xref: /openbmc/linux/mm/sparse.c (revision d623f60d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19 
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section	- memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 	____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32 
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44 
45 int page_to_nid(const struct page *page)
46 {
47 	return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50 
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 	section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60 
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 	struct mem_section *section = NULL;
65 	unsigned long array_size = SECTIONS_PER_ROOT *
66 				   sizeof(struct mem_section);
67 
68 	if (slab_is_available())
69 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 	else
71 		section = memblock_virt_alloc_node(array_size, nid);
72 
73 	return section;
74 }
75 
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79 	struct mem_section *section;
80 
81 	if (mem_section[root])
82 		return -EEXIST;
83 
84 	section = sparse_index_alloc(nid);
85 	if (!section)
86 		return -ENOMEM;
87 
88 	mem_section[root] = section;
89 
90 	return 0;
91 }
92 #else /* !SPARSEMEM_EXTREME */
93 static inline int sparse_index_init(unsigned long section_nr, int nid)
94 {
95 	return 0;
96 }
97 #endif
98 
99 #ifdef CONFIG_SPARSEMEM_EXTREME
100 int __section_nr(struct mem_section* ms)
101 {
102 	unsigned long root_nr;
103 	struct mem_section *root = NULL;
104 
105 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107 		if (!root)
108 			continue;
109 
110 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111 		     break;
112 	}
113 
114 	VM_BUG_ON(!root);
115 
116 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117 }
118 #else
119 int __section_nr(struct mem_section* ms)
120 {
121 	return (int)(ms - mem_section[0]);
122 }
123 #endif
124 
125 /*
126  * During early boot, before section_mem_map is used for an actual
127  * mem_map, we use section_mem_map to store the section's NUMA
128  * node.  This keeps us from having to use another data structure.  The
129  * node information is cleared just before we store the real mem_map.
130  */
131 static inline unsigned long sparse_encode_early_nid(int nid)
132 {
133 	return (nid << SECTION_NID_SHIFT);
134 }
135 
136 static inline int sparse_early_nid(struct mem_section *section)
137 {
138 	return (section->section_mem_map >> SECTION_NID_SHIFT);
139 }
140 
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143 						unsigned long *end_pfn)
144 {
145 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146 
147 	/*
148 	 * Sanity checks - do not allow an architecture to pass
149 	 * in larger pfns than the maximum scope of sparsemem:
150 	 */
151 	if (*start_pfn > max_sparsemem_pfn) {
152 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 			*start_pfn, *end_pfn, max_sparsemem_pfn);
155 		WARN_ON_ONCE(1);
156 		*start_pfn = max_sparsemem_pfn;
157 		*end_pfn = max_sparsemem_pfn;
158 	} else if (*end_pfn > max_sparsemem_pfn) {
159 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 			*start_pfn, *end_pfn, max_sparsemem_pfn);
162 		WARN_ON_ONCE(1);
163 		*end_pfn = max_sparsemem_pfn;
164 	}
165 }
166 
167 /*
168  * There are a number of times that we loop over NR_MEM_SECTIONS,
169  * looking for section_present() on each.  But, when we have very
170  * large physical address spaces, NR_MEM_SECTIONS can also be
171  * very large which makes the loops quite long.
172  *
173  * Keeping track of this gives us an easy way to break out of
174  * those loops early.
