xref: /openbmc/linux/mm/sparse.c (revision c4ee0af3)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/highmem.h>
9 #include <linux/export.h>
10 #include <linux/spinlock.h>
11 #include <linux/vmalloc.h>
12 #include "internal.h"
13 #include <asm/dma.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 
17 /*
18  * Permanent SPARSEMEM data:
19  *
20  * 1) mem_section	- memory sections, mem_map's for valid memory
21  */
22 #ifdef CONFIG_SPARSEMEM_EXTREME
23 struct mem_section *mem_section[NR_SECTION_ROOTS]
24 	____cacheline_internodealigned_in_smp;
25 #else
26 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
27 	____cacheline_internodealigned_in_smp;
28 #endif
29 EXPORT_SYMBOL(mem_section);
30 
31 #ifdef NODE_NOT_IN_PAGE_FLAGS
32 /*
33  * If we did not store the node number in the page then we have to
34  * do a lookup in the section_to_node_table in order to find which
35  * node the page belongs to.
36  */
37 #if MAX_NUMNODES <= 256
38 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39 #else
40 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #endif
42 
43 int page_to_nid(const struct page *page)
44 {
45 	return section_to_node_table[page_to_section(page)];
46 }
47 EXPORT_SYMBOL(page_to_nid);
48 
49 static void set_section_nid(unsigned long section_nr, int nid)
50 {
51 	section_to_node_table[section_nr] = nid;
52 }
53 #else /* !NODE_NOT_IN_PAGE_FLAGS */
54 static inline void set_section_nid(unsigned long section_nr, int nid)
55 {
56 }
57 #endif
58 
59 #ifdef CONFIG_SPARSEMEM_EXTREME
60 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
61 {
62 	struct mem_section *section = NULL;
63 	unsigned long array_size = SECTIONS_PER_ROOT *
64 				   sizeof(struct mem_section);
65 
66 	if (slab_is_available()) {
67 		if (node_state(nid, N_HIGH_MEMORY))
68 			section = kzalloc_node(array_size, GFP_KERNEL, nid);
69 		else
70 			section = kzalloc(array_size, GFP_KERNEL);
71 	} else {
72 		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
73 	}
74 
75 	return section;
76 }
77 
78 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
79 {
80 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
81 	struct mem_section *section;
82 
83 	if (mem_section[root])
84 		return -EEXIST;
85 
86 	section = sparse_index_alloc(nid);
87 	if (!section)
88 		return -ENOMEM;
89 
90 	mem_section[root] = section;
91 
92 	return 0;
93 }
94 #else /* !SPARSEMEM_EXTREME */
95 static inline int sparse_index_init(unsigned long section_nr, int nid)
96 {
97 	return 0;
98 }
99 #endif
100 
101 /*
102  * Although written for the SPARSEMEM_EXTREME case, this happens
103  * to also work for the flat array case because
104  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
105  */
106 int __section_nr(struct mem_section* ms)
107 {
108 	unsigned long root_nr;
109 	struct mem_section* root;
110 
111 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
112 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
113 		if (!root)
114 			continue;
115 
116 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
117 		     break;
118 	}
119 
120 	VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
121 
122 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
123 }
124 
125 /*
126  * During early boot, before section_mem_map is used for an actual
127  * mem_map, we use section_mem_map to store the section's NUMA
128  * node.  This keeps us from having to use another data structure.  The
129  * node information is cleared just before we store the real mem_map.
130  */
131 static inline unsigned long sparse_encode_early_nid(int nid)
132 {
133 	return (nid << SECTION_NID_SHIFT);
134 }
135 
136 static inline int sparse_early_nid(struct mem_section *section)
137 {
138 	return (section->section_mem_map >> SECTION_NID_SHIFT);
139 }
140 
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143 						unsigned long *end_pfn)
144 {
145 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146 
147 	/*
148 	 * Sanity checks - do not allow an architecture to pass
149 	 * in larger pfns than the maximum scope of sparsemem:
150 	 */
151 	if (*start_pfn > max_sparsemem_pfn) {
152 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 			*start_pfn, *end_pfn, max_sparsemem_pfn);
155 		WARN_ON_ONCE(1);
156 		*start_pfn = max_sparsemem_pfn;
157 		*end_pfn = max_sparsemem_pfn;
158 	} else if (*end_pfn > max_sparsemem_pfn) {
159 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 			*start_pfn, *end_pfn, max_sparsemem_pfn);
162 		WARN_ON_ONCE(1);
163 		*end_pfn = max_sparsemem_pfn;
164 	}
165 }
166 
167 /* Record a memory area against a node. */
168 void __init memory_present(int nid, unsigned long start, unsigned long end)
169 {
170 	unsigned long pfn;
171 
172 	start &= PAGE_SECTION_MASK;
173 	mminit_validate_memmodel_limits(&start, &end);
174 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
175 		unsigned long section = pfn_to_section_nr(pfn);
176 		struct mem_section *ms;
177 
178 		sparse_index_init(section, nid);
179 		set_section_nid(section, nid);
180 
181 		ms = __nr_to_section(section);
182 		if (!ms->section_mem_map)
183 			ms->section_mem_map = sparse_encode_early_nid(nid) |
184 							SECTION_MARKED_PRESENT;
185 	}
186 }
187 
188 /*
189  * Only used by the i386 NUMA architecures, but relatively
190  * generic code.
