1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/memblock.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 15 #include "internal.h" 16 #include <asm/dma.h> 17 #include <asm/pgalloc.h> 18 #include <asm/pgtable.h> 19 20 /* 21 * Permanent SPARSEMEM data: 22 * 23 * 1) mem_section - memory sections, mem_map's for valid memory 24 */ 25 #ifdef CONFIG_SPARSEMEM_EXTREME 26 struct mem_section **mem_section; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) { 69 section = kzalloc_node(array_size, GFP_KERNEL, nid); 70 } else { 71 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES, 72 nid); 73 if (!section) 74 panic("%s: Failed to allocate %lu bytes nid=%d\n", 75 __func__, array_size, nid); 76 } 77 78 return section; 79 } 80 81 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 82 { 83 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 84 struct mem_section *section; 85 86 /* 87 * An existing section is possible in the sub-section hotplug 88 * case. First hot-add instantiates, follow-on hot-add reuses 89 * the existing section. 90 * 91 * The mem_hotplug_lock resolves the apparent race below. 92 */ 93 if (mem_section[root]) 94 return 0; 95 96 section = sparse_index_alloc(nid); 97 if (!section) 98 return -ENOMEM; 99 100 mem_section[root] = section; 101 102 return 0; 103 } 104 #else /* !SPARSEMEM_EXTREME */ 105 static inline int sparse_index_init(unsigned long section_nr, int nid) 106 { 107 return 0; 108 } 109 #endif 110 111 #ifdef CONFIG_SPARSEMEM_EXTREME 112 unsigned long __section_nr(struct mem_section *ms) 113 { 114 unsigned long root_nr; 115 struct mem_section *root = NULL; 116 117 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 118 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 119 if (!root) 120 continue; 121 122 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 123 break; 124 } 125 126 VM_BUG_ON(!root); 127 128 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 129 } 130 #else 131 unsigned long __section_nr(struct mem_section *ms) 132 { 133 return (unsigned long)(ms - mem_section[0]); 134 } 135 #endif 136 137 /* 138 * During early boot, before section_mem_map is used for an actual 139 * mem_map, we use section_mem_map to store the section's NUMA 140 * node. This keeps us from having to use another data structure. The 141 * node information is cleared just before we store the real mem_map. 142 */ 143 static inline unsigned long sparse_encode_early_nid(int nid) 144 { 145 return (nid << SECTION_NID_SHIFT); 146 } 147 148 static inline int sparse_early_nid(struct mem_section *section) 149 { 150 return (section->section_mem_map >> SECTION_NID_SHIFT); 151 } 152 153 /* Validate the physical addressing limitations of the model */ 154 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 155 unsigned long *end_pfn) 156 { 157 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 158 159 /* 160 * Sanity checks - do not allow an architecture to pass 161 * in larger pfns than the maximum scope of sparsemem: 162 */ 163 if (*start_pfn > max_sparsemem_pfn) { 164 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 165 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 166 *start_pfn, *end_pfn, max_sparsemem_pfn); 167 WARN_ON_ONCE(1); 168 *start_pfn = max_sparsemem_pfn; 169 *end_pfn = max_sparsemem_pfn; 170 } else if (*end_pfn > max_sparsemem_pfn) { 171 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 172 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 173 *start_pfn, *end_pfn, max_sparsemem_pfn); 174 WARN_ON_ONCE(1); 175 *end_pfn = max_sparsemem_pfn; 176 } 177 } 178 179 /* 180 * There are a number of times that we loop over NR_MEM_SECTIONS, 181 * looking for section_present() on each. But, when we have very 182 * large physical address spaces, NR_MEM_SECTIONS can also be 183 * very large which makes the loops quite long. 184 * 185 * Keeping track of this gives us an easy way to break out of 186 * those loops early. 