175  */
176 int __highest_present_section_nr;
177 static void section_mark_present(struct mem_section *ms)
178 {
179 	int section_nr = __section_nr(ms);
180 
181 	if (section_nr > __highest_present_section_nr)
182 		__highest_present_section_nr = section_nr;
183 
184 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
185 }
186 
187 static inline int next_present_section_nr(int section_nr)
188 {
189 	do {
190 		section_nr++;
191 		if (present_section_nr(section_nr))
192 			return section_nr;
193 	} while ((section_nr <= __highest_present_section_nr));
194 
195 	return -1;
196 }
197 #define for_each_present_section_nr(start, section_nr)		\
198 	for (section_nr = next_present_section_nr(start-1);	\
199 	     ((section_nr >= 0) &&				\
200 	      (section_nr <= __highest_present_section_nr));	\
201 	     section_nr = next_present_section_nr(section_nr))
202 
203 /* Record a memory area against a node. */
204 void __init memory_present(int nid, unsigned long start, unsigned long end)
205 {
206 	unsigned long pfn;
207 
208 #ifdef CONFIG_SPARSEMEM_EXTREME
209 	if (unlikely(!mem_section)) {
210 		unsigned long size, align;
211 
212 		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
213 		align = 1 << (INTERNODE_CACHE_SHIFT);
214 		mem_section = memblock_virt_alloc(size, align);
215 	}
216 #endif
217 
218 	start &= PAGE_SECTION_MASK;
219 	mminit_validate_memmodel_limits(&start, &end);
220 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
221 		unsigned long section = pfn_to_section_nr(pfn);
222 		struct mem_section *ms;
223 
224 		sparse_index_init(section, nid);
225 		set_section_nid(section, nid);
226 
227 		ms = __nr_to_section(section);
228 		if (!ms->section_mem_map) {
229 			ms->section_mem_map = sparse_encode_early_nid(nid) |
230 							SECTION_IS_ONLINE;
231 			section_mark_present(ms);
232 		}
233 	}
234 }
235 
236 /*
237  * Subtle, we encode the real pfn into the mem_map such that
238  * the identity pfn - section_mem_map will return the actual
239  * physical page frame number.
240  */
241 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
242 {
243 	unsigned long coded_mem_map =
244 		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
245 	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
246 	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
247 	return coded_mem_map;
248 }
249 
250 /*
251  * Decode mem_map from the coded memmap
252  */
253 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
254 {
255 	/* mask off the extra low bits of information */
256 	coded_mem_map &= SECTION_MAP_MASK;
257 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
258 }
259 
260 static int __meminit sparse_init_one_section(struct mem_section *ms,
261 		unsigned long pnum, struct page *mem_map,
262 		unsigned long *pageblock_bitmap)
263 {
264 	if (!present_section(ms))
265 		return -EINVAL;
266 
267 	ms->section_mem_map &= ~SECTION_MAP_MASK;
268 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
269 							SECTION_HAS_MEM_MAP;
270  	ms->pageblock_flags = pageblock_bitmap;
271 
272 	return 1;
273 }
274 
275 unsigned long usemap_size(void)
276 {
277 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
278 }
279 
280 #ifdef CONFIG_MEMORY_HOTPLUG
281 static unsigned long *__kmalloc_section_usemap(void)
282 {
283 	return kmalloc(usemap_size(), GFP_KERNEL);
284 }
285 #endif /* CONFIG_MEMORY_HOTPLUG */
286 
287 #ifdef CONFIG_MEMORY_HOTREMOVE
288 static unsigned long * __init
289 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
290 					 unsigned long size)
291 {
292 	unsigned long goal, limit;
293 	unsigned long *p;
294 	int nid;
295 	/*
296 	 * A page may contain usemaps for other sections preventing the
297 	 * page being freed and making a section unremovable while
298 	 * other sections referencing the usemap remain active. Similarly,
299 	 * a pgdat can prevent a section being removed. If section A
300 	 * contains a pgdat and section B contains the usemap, both
301 	 * sections become inter-dependent. This allocates usemaps
302 	 * from the same section as the pgdat where possible to avoid
303 	 * this problem.