191  */
192 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
193 						     unsigned long end_pfn)
194 {
195 	unsigned long pfn;
196 	unsigned long nr_pages = 0;
197 
198 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
199 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
200 		if (nid != early_pfn_to_nid(pfn))
201 			continue;
202 
203 		if (pfn_present(pfn))
204 			nr_pages += PAGES_PER_SECTION;
205 	}
206 
207 	return nr_pages * sizeof(struct page);
208 }
209 
210 /*
211  * Subtle, we encode the real pfn into the mem_map such that
212  * the identity pfn - section_mem_map will return the actual
213  * physical page frame number.
214  */
215 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
216 {
217 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
218 }
219 
220 /*
221  * Decode mem_map from the coded memmap
222  */
223 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
224 {
225 	/* mask off the extra low bits of information */
226 	coded_mem_map &= SECTION_MAP_MASK;
227 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
228 }
229 
230 static int __meminit sparse_init_one_section(struct mem_section *ms,
231 		unsigned long pnum, struct page *mem_map,
232 		unsigned long *pageblock_bitmap)
233 {
234 	if (!present_section(ms))
235 		return -EINVAL;
236 
237 	ms->section_mem_map &= ~SECTION_MAP_MASK;
238 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
239 							SECTION_HAS_MEM_MAP;
240  	ms->pageblock_flags = pageblock_bitmap;
241 
242 	return 1;
243 }
244 
245 unsigned long usemap_size(void)
246 {
247 	unsigned long size_bytes;
248 	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
249 	size_bytes = roundup(size_bytes, sizeof(unsigned long));
250 	return size_bytes;
251 }
252 
253 #ifdef CONFIG_MEMORY_HOTPLUG
254 static unsigned long *__kmalloc_section_usemap(void)
255 {
256 	return kmalloc(usemap_size(), GFP_KERNEL);
257 }
258 #endif /* CONFIG_MEMORY_HOTPLUG */
259 
260 #ifdef CONFIG_MEMORY_HOTREMOVE
261 static unsigned long * __init
262 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
263 					 unsigned long size)
264 {
265 	unsigned long goal, limit;
266 	unsigned long *p;
267 	int nid;
268 	/*
269 	 * A page may contain usemaps for other sections preventing the
270 	 * page being freed and making a section unremovable while
271 	 * other sections referencing the usemap retmain active. Similarly,
272 	 * a pgdat can prevent a section being removed. If section A
273 	 * contains a pgdat and section B contains the usemap, both
274 	 * sections become inter-dependent. This allocates usemaps
275 	 * from the same section as the pgdat where possible to avoid
276 	 * this problem.
277 	 */
278 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
279 	limit = goal + (1UL << PA_SECTION_SHIFT);
280 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
281 again:
282 	p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size,
283 					  SMP_CACHE_BYTES, goal, limit);
284 	if (!p && limit) {
285 		limit = 0;
286 		goto again;
287 	}
288 	return p;
289 }
290 
291 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
292 {
293 	unsigned long usemap_snr, pgdat_snr;
294 	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
295 	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
296 	struct pglist_data *pgdat = NODE_DATA(nid);
297 	int usemap_nid;
298 
299 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
300 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
301 	if (usemap_snr == pgdat_snr)
302 		return;
303 
304 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
305 		/* skip redundant message */
306 		return;
307 
308 	old_usemap_snr = usemap_snr;
309 	old_pgdat_snr = pgdat_snr;
310 
311 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
312 	if (usemap_nid != nid) {
313 		printk(KERN_INFO
314 		       "node %d must be removed before remove section %ld\n",
315 		       nid, usemap_snr);
316 		return;
317 	}
318 	/*
319 	 * There is a circular dependency.