187 */ 188 unsigned long __highest_present_section_nr; 189 static void section_mark_present(struct mem_section *ms) 190 { 191 unsigned long section_nr = __section_nr(ms); 192 193 if (section_nr > __highest_present_section_nr) 194 __highest_present_section_nr = section_nr; 195 196 ms->section_mem_map |= SECTION_MARKED_PRESENT; 197 } 198 199 static inline unsigned long next_present_section_nr(unsigned long section_nr) 200 { 201 do { 202 section_nr++; 203 if (present_section_nr(section_nr)) 204 return section_nr; 205 } while ((section_nr <= __highest_present_section_nr)); 206 207 return -1; 208 } 209 #define for_each_present_section_nr(start, section_nr) \ 210 for (section_nr = next_present_section_nr(start-1); \ 211 ((section_nr != -1) && \ 212 (section_nr <= __highest_present_section_nr)); \ 213 section_nr = next_present_section_nr(section_nr)) 214 215 static inline unsigned long first_present_section_nr(void) 216 { 217 return next_present_section_nr(-1); 218 } 219 220 void subsection_mask_set(unsigned long *map, unsigned long pfn, 221 unsigned long nr_pages) 222 { 223 int idx = subsection_map_index(pfn); 224 int end = subsection_map_index(pfn + nr_pages - 1); 225 226 bitmap_set(map, idx, end - idx + 1); 227 } 228 229 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 230 { 231 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 232 unsigned long nr, start_sec = pfn_to_section_nr(pfn); 233 234 if (!nr_pages) 235 return; 236 237 for (nr = start_sec; nr <= end_sec; nr++) { 238 struct mem_section *ms; 239 unsigned long pfns; 240 241 pfns = min(nr_pages, PAGES_PER_SECTION 242 - (pfn & ~PAGE_SECTION_MASK)); 243 ms = __nr_to_section(nr); 244 subsection_mask_set(ms->usage->subsection_map, pfn, pfns); 245 246 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr, 247 pfns, subsection_map_index(pfn), 248 subsection_map_index(pfn + pfns - 1)); 249 250 pfn += pfns; 251 nr_pages -= pfns; 252 } 253 } 254 255 /* Record a memory area against a node. */ 256 void __init memory_present(int nid, unsigned long start, unsigned long end) 257 { 258 unsigned long pfn; 259 260 #ifdef CONFIG_SPARSEMEM_EXTREME 261 if (unlikely(!mem_section)) { 262 unsigned long size, align; 263 264 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS; 265 align = 1 << (INTERNODE_CACHE_SHIFT); 266 mem_section = memblock_alloc(size, align); 267 if (!mem_section) 268 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 269 __func__, size, align); 270 } 271 #endif 272 273 start &= PAGE_SECTION_MASK; 274 mminit_validate_memmodel_limits(&start, &end); 275 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 276 unsigned long section = pfn_to_section_nr(pfn); 277 struct mem_section *ms; 278 279 sparse_index_init(section, nid); 280 set_section_nid(section, nid); 281 282 ms = __nr_to_section(section); 283 if (!ms->section_mem_map) { 284 ms->section_mem_map = sparse_encode_early_nid(nid) | 285 SECTION_IS_ONLINE; 286 section_mark_present(ms); 287 } 288 } 289 } 290 291 /* 292 * Mark all memblocks as present using memory_present(). This is a 293 * convienence function that is useful for a number of arches 294 * to mark all of the systems memory as present during initialization. 295 */ 296 void __init memblocks_present(void) 297 { 298 struct memblock_region *reg; 299 300 for_each_memblock(memory, reg) { 301 memory_present(memblock_get_region_node(reg), 302 memblock_region_memory_base_pfn(reg), 303 memblock_region_memory_end_pfn(reg)); 304 } 305 } 306 307 /* 308 * Subtle, we encode the real pfn into the mem_map such that 309 * the identity pfn - section_mem_map will return the actual 310 * physical page frame number. 311 */ 312 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 313 { 314 unsigned long coded_mem_map = 315 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 316 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); 317 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 318 return coded_mem_map; 319 } 320 321 /* 322 * Decode mem_map from the coded memmap 323 */ 324 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 325 { 326 /* mask off the extra low bits of information */ 327 coded_mem_map &= SECTION_MAP_MASK; 328 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 329 } 330 331 static void __meminit sparse_init_one_section(struct mem_section *ms, 332 unsigned long pnum, struct page *mem_map, 333 struct mem_section_usage *usage, unsigned long flags) 334 { 335 ms->section_mem_map &= ~SECTION_MAP_MASK; 336 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) 337 | SECTION_HAS_MEM_MAP | flags; 338 ms->usage = usage; 339 } 340 341 static unsigned long usemap_size(void) 342 { 343 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 344 } 345 346 size_t mem_section_usage_size(void) 