size, addr,
452 					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
453 	if (!map)
454 		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
455 		      __func__, size, PAGE_SIZE, nid, &addr);
456 
457 	return map;
458 }
459 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
460 
461 static void *sparsemap_buf __meminitdata;
462 static void *sparsemap_buf_end __meminitdata;
463 
464 static inline void __meminit sparse_buffer_free(unsigned long size)
465 {
466 	WARN_ON(!sparsemap_buf || size == 0);
467 	memblock_free_early(__pa(sparsemap_buf), size);
468 }
469 
470 static void __init sparse_buffer_init(unsigned long size, int nid)
471 {
472 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
473 	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
474 	/*
475 	 * Pre-allocated buffer is mainly used by __populate_section_memmap
476 	 * and we want it to be properly aligned to the section size - this is
477 	 * especially the case for VMEMMAP which maps memmap to PMDs
478 	 */
479 	sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
480 					addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
481 	sparsemap_buf_end = sparsemap_buf + size;
482 }
483 
484 static void __init sparse_buffer_fini(void)
485 {
486 	unsigned long size = sparsemap_buf_end - sparsemap_buf;
487 
488 	if (sparsemap_buf && size > 0)
489 		sparse_buffer_free(size);
490 	sparsemap_buf = NULL;
491 }
492 
493 void * __meminit sparse_buffer_alloc(unsigned long size)
494 {
495 	void *ptr = NULL;
496 
497 	if (sparsemap_buf) {
498 		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
499 		if (ptr + size > sparsemap_buf_end)
500 			ptr = NULL;
501 		else {
502 			/* Free redundant aligned space */
503 			if ((unsigned long)(ptr - sparsemap_buf) > 0)
504 				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
505 			sparsemap_buf = ptr + size;
506 		}
507 	}
508 	return ptr;
509 }
510 
511 void __weak __meminit vmemmap_populate_print_last(void)
512 {
513 }
514 
515 /*
516  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
517  * And number of present sections in this node is map_count.
518  */
519 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
520 				   unsigned long pnum_end,
521 				   unsigned long map_count)
522 {
523 	struct mem_section_usage *usage;
524 	unsigned long pnum;
525 	struct page *map;
526 
527 	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
528 			mem_section_usage_size() * map_count);
529 	if (!usage) {
530 		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
531 		goto failed;
532 	}
533 	sparse_buffer_init(map_count * section_map_size(), nid);
534 	for_each_present_section_nr(pnum_begin, pnum) {
535 		unsigned long pfn = section_nr_to_pfn(pnum);
536 
537 		if (pnum >= pnum_end)
538 			break;
539 
540 		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
541 				nid, NULL);
542 		if (!map) {
543 			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
544 			       __func__, nid);
545 			pnum_begin = pnum;
546 			goto failed;
547 		}
548 		check_usemap_section_nr(nid, usage);
549 		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
550 				SECTION_IS_EARLY);
551 		usage = (void *) usage + mem_section_usage_size();
552 	}
553 	sparse_buffer_fini();
554 	return;
555 failed:
556 	/* We failed to allocate, mark all the following pnums as not present */
557 	for_each_present_section_nr(pnum_begin, pnum) {
558 		struct mem_section *ms;
559 
560 		if (pnum >= pnum_end)
561 			break;
562 		ms = __nr_to_section(pnum);
563 		ms->section_mem_map = 0;
564 	}
565 }
566 
567 /*
568  * Allocate the accumulated non-linear sections, allocate a mem_map
569  * for each and record the physical to section mapping.