304 	 */
305 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
306 	limit = goal + (1UL << PA_SECTION_SHIFT);
307 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
308 again:
309 	p = memblock_virt_alloc_try_nid_nopanic(size,
310 						SMP_CACHE_BYTES, goal, limit,
311 						nid);
312 	if (!p && limit) {
313 		limit = 0;
314 		goto again;
315 	}
316 	return p;
317 }
318 
319 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
320 {
321 	unsigned long usemap_snr, pgdat_snr;
322 	static unsigned long old_usemap_snr;
323 	static unsigned long old_pgdat_snr;
324 	struct pglist_data *pgdat = NODE_DATA(nid);
325 	int usemap_nid;
326 
327 	/* First call */
328 	if (!old_usemap_snr) {
329 		old_usemap_snr = NR_MEM_SECTIONS;
330 		old_pgdat_snr = NR_MEM_SECTIONS;
331 	}
332 
333 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
334 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
335 	if (usemap_snr == pgdat_snr)
336 		return;
337 
338 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
339 		/* skip redundant message */
340 		return;
341 
342 	old_usemap_snr = usemap_snr;
343 	old_pgdat_snr = pgdat_snr;
344 
345 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
346 	if (usemap_nid != nid) {
347 		pr_info("node %d must be removed before remove section %ld\n",
348 			nid, usemap_snr);
349 		return;
350 	}
351 	/*
352 	 * There is a circular dependency.
353 	 * Some platforms allow un-removable section because they will just
354 	 * gather other removable sections for dynamic partitioning.
355 	 * Just notify un-removable section's number here.
356 	 */
357 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
358 		usemap_snr, pgdat_snr, nid);
359 }
360 #else
361 static unsigned long * __init
362 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
363 					 unsigned long size)
364 {
365 	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
366 }
367 
368 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
369 {
370 }
371 #endif /* CONFIG_MEMORY_HOTREMOVE */
372 
373 static void __init sparse_early_usemaps_alloc_node(void *data,
374 				 unsigned long pnum_begin,
375 				 unsigned long pnum_end,
376 				 unsigned long usemap_count, int nodeid)
377 {
378 	void *usemap;
379 	unsigned long pnum;
380 	unsigned long **usemap_map = (unsigned long **)data;
381 	int size = usemap_size();
382 
383 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
384 							  size * usemap_count);
385 	if (!usemap) {
386 		pr_warn("%s: allocation failed\n", __func__);
387 		return;
388 	}
389 
390 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
391 		if (!present_section_nr(pnum))
392 			continue;
393 		usemap_map[pnum] = usemap;
394 		usemap += size;
395 		check_usemap_section_nr(nodeid, usemap_map[pnum]);
396 	}
397 }
398 
399 #ifndef CONFIG_SPARSEMEM_VMEMMAP
400 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
401 		struct vmem_altmap *altmap)
402 {
403 	struct page *map;
404 	unsigned long size;
405 
406 	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
407 	map = memblock_virt_alloc_try_nid(size,
408 					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
409 					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
410 	return map;
411 }
412 void __init sparse_mem_maps_populate_node(struct page **map_map,
413 					  unsigned long pnum_begin,
414 					  unsigned long pnum_end,
415 					  unsigned long map_count, int nodeid)
416 {
417 	void *map;
418 	unsigned long pnum;
419 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
420 
421 	size = PAGE_ALIGN(size);
422 	map = memblock_virt_alloc_try_nid_raw(size * map_count,
423 					      PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
424 					      BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
425 	if (map) {
426 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
427 			if (!present_section_nr(pnum))
428 				continue;
429 			map_map[pnum] = map;
430 			map += size;
431 		}
432 		return;
433 	}
434 
435 	/* fallback */
436 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
437 		struct mem_section *ms;
438 
439 		if (!present_section_nr(pnum))
440 			continue;
441 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
442 		if (map_map[pnum])
443 			continue;
444 		ms = __nr_to_section(pnum);
445 		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
446 		       __func__);
447 		ms->section_mem_map = 0;
448 	}
449 }
450 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