347 { 348 return sizeof(struct mem_section_usage) + usemap_size(); 349 } 350 351 #ifdef CONFIG_MEMORY_HOTREMOVE 352 static struct mem_section_usage * __init 353 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 354 unsigned long size) 355 { 356 struct mem_section_usage *usage; 357 unsigned long goal, limit; 358 int nid; 359 /* 360 * A page may contain usemaps for other sections preventing the 361 * page being freed and making a section unremovable while 362 * other sections referencing the usemap remain active. Similarly, 363 * a pgdat can prevent a section being removed. If section A 364 * contains a pgdat and section B contains the usemap, both 365 * sections become inter-dependent. This allocates usemaps 366 * from the same section as the pgdat where possible to avoid 367 * this problem. 368 */ 369 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 370 limit = goal + (1UL << PA_SECTION_SHIFT); 371 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 372 again: 373 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid); 374 if (!usage && limit) { 375 limit = 0; 376 goto again; 377 } 378 return usage; 379 } 380 381 static void __init check_usemap_section_nr(int nid, 382 struct mem_section_usage *usage) 383 { 384 unsigned long usemap_snr, pgdat_snr; 385 static unsigned long old_usemap_snr; 386 static unsigned long old_pgdat_snr; 387 struct pglist_data *pgdat = NODE_DATA(nid); 388 int usemap_nid; 389 390 /* First call */ 391 if (!old_usemap_snr) { 392 old_usemap_snr = NR_MEM_SECTIONS; 393 old_pgdat_snr = NR_MEM_SECTIONS; 394 } 395 396 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT); 397 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 398 if (usemap_snr == pgdat_snr) 399 return; 400 401 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 402 /* skip redundant message */ 403 return; 404 405 old_usemap_snr = usemap_snr; 406 old_pgdat_snr = pgdat_snr; 407 408 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 409 if (usemap_nid != nid) { 410 pr_info("node %d must be removed before remove section %ld\n", 411 nid, usemap_snr); 412 return; 413 } 414 /* 415 * There is a circular dependency. 416 * Some platforms allow un-removable section because they will just 417 * gather other removable sections for dynamic partitioning. 418 * Just notify un-removable section's number here. 419 */ 420 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 421 usemap_snr, pgdat_snr, nid); 422 } 423 #else 424 static struct mem_section_usage * __init 425 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 426 unsigned long size) 427 { 428 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id); 429 } 430 431 static void __init check_usemap_section_nr(int nid, 432 struct mem_section_usage *usage) 433 { 434 } 435 #endif /* CONFIG_MEMORY_HOTREMOVE */ 436 437 #ifdef CONFIG_SPARSEMEM_VMEMMAP 438 static unsigned long __init section_map_size(void) 439 { 440 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); 441 } 442 443 #else 444 static unsigned long __init section_map_size(void) 445 { 446 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 447 } 448 449 struct page __init *__populate_section_memmap(unsigned long pfn, 450 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 451 { 452 unsigned long size = section_map_size(); 453 struct page *map = sparse_buffer_alloc(size); 454 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 455 456 if (map) 457 return map; 458 459 map = memblock_alloc_try_nid(size, 460 PAGE_SIZE, addr, 461 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 462 if (!map) 463 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n", 464 __func__, size, PAGE_SIZE, nid, &addr); 465 466 return map; 467 } 468 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 469 470 static void *sparsemap_buf __meminitdata; 471 static void *sparsemap_buf_end __meminitdata; 472 473 static void __init sparse_buffer_init(unsigned long size, int nid) 474 { 475 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 476 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */ 477 sparsemap_buf = 478 memblock_alloc_try_nid_raw(size, PAGE_SIZE, 479 addr, 480 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 481 sparsemap_buf_end = sparsemap_buf + size; 482 } 483 484 static void __init sparse_buffer_fini(void) 485 { 486 unsigned long size = sparsemap_buf_end - sparsemap_buf; 487 488 if (sparsemap_buf && size > 0) 489 memblock_free_early(__pa(sparsemap_buf), size); 490 sparsemap_buf = NULL; 491 } 492 493 void * __meminit sparse_buffer_alloc(unsigned long size) 494 { 495 void *ptr = NULL; 496 497 if (sparsemap_buf) { 498 ptr = PTR_ALIGN(sparsemap_buf, size); 499 if (ptr + size > sparsemap_buf_end) 500 ptr = NULL; 501 else 502 sparsemap_buf = ptr + size; 503 } 504 return ptr; 505 } 506 507 void __weak __meminit vmemmap_populate_print_last(void) 508 { 509 } 510 511 /* 512 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) 513 * And number of present sections in this node is map_count. 