570  */
571 void __init sparse_init(void)
572 {
573 	unsigned long pnum_begin = first_present_section_nr();
574 	int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
575 	unsigned long pnum_end, map_count = 1;
576 
577 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
578 	set_pageblock_order();
579 
580 	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
581 		int nid = sparse_early_nid(__nr_to_section(pnum_end));
582 
583 		if (nid == nid_begin) {
584 			map_count++;
585 			continue;
586 		}
587 		/* Init node with sections in range [pnum_begin, pnum_end) */
588 		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
589 		nid_begin = nid;
590 		pnum_begin = pnum_end;
591 		map_count = 1;
592 	}
593 	/* cover the last node */
594 	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
595 	vmemmap_populate_print_last();
596 }
597 
598 #ifdef CONFIG_MEMORY_HOTPLUG
599 
600 /* Mark all memory sections within the pfn range as online */
601 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
602 {
603 	unsigned long pfn;
604 
605 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
606 		unsigned long section_nr = pfn_to_section_nr(pfn);
607 		struct mem_section *ms;
608 
609 		/* onlining code should never touch invalid ranges */
610 		if (WARN_ON(!valid_section_nr(section_nr)))
611 			continue;
612 
613 		ms = __nr_to_section(section_nr);
614 		ms->section_mem_map |= SECTION_IS_ONLINE;
615 	}
616 }
617 
618 #ifdef CONFIG_MEMORY_HOTREMOVE
619 /* Mark all memory sections within the pfn range as offline */
620 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
621 {
622 	unsigned long pfn;
623 
624 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
625 		unsigned long section_nr = pfn_to_section_nr(pfn);
626 		struct mem_section *ms;
627 
628 		/*
629 		 * TODO this needs some double checking. Offlining code makes
630 		 * sure to check pfn_valid but those checks might be just bogus
631 		 */
632 		if (WARN_ON(!valid_section_nr(section_nr)))
633 			continue;
634 
635 		ms = __nr_to_section(section_nr);
636 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
637 	}
638 }
639 #endif
640 
641 #ifdef CONFIG_SPARSEMEM_VMEMMAP
642 static struct page * __meminit populate_section_memmap(unsigned long pfn,
643 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
644 {
645 	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
646 }
647 
648 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
649 		struct vmem_altmap *altmap)
650 {
651 	unsigned long start = (unsigned long) pfn_to_page(pfn);
652 	unsigned long end = start + nr_pages * sizeof(struct page);
653 
654 	vmemmap_free(start, end, altmap);
655 }
656 static void free_map_bootmem(struct page *memmap)
657 {
658 	unsigned long start = (unsigned long)memmap;
659 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
660 
661 	vmemmap_free(start, end, NULL);
662 }
663 #else
664 struct page * __meminit populate_section_memmap(unsigned long pfn,
665 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
666 {
667 	struct page *page, *ret;
668 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
669 
670 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
671 	if (page)
672 		goto got_map_page;
673 
674 	ret = vmalloc(memmap_size);
675 	if (ret)
676 		goto got_map_ptr;
677 
678 	return NULL;
679 got_map_page:
680 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
681 got_map_ptr:
682 
683 	return ret;
684 }
685 
686 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
687 		struct vmem_altmap *altmap)
688 {
689 	struct page *memmap = pfn_to_page(pfn);
690 
691 	if (is_vmalloc_addr(memmap))
692 		vfree(memmap);
693 	else
694 		free_pages((unsigned long)memmap,
695 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
696 }
697 
698 static void free_map_bootmem(struct page *memmap)
699 {
700 	unsigned long maps_section_nr, removing_section_nr, i;
701 	unsigned long magic, nr_pages;
702 	struct page *page = virt_to_page(memmap);
703 
704 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
705 		>> PAGE_SHIFT;
706 
707 	for (i = 0; i < nr_pages; i++, page++) {
708 		magic = (unsigned long) page->freelist;
709 
710 		BUG_ON(magic == NODE_INFO);
711 
712 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
713 		removing_section_nr = page_private(page);
714 
715 		/*
716 		 * When this function is called, the removing section is
717 		 * logical offlined state. This means all pages are isolated
718 		 * from page allocator. If removing section's memmap is placed
719 		 * on the same section, it must not be freed.
720 		 * If it is freed, page allocator may allocate it which will
721 		 * be removed physically soon.
722 		 */
723 		if (maps_section_nr != removing_section_nr)
724 			put_page_bootmem(page);
725 	}
726 }
727 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
728 
729 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
730 		struct vmem_altmap *altmap)
731 {
732 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
733 	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
734 	struct mem_section *ms = __pfn_to_section(pfn);
735 	bool section_is_early = early_section(ms);
736 	struct page *memmap = NULL;
737 	unsigned long *subsection_map = ms->usage
738 		? &ms->usage->subsection_map[0] : NULL;
739 
740 	subsection_mask_set(map, pfn, nr_pages);
741 	if (subsection_map)
742 		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
743 
744 	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
745 				"section already deactivated (%#lx + %ld)\n",
746 				pfn, nr_pages))
747 		return;
748 
749 	/*
750 	 * There are 3 cases to handle across two configurations
751 	 * (SPARSEMEM_VMEMMAP={y,n}):
752 	 *
753 	 * 1/ deactivation of a partial hot-added section (only possible
754 	 * in the SPARSEMEM_VMEMMAP=y case).
755 	 *    a/ section was present at memory init
756 	 *    b/ section was hot-added post memory init
757 	 * 2/ deactivation of a complete hot-added section
758 	 * 3/ deactivation of a complete section from memory init
759 	 *
760 	 * For 1/, when subsection_map does not empty we will not be
761 	 * freeing the usage map, but still need to free the vmemmap
762 	 * range.
763 	 *
764 	 * For 2/ and 3/ the SPARSEMEM_VMEMMAP={y,n} cases are unified
765 	 */
766 	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
767 	if (bitmap_empty(subsection_map, SUBSECTIONS_PER_SECTION)) {
768 		unsigned long section_nr = pfn_to_section_nr(pfn);
769 
770 		/*
771 		 * When removing an early section, the usage map is kept (as the
772 		 * usage maps of other sections fall into the same page). It
773 		 * will be re-used when re-adding the section - which is then no
774 		 * longer an early section. If the usage map is PageReserved, it
775 		 * was allocated during boot.