320 	 * Some platforms allow un-removable section because they will just
321 	 * gather other removable sections for dynamic partitioning.
322 	 * Just notify un-removable section's number here.
323 	 */
324 	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
325 	       pgdat_snr, nid);
326 	printk(KERN_CONT
327 	       " have a circular dependency on usemap and pgdat allocations\n");
328 }
329 #else
330 static unsigned long * __init
331 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
332 					 unsigned long size)
333 {
334 	return alloc_bootmem_node_nopanic(pgdat, size);
335 }
336 
337 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
338 {
339 }
340 #endif /* CONFIG_MEMORY_HOTREMOVE */
341 
342 static void __init sparse_early_usemaps_alloc_node(void *data,
343 				 unsigned long pnum_begin,
344 				 unsigned long pnum_end,
345 				 unsigned long usemap_count, int nodeid)
346 {
347 	void *usemap;
348 	unsigned long pnum;
349 	unsigned long **usemap_map = (unsigned long **)data;
350 	int size = usemap_size();
351 
352 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
353 							  size * usemap_count);
354 	if (!usemap) {
355 		printk(KERN_WARNING "%s: allocation failed\n", __func__);
356 		return;
357 	}
358 
359 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
360 		if (!present_section_nr(pnum))
361 			continue;
362 		usemap_map[pnum] = usemap;
363 		usemap += size;
364 		check_usemap_section_nr(nodeid, usemap_map[pnum]);
365 	}
366 }
367 
368 #ifndef CONFIG_SPARSEMEM_VMEMMAP
369 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
370 {
371 	struct page *map;
372 	unsigned long size;
373 
374 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
375 	if (map)
376 		return map;
377 
378 	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
379 	map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
380 					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
381 	return map;
382 }
383 void __init sparse_mem_maps_populate_node(struct page **map_map,
384 					  unsigned long pnum_begin,
385 					  unsigned long pnum_end,
386 					  unsigned long map_count, int nodeid)
387 {
388 	void *map;
389 	unsigned long pnum;
390 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
391 
392 	map = alloc_remap(nodeid, size * map_count);
393 	if (map) {
394 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
395 			if (!present_section_nr(pnum))
396 				continue;
397 			map_map[pnum] = map;
398 			map += size;
399 		}
400 		return;
401 	}
402 
403 	size = PAGE_ALIGN(size);
404 	map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
405 					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
406 	if (map) {
407 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
408 			if (!present_section_nr(pnum))
409 				continue;
410 			map_map[pnum] = map;
411 			map += size;
412 		}
413 		return;
414 	}
415 
416 	/* fallback */
417 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
418 		struct mem_section *ms;
419 
420 		if (!present_section_nr(pnum))
421 			continue;
422 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
423 		if (map_map[pnum])
424 			continue;
425 		ms = __nr_to_section(pnum);
426 		printk(KERN_ERR "%s: sparsemem memory map backing failed "
427 			"some memory will not be available.\n", __func__);
428 		ms->section_mem_map = 0;
429 	}
430 }
431 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
432 
433 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
434 static void __init sparse_early_mem_maps_alloc_node(void *data,
435 				 unsigned long pnum_begin,
436 				 unsigned long pnum_end,
437 				 unsigned long map_count, int nodeid)
438 {
439 	struct page **map_map = (struct page **)data;
440 	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
441 					 map_count, nodeid);
442 }
443 #else
444 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
445 {
446 	struct page *map;
447 	struct mem_section *ms = __nr_to_section(pnum);
448 	int nid = sparse_early_nid(ms);
449 
450 	map = sparse_mem_map_populate(pnum, nid);
451 	if (map)
452 		return map;
453 
454 	printk(KERN_ERR "%s: sparsemem memory map backing failed "
455 			"some memory will not be available.\n", __func__);
456 	ms->section_mem_map = 0;
457 	return NULL;
458 }
459 #endif
460 
461 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
462 {
463 }
464 
465 /**
466  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
467  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
468  */
469 static void __init alloc_usemap_and_memmap(void (*alloc_func)
470 					(void *, unsigned long, unsigned long,
471 					unsigned long, int), void *data)
472 {
473 	unsigned long pnum;
474 	unsigned long map_count;
475 	int nodeid_begin = 0;
476 	unsigned long pnum_begin = 0;
477 
478 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
479 		struct mem_section *ms;
480 
481 		if (!present_section_nr(pnum))
482 			continue;
483 		ms = __nr_to_section(pnum);
484 		nodeid_begin = sparse_early_nid(ms);
485 		pnum_begin = pnum;
486 		break;
487 	}
488 	map_count = 1;
489 	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
490 		struct mem_section *ms;
491 		int nodeid;
492 
493 		if (!present_section_nr(pnum))
494 			continue;
495 		ms = __nr_to_section(pnum);
496 		nodeid = sparse_early_nid(ms);
497 		if (nodeid == nodeid_begin) {
498 			map_count++;
499 			continue;
500 		}
501 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
502 		alloc_func(data, pnum_begin, pnum,
503 						map_count, nodeid_begin);
504 		/* new start, update count etc*/
505 		nodeid_begin = nodeid;
506 		pnum_begin = pnum;
507 		map_count = 1;
508 	}
509 	/* ok, last chunk */
510 	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
511 						map_count, nodeid_begin);
512 }
513 
514 /*
515  * Allocate the accumulated non-linear sections, allocate a mem_map
516  * for each and record the physical to section mapping.