514 */ 515 static void __init sparse_init_nid(int nid, unsigned long pnum_begin, 516 unsigned long pnum_end, 517 unsigned long map_count) 518 { 519 struct mem_section_usage *usage; 520 unsigned long pnum; 521 struct page *map; 522 523 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid), 524 mem_section_usage_size() * map_count); 525 if (!usage) { 526 pr_err("%s: node[%d] usemap allocation failed", __func__, nid); 527 goto failed; 528 } 529 sparse_buffer_init(map_count * section_map_size(), nid); 530 for_each_present_section_nr(pnum_begin, pnum) { 531 unsigned long pfn = section_nr_to_pfn(pnum); 532 533 if (pnum >= pnum_end) 534 break; 535 536 map = __populate_section_memmap(pfn, PAGES_PER_SECTION, 537 nid, NULL); 538 if (!map) { 539 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", 540 __func__, nid); 541 pnum_begin = pnum; 542 goto failed; 543 } 544 check_usemap_section_nr(nid, usage); 545 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage, 546 SECTION_IS_EARLY); 547 usage = (void *) usage + mem_section_usage_size(); 548 } 549 sparse_buffer_fini(); 550 return; 551 failed: 552 /* We failed to allocate, mark all the following pnums as not present */ 553 for_each_present_section_nr(pnum_begin, pnum) { 554 struct mem_section *ms; 555 556 if (pnum >= pnum_end) 557 break; 558 ms = __nr_to_section(pnum); 559 ms->section_mem_map = 0; 560 } 561 } 562 563 /* 564 * Allocate the accumulated non-linear sections, allocate a mem_map 565 * for each and record the physical to section mapping. 566 */ 567 void __init sparse_init(void) 568 { 569 unsigned long pnum_begin = first_present_section_nr(); 570 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); 571 unsigned long pnum_end, map_count = 1; 572 573 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 574 set_pageblock_order(); 575 576 for_each_present_section_nr(pnum_begin + 1, pnum_end) { 577 int nid = sparse_early_nid(__nr_to_section(pnum_end)); 578 579 if (nid == nid_begin) { 580 map_count++; 581 continue; 582 } 583 /* Init node with sections in range [pnum_begin, pnum_end) */ 584 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 585 nid_begin = nid; 586 pnum_begin = pnum_end; 587 map_count = 1; 588 } 589 /* cover the last node */ 590 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 591 vmemmap_populate_print_last(); 592 } 593 594 #ifdef CONFIG_MEMORY_HOTPLUG 595 596 /* Mark all memory sections within the pfn range as online */ 597 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 598 { 599 unsigned long pfn; 600 601 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 602 unsigned long section_nr = pfn_to_section_nr(pfn); 603 struct mem_section *ms; 604 605 /* onlining code should never touch invalid ranges */ 606 if (WARN_ON(!valid_section_nr(section_nr))) 607 continue; 608 609 ms = __nr_to_section(section_nr); 610 ms->section_mem_map |= SECTION_IS_ONLINE; 611 } 612 } 613 614 #ifdef CONFIG_MEMORY_HOTREMOVE 615 /* Mark all memory sections within the pfn range as offline */ 616 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 617 { 618 unsigned long pfn; 619 620 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 621 unsigned long section_nr = pfn_to_section_nr(pfn); 622 struct mem_section *ms; 623 624 /* 625 * TODO this needs some double checking. Offlining code makes 626 * sure to check pfn_valid but those checks might be just bogus 627 */ 628 if (WARN_ON(!valid_section_nr(section_nr))) 629 continue; 630 631 ms = __nr_to_section(section_nr); 632 ms->section_mem_map &= ~SECTION_IS_ONLINE; 633 } 634 } 635 #endif 636 637 #ifdef CONFIG_SPARSEMEM_VMEMMAP 638 static struct page *populate_section_memmap(unsigned long pfn, 639 