451 
452 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
453 static void __init sparse_early_mem_maps_alloc_node(void *data,
454 				 unsigned long pnum_begin,
455 				 unsigned long pnum_end,
456 				 unsigned long map_count, int nodeid)
457 {
458 	struct page **map_map = (struct page **)data;
459 	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
460 					 map_count, nodeid);
461 }
462 #else
463 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
464 {
465 	struct page *map;
466 	struct mem_section *ms = __nr_to_section(pnum);
467 	int nid = sparse_early_nid(ms);
468 
469 	map = sparse_mem_map_populate(pnum, nid, NULL);
470 	if (map)
471 		return map;
472 
473 	pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
474 	       __func__);
475 	ms->section_mem_map = 0;
476 	return NULL;
477 }
478 #endif
479 
480 void __weak __meminit vmemmap_populate_print_last(void)
481 {
482 }
483 
484 /**
485  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
486  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
487  */
488 static void __init alloc_usemap_and_memmap(void (*alloc_func)
489 					(void *, unsigned long, unsigned long,
490 					unsigned long, int), void *data)
491 {
492 	unsigned long pnum;
493 	unsigned long map_count;
494 	int nodeid_begin = 0;
495 	unsigned long pnum_begin = 0;
496 
497 	for_each_present_section_nr(0, pnum) {
498 		struct mem_section *ms;
499 
500 		ms = __nr_to_section(pnum);
501 		nodeid_begin = sparse_early_nid(ms);
502 		pnum_begin = pnum;
503 		break;
504 	}
505 	map_count = 1;
506 	for_each_present_section_nr(pnum_begin + 1, pnum) {
507 		struct mem_section *ms;
508 		int nodeid;
509 
510 		ms = __nr_to_section(pnum);
511 		nodeid = sparse_early_nid(ms);
512 		if (nodeid == nodeid_begin) {
513 			map_count++;
514 			continue;
515 		}
516 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
517 		alloc_func(data, pnum_begin, pnum,
518 						map_count, nodeid_begin);
519 		/* new start, update count etc*/
520 		nodeid_begin = nodeid;
521 		pnum_begin = pnum;
522 		map_count = 1;
523 	}
524 	/* ok, last chunk */
525 	alloc_func(data, pnum_begin, __highest_present_section_nr+1,
526 						map_count, nodeid_begin);
527 }
528 
529 /*
530  * Allocate the accumulated non-linear sections, allocate a mem_map
531  * for each and record the physical to section mapping.
532  */
533 void __init sparse_init(void)
534 {
535 	unsigned long pnum;
536 	struct page *map;
537 	unsigned long *usemap;
538 	unsigned long **usemap_map;
539 	int size;
540 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
541 	int size2;
542 	struct page **map_map;
543 #endif
544 
545 	/* see include/linux/mmzone.h 'struct mem_section' definition */
546 	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
547 
548 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
549 	set_pageblock_order();
550 
551 	/*
552 	 * map is using big page (aka 2M in x86 64 bit)
553 	 * usemap is less one page (aka 24 bytes)
554 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
555 	 * make next 2M slip to one more 2M later.
556 	 * then in big system, the memory will have a lot of holes...
557 	 * here try to allocate 2M pages continuously.
558 	 *
559 	 * powerpc need to call sparse_init_one_section right after each
560 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
561 	 */
562 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
563 	usemap_map = memblock_virt_alloc(size, 0);
564 	if (!usemap_map)
565 		panic("can not allocate usemap_map\n");
566 	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
567 							(void *)usemap_map);
568 
569 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
570 	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
571 	map_map = memblock_virt_alloc(size2, 0);
572 	if (!map_map)
573 		panic("can not allocate map_map\n");
574 	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
575 							(void *)map_map);
576 #endif
577 
578 	for_each_present_section_nr(0, pnum) {
579 		usemap = usemap_map[pnum];
580 		if (!usemap)
581 			continue;
582 
583 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
584 		map = map_map[pnum];
585 #else
586 		map = sparse_early_mem_map_alloc(pnum);
587 #endif
588 		if (!map)
589 			continue;
590 
591 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
592 								usemap);
593 	}
594 
595 	vmemmap_populate_print_last();
596 
597 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