776 		 */
777 		if (!PageReserved(virt_to_page(ms->usage))) {
778 			kfree(ms->usage);
779 			ms->usage = NULL;
780 		}
781 		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
782 		ms->section_mem_map = (unsigned long)NULL;
783 	}
784 
785 	if (section_is_early && memmap)
786 		free_map_bootmem(memmap);
787 	else
788 		depopulate_section_memmap(pfn, nr_pages, altmap);
789 }
790 
791 static struct page * __meminit section_activate(int nid, unsigned long pfn,
792 		unsigned long nr_pages, struct vmem_altmap *altmap)
793 {
794 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
795 	struct mem_section *ms = __pfn_to_section(pfn);
796 	struct mem_section_usage *usage = NULL;
797 	unsigned long *subsection_map;
798 	struct page *memmap;
799 	int rc = 0;
800 
801 	subsection_mask_set(map, pfn, nr_pages);
802 
803 	if (!ms->usage) {
804 		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
805 		if (!usage)
806 			return ERR_PTR(-ENOMEM);
807 		ms->usage = usage;
808 	}
809 	subsection_map = &ms->usage->subsection_map[0];
810 
811 	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
812 		rc = -EINVAL;
813 	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
814 		rc = -EEXIST;
815 	else
816 		bitmap_or(subsection_map, map, subsection_map,
817 				SUBSECTIONS_PER_SECTION);
818 
819 	if (rc) {
820 		if (usage)
821 			ms->usage = NULL;
822 		kfree(usage);
823 		return ERR_PTR(rc);
824 	}
825 
826 	/*
827 	 * The early init code does not consider partially populated
828 	 * initial sections, it simply assumes that memory will never be
829 	 * referenced.  If we hot-add memory into such a section then we
830 	 * do not need to populate the memmap and can simply reuse what
831 	 * is already there.
832 	 */
833 	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
834 		return pfn_to_page(pfn);
835 
836 	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
837 	if (!memmap) {
838 		section_deactivate(pfn, nr_pages, altmap);
839 		return ERR_PTR(-ENOMEM);
840 	}
841 
842 	return memmap;
843 }
844 
845 /**
846  * sparse_add_section - add a memory section, or populate an existing one
847  * @nid: The node to add section on
848  * @start_pfn: start pfn of the memory range
849  * @nr_pages: number of pfns to add in the section
850  * @altmap: device page map
851  *
852  * This is only intended for hotplug.
853  *
854  * Return:
855  * * 0		- On success.
856  * * -EEXIST	- Section has been present.
857  * * -ENOMEM	- Out of memory.
858  */
859 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
860 		unsigned long nr_pages, struct vmem_altmap *altmap)
861 {
862 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
863 	struct mem_section *ms;
864 	struct page *memmap;
865 	int ret;
866 
867 	ret = sparse_index_init(section_nr, nid);
868 	if (ret < 0)
869 		return ret;
870 
871 	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
872 	if (IS_ERR(memmap))
873 		return PTR_ERR(memmap);
874 
875 	/*
876 	 * Poison uninitialized struct pages in order to catch invalid flags
877 	 * combinations.
878 	 */
879 	page_init_poison(pfn_to_page(start_pfn), sizeof(struct page) * nr_pages);
880 
881 	ms = __nr_to_section(section_nr);
882 	set_section_nid(section_nr, nid);
883 	section_mark_present(ms);
884 
885 	/* Align memmap to section boundary in the subsection case */
886 	if (section_nr_to_pfn(section_nr) != start_pfn)
887 		memmap = pfn_to_kaddr(section_nr_to_pfn(section_nr));
888 	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
889 
890 	return 0;
891 }
892 
893 #ifdef CONFIG_MEMORY_FAILURE
894 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
895 {
896 	int i;
897 
898 	/*
899 	 * A further optimization is to have per section refcounted
900 	 * num_poisoned_pages.  But that would need more space per memmap, so
901 	 * for now just do a quick global check to speed up this routine in the
902 	 * absence of bad pages.
903 	 */
904 	if (atomic_long_read(&num_poisoned_pages) == 0)
905 		return;
906 
907 	for (i = 0; i < nr_pages; i++) {
908 		if (PageHWPoison(&memmap[i])) {
909 			num_poisoned_pages_dec();
910 			ClearPageHWPoison(&memmap[i]);
911 		}
912 	}
913 }
914 #else
915 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
916 {
917 }
918 #endif
919 
920 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
921 		unsigned long nr_pages, unsigned long map_offset,
922 		struct vmem_altmap *altmap)
923 {
924 	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
925 			nr_pages - map_offset);
926 	section_deactivate(pfn, nr_pages, altmap);
927 }
928 #endif /* CONFIG_MEMORY_HOTPLUG */
929