517  */
518 void __init sparse_init(void)
519 {
520 	unsigned long pnum;
521 	struct page *map;
522 	unsigned long *usemap;
523 	unsigned long **usemap_map;
524 	int size;
525 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
526 	int size2;
527 	struct page **map_map;
528 #endif
529 
530 	/* see include/linux/mmzone.h 'struct mem_section' definition */
531 	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
532 
533 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
534 	set_pageblock_order();
535 
536 	/*
537 	 * map is using big page (aka 2M in x86 64 bit)
538 	 * usemap is less one page (aka 24 bytes)
539 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
540 	 * make next 2M slip to one more 2M later.
541 	 * then in big system, the memory will have a lot of holes...
542 	 * here try to allocate 2M pages continuously.
543 	 *
544 	 * powerpc need to call sparse_init_one_section right after each
545 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
546 	 */
547 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
548 	usemap_map = alloc_bootmem(size);
549 	if (!usemap_map)
550 		panic("can not allocate usemap_map\n");
551 	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
552 							(void *)usemap_map);
553 
554 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
555 	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
556 	map_map = alloc_bootmem(size2);
557 	if (!map_map)
558 		panic("can not allocate map_map\n");
559 	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
560 							(void *)map_map);
561 #endif
562 
563 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
564 		if (!present_section_nr(pnum))
565 			continue;
566 
567 		usemap = usemap_map[pnum];
568 		if (!usemap)
569 			continue;
570 
571 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
572 		map = map_map[pnum];
573 #else
574 		map = sparse_early_mem_map_alloc(pnum);
575 #endif
576 		if (!map)
577 			continue;
578 
579 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
580 								usemap);
581 	}
582 
583 	vmemmap_populate_print_last();
584 
585 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
586 	free_bootmem(__pa(map_map), size2);
587 #endif
588 	free_bootmem(__pa(usemap_map), size);
589 }
590 
591 #ifdef CONFIG_MEMORY_HOTPLUG
592 #ifdef CONFIG_SPARSEMEM_VMEMMAP
593 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
594 {
595 	/* This will make the necessary allocations eventually. */
596 	return sparse_mem_map_populate(pnum, nid);
597 }
598 static void __kfree_section_memmap(struct page *memmap)
599 {
600 	unsigned long start = (unsigned long)memmap;
601 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
602 
603 	vmemmap_free(start, end);
604 }
605 #ifdef CONFIG_MEMORY_HOTREMOVE
606 static void free_map_bootmem(struct page *memmap)
607 {
608 	unsigned long start = (unsigned long)memmap;
609 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
610 
611 	vmemmap_free(start, end);
612 }
613 #endif /* CONFIG_MEMORY_HOTREMOVE */
614 #else
615 static struct page *__kmalloc_section_memmap(void)
616 {
617 	struct page *page, *ret;
618 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
619 
620 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
621 	if (page)
622 		goto got_map_page;
623 
624 	ret = vmalloc(memmap_size);
625 	if (ret)
626 		goto got_map_ptr;
627 
628 	return NULL;
629 got_map_page:
630 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
631 got_map_ptr:
632 
633 	return ret;
634 }
635 
636 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
637 {
638 	return __kmalloc_section_memmap();
639 }
640 
641 static void __kfree_section_memmap(struct page *memmap)
642 {
643 	if (is_vmalloc_addr(memmap))
644 		vfree(memmap);
645 	else
646 		free_pages((unsigned long)memmap,
647 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
648 }
649 
650 #ifdef CONFIG_MEMORY_HOTREMOVE
651 static void free_map_bootmem(struct page *memmap)
652 {
653 	unsigned long maps_section_nr, removing_section_nr, i;
654 	unsigned long magic, nr_pages;
655 	struct page *page = virt_to_page(memmap);
656 
657 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
658 		>> PAGE_SHIFT;
659 
660 	for (i = 0; i < nr_pages; i++, page++) {
661 		magic = (unsigned long) page->lru.next;
662 
663 		BUG_ON(magic == NODE_INFO);
664 
665 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
666 		removing_section_nr = page->private;
667 
668 		/*
669 		 * When this function is called, the removing section is
670 		 * logical offlined state. This means all pages are isolated
671 		 * from page allocator. If removing section's memmap is placed
672 		 * on the same section, it must not be freed.