598 	memblock_free_early(__pa(map_map), size2);
599 #endif
600 	memblock_free_early(__pa(usemap_map), size);
601 }
602 
603 #ifdef CONFIG_MEMORY_HOTPLUG
604 
605 /* Mark all memory sections within the pfn range as online */
606 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
607 {
608 	unsigned long pfn;
609 
610 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
611 		unsigned long section_nr = pfn_to_section_nr(pfn);
612 		struct mem_section *ms;
613 
614 		/* onlining code should never touch invalid ranges */
615 		if (WARN_ON(!valid_section_nr(section_nr)))
616 			continue;
617 
618 		ms = __nr_to_section(section_nr);
619 		ms->section_mem_map |= SECTION_IS_ONLINE;
620 	}
621 }
622 
623 #ifdef CONFIG_MEMORY_HOTREMOVE
624 /* Mark all memory sections within the pfn range as online */
625 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
626 {
627 	unsigned long pfn;
628 
629 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
630 		unsigned long section_nr = pfn_to_section_nr(pfn);
631 		struct mem_section *ms;
632 
633 		/*
634 		 * TODO this needs some double checking. Offlining code makes
635 		 * sure to check pfn_valid but those checks might be just bogus
636 		 */
637 		if (WARN_ON(!valid_section_nr(section_nr)))
638 			continue;
639 
640 		ms = __nr_to_section(section_nr);
641 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
642 	}
643 }
644 #endif
645 
646 #ifdef CONFIG_SPARSEMEM_VMEMMAP
647 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
648 		struct vmem_altmap *altmap)
649 {
650 	/* This will make the necessary allocations eventually. */
651 	return sparse_mem_map_populate(pnum, nid, altmap);
652 }
653 static void __kfree_section_memmap(struct page *memmap,
654 		struct vmem_altmap *altmap)
655 {
656 	unsigned long start = (unsigned long)memmap;
657 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
658 
659 	vmemmap_free(start, end, altmap);
660 }
661 #ifdef CONFIG_MEMORY_HOTREMOVE
662 static void free_map_bootmem(struct page *memmap)
663 {
664 	unsigned long start = (unsigned long)memmap;
665 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
666 
667 	vmemmap_free(start, end, NULL);
668 }
669 #endif /* CONFIG_MEMORY_HOTREMOVE */
670 #else
671 static struct page *__kmalloc_section_memmap(void)
672 {
673 	struct page *page, *ret;
674 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
675 
676 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
677 	if (page)
678 		goto got_map_page;
679 
680 	ret = vmalloc(memmap_size);
681 	if (ret)
682 		goto got_map_ptr;
683 
684 	return NULL;
685 got_map_page:
686 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
687 got_map_ptr:
688 
689 	return ret;
690 }
691 
692 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
693 		struct vmem_altmap *altmap)
694 {
695 	return __kmalloc_section_memmap();
696 }
697 
698 static void __kfree_section_memmap(struct page *memmap,
699 		struct vmem_altmap *altmap)
700 {
701 	if (is_vmalloc_addr(memmap))
702 		vfree(memmap);
703 	else
704 		free_pages((unsigned long)memmap,
705 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
706 }
707 
708 #ifdef CONFIG_MEMORY_HOTREMOVE
709 static void free_map_bootmem(struct page *memmap)
710 {
711 	unsigned long maps_section_nr, removing_section_nr, i;
712 	unsigned long magic, nr_pages;
713 	struct page *page = virt_to_page(memmap);
714 
715 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
716 		>> PAGE_SHIFT;
717 
718 	for (i = 0; i < nr_pages; i++, page++) {
719 		magic = (unsigned long) page->freelist;
720 
721 		BUG_ON(magic == NODE_INFO);
722 
723 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
724 		removing_section_nr = page_private(page);
725 
726 		/*
727 		 * When this function is called, the removing section is
728 		 * logical offlined state. This means all pages are isolated
729 		 * from page allocator. If removing section's memmap is placed
730 		 * on the same section, it must not be freed.
731 		 * If it is freed, page allocator may allocate it which will
732 		 * be removed physically soon.
733 		 */
734 		if (maps_section_nr != removing_section_nr)
735 			put_page_bootmem(page);
736 	}
737 }
738 #endif /* CONFIG_MEMORY_HOTREMOVE */
739 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
740 
741 /*
742  * returns the number of sections whose mem_maps were properly
743  * set.  If this is <=0, then that means that the passed-in
744  * map was not consumed and must be freed.