673 		 * If it is freed, page allocator may allocate it which will
674 		 * be removed physically soon.
675 		 */
676 		if (maps_section_nr != removing_section_nr)
677 			put_page_bootmem(page);
678 	}
679 }
680 #endif /* CONFIG_MEMORY_HOTREMOVE */
681 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
682 
683 /*
684  * returns the number of sections whose mem_maps were properly
685  * set.  If this is <=0, then that means that the passed-in
686  * map was not consumed and must be freed.
687  */
688 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
689 {
690 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
691 	struct pglist_data *pgdat = zone->zone_pgdat;
692 	struct mem_section *ms;
693 	struct page *memmap;
694 	unsigned long *usemap;
695 	unsigned long flags;
696 	int ret;
697 
698 	/*
699 	 * no locking for this, because it does its own
700 	 * plus, it does a kmalloc
701 	 */
702 	ret = sparse_index_init(section_nr, pgdat->node_id);
703 	if (ret < 0 && ret != -EEXIST)
704 		return ret;
705 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
706 	if (!memmap)
707 		return -ENOMEM;
708 	usemap = __kmalloc_section_usemap();
709 	if (!usemap) {
710 		__kfree_section_memmap(memmap);
711 		return -ENOMEM;
712 	}
713 
714 	pgdat_resize_lock(pgdat, &flags);
715 
716 	ms = __pfn_to_section(start_pfn);
717 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
718 		ret = -EEXIST;
719 		goto out;
720 	}
721 
722 	memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
723 
724 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
725 
726 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
727 
728 out:
729 	pgdat_resize_unlock(pgdat, &flags);
730 	if (ret <= 0) {
731 		kfree(usemap);
732 		__kfree_section_memmap(memmap);
733 	}
734 	return ret;
735 }
736 
737 #ifdef CONFIG_MEMORY_HOTREMOVE
738 #ifdef CONFIG_MEMORY_FAILURE
739 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
740 {
741 	int i;
742 
743 	if (!memmap)
744 		return;
745 
746 	for (i = 0; i < PAGES_PER_SECTION; i++) {
747 		if (PageHWPoison(&memmap[i])) {
748 			atomic_long_sub(1, &num_poisoned_pages);
749 			ClearPageHWPoison(&memmap[i]);
750 		}
751 	}
752 }
753 #else
754 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
755 {
756 }
757 #endif
758 
759 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
760 {
761 	struct page *usemap_page;
762 
763 	if (!usemap)
764 		return;
765 
766 	usemap_page = virt_to_page(usemap);
767 	/*
768 	 * Check to see if allocation came from hot-plug-add
769 	 */
770 	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
771 		kfree(usemap);
772 		if (memmap)
773 			__kfree_section_memmap(memmap);
774 		return;
775 	}
776 
777 	/*
778 	 * The usemap came from bootmem. This is packed with other usemaps
779 	 * on the section which has pgdat at boot time. Just keep it as is now.
780 	 */
781 
782 	if (memmap)
783 		free_map_bootmem(memmap);
784 }
785 
786 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
787 {
788 	struct page *memmap = NULL;
789 	unsigned long *usemap = NULL, flags;
790 	struct pglist_data *pgdat = zone->zone_pgdat;
791 
792 	pgdat_resize_lock(pgdat, &flags);
793 	if (ms->section_mem_map) {
794 		usemap = ms->pageblock_flags;
795 		memmap = sparse_decode_mem_map(ms->section_mem_map,
796 						__section_nr(ms));
797 		ms->section_mem_map = 0;
798 		ms->pageblock_flags = NULL;
799 	}
800 	pgdat_resize_unlock(pgdat, &flags);
801 
802 	clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION);
803 	free_section_usemap(memmap, usemap);
804 }
805 #endif /* CONFIG_MEMORY_HOTREMOVE */
806 #endif /* CONFIG_MEMORY_HOTPLUG */
807