745  */
746 int __meminit sparse_add_one_section(struct pglist_data *pgdat,
747 		unsigned long start_pfn, struct vmem_altmap *altmap)
748 {
749 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
750 	struct mem_section *ms;
751 	struct page *memmap;
752 	unsigned long *usemap;
753 	unsigned long flags;
754 	int ret;
755 
756 	/*
757 	 * no locking for this, because it does its own
758 	 * plus, it does a kmalloc
759 	 */
760 	ret = sparse_index_init(section_nr, pgdat->node_id);
761 	if (ret < 0 && ret != -EEXIST)
762 		return ret;
763 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
764 	if (!memmap)
765 		return -ENOMEM;
766 	usemap = __kmalloc_section_usemap();
767 	if (!usemap) {
768 		__kfree_section_memmap(memmap, altmap);
769 		return -ENOMEM;
770 	}
771 
772 	pgdat_resize_lock(pgdat, &flags);
773 
774 	ms = __pfn_to_section(start_pfn);
775 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
776 		ret = -EEXIST;
777 		goto out;
778 	}
779 
780 #ifdef CONFIG_DEBUG_VM
781 	/*
782 	 * Poison uninitialized struct pages in order to catch invalid flags
783 	 * combinations.
784 	 */
785 	memset(memmap, PAGE_POISON_PATTERN, sizeof(struct page) * PAGES_PER_SECTION);
786 #endif
787 
788 	section_mark_present(ms);
789 
790 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
791 
792 out:
793 	pgdat_resize_unlock(pgdat, &flags);
794 	if (ret <= 0) {
795 		kfree(usemap);
796 		__kfree_section_memmap(memmap, altmap);
797 	}
798 	return ret;
799 }
800 
801 #ifdef CONFIG_MEMORY_HOTREMOVE
802 #ifdef CONFIG_MEMORY_FAILURE
803 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
804 {
805 	int i;
806 
807 	if (!memmap)
808 		return;
809 
810 	for (i = 0; i < nr_pages; i++) {
811 		if (PageHWPoison(&memmap[i])) {
812 			atomic_long_sub(1, &num_poisoned_pages);
813 			ClearPageHWPoison(&memmap[i]);
814 		}
815 	}
816 }
817 #else
818 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
819 {
820 }
821 #endif
822 
823 static void free_section_usemap(struct page *memmap, unsigned long *usemap,
824 		struct vmem_altmap *altmap)
825 {
826 	struct page *usemap_page;
827 
828 	if (!usemap)
829 		return;
830 
831 	usemap_page = virt_to_page(usemap);
832 	/*
833 	 * Check to see if allocation came from hot-plug-add
834 	 */
835 	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
836 		kfree(usemap);
837 		if (memmap)
838 			__kfree_section_memmap(memmap, altmap);
839 		return;
840 	}
841 
842 	/*
843 	 * The usemap came from bootmem. This is packed with other usemaps
844 	 * on the section which has pgdat at boot time. Just keep it as is now.
845 	 */
846 
847 	if (memmap)
848 		free_map_bootmem(memmap);
849 }
850 
851 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
852 		unsigned long map_offset, struct vmem_altmap *altmap)
853 {
854 	struct page *memmap = NULL;
855 	unsigned long *usemap = NULL, flags;
856 	struct pglist_data *pgdat = zone->zone_pgdat;
857 
858 	pgdat_resize_lock(pgdat, &flags);
859 	if (ms->section_mem_map) {
860 		usemap = ms->pageblock_flags;
861 		memmap = sparse_decode_mem_map(ms->section_mem_map,
862 						__section_nr(ms));
863 		ms->section_mem_map = 0;
864 		ms->pageblock_flags = NULL;
865 	}
866 	pgdat_resize_unlock(pgdat, &flags);
867 
868 	clear_hwpoisoned_pages(memmap + map_offset,
869 			PAGES_PER_SECTION - map_offset);
870 	free_section_usemap(memmap, usemap, altmap);
871 }
872 #endif /* CONFIG_MEMORY_HOTREMOVE */
873 #endif /* CONFIG_MEMORY_HOTPLUG */
874