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 640 { 641 return __populate_section_memmap(pfn, nr_pages, nid, altmap); 642 } 643 644 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 645 struct vmem_altmap *altmap) 646 { 647 unsigned long start = (unsigned long) pfn_to_page(pfn); 648 unsigned long end = start + nr_pages * sizeof(struct page); 649 650 vmemmap_free(start, end, altmap); 651 } 652 static void free_map_bootmem(struct page *memmap) 653 { 654 unsigned long start = (unsigned long)memmap; 655 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 656 657 vmemmap_free(start, end, NULL); 658 } 659 #else 660 struct page *populate_section_memmap(unsigned long pfn, 661 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 662 { 663 struct page *page, *ret; 664 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION; 665 666 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 667 if (page) 668 goto got_map_page; 669 670 ret = vmalloc(memmap_size); 671 if (ret) 672 goto got_map_ptr; 673 674 return NULL; 675 got_map_page: 676 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 677 got_map_ptr: 678 679 return ret; 680 } 681 682 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 683 struct vmem_altmap *altmap) 684 { 685 struct page *memmap = pfn_to_page(pfn); 686 687 if (is_vmalloc_addr(memmap)) 688 vfree(memmap); 689 else 690 free_pages((unsigned long)memmap, 691 get_order(sizeof(struct page) * PAGES_PER_SECTION)); 692 } 693 694 static void free_map_bootmem(struct page *memmap) 695 { 696 unsigned long maps_section_nr, removing_section_nr, i; 697 unsigned long magic, nr_pages; 698 struct page *page = virt_to_page(memmap); 699 700 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 701 >> PAGE_SHIFT; 702 703 for (i = 0; i < nr_pages; i++, page++) { 704 magic = (unsigned long) page->freelist; 705 706 BUG_ON(magic == NODE_INFO); 707 708 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 709 removing_section_nr = page_private(page); 710 711 /* 712 * When this function is called, the removing section is 713 * logical offlined state. This means all pages are isolated 714 * from page allocator. If removing section's memmap is placed 715 * on the same section, it must not be freed. 716 * If it is freed, page allocator may allocate it which will 717 * be removed physically soon. 718 */ 719 if (maps_section_nr != removing_section_nr) 720 put_page_bootmem(page); 721 } 722 } 723 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 724 725 static void section_deactivate(unsigned long pfn, unsigned long nr_pages, 726 struct vmem_altmap *altmap) 727 { 728 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 729 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 }; 730 struct mem_section *ms = __pfn_to_section(pfn); 731 bool section_is_early = early_section(ms); 732 struct page *memmap = NULL; 733 unsigned long *subsection_map = ms->usage 734 ? &ms->usage->subsection_map[0] : NULL; 735 736 subsection_mask_set(map, pfn, nr_pages); 737 if (subsection_map) 738 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION); 739 740 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION), 741 "section already deactivated (%#lx + %ld)\n", 742 pfn, nr_pages)) 743 return; 744 745 /* 746 * There are 3 cases to handle across two configurations 747 * (SPARSEMEM_VMEMMAP={y,n}): 748 * 749 * 1/ deactivation of a partial hot-added section (only possible 750 * in the SPARSEMEM_VMEMMAP=y case). 751 * a/ section was present at memory init 752 * b/ section was hot-added post memory init 753 * 2/ deactivation of a complete hot-added section 754 * 3/ deactivation of a complete section from memory init 755 * 756 * For 1/, when subsection_map does not empty we will not be 757 * freeing the usage map, but still need to free the vmemmap 758 * range. 759 * 760 * For 2/ and 3/ the SPARSEMEM_VMEMMAP={y,n} cases are unified 761 */ 762 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION); 763 if (bitmap_empty(subsection_map, SUBSECTIONS_PER_SECTION)) { 764 unsigned long section_nr = pfn_to_section_nr(pfn); 765 766 if (!section_is_early) { 767 kfree(ms->usage); 768 ms->usage = NULL; 769 } 770 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 771 ms->section_mem_map = sparse_encode_mem_map(NULL, section_nr); 772 } 773 774 if (section_is_early && memmap) 775 free_map_bootmem(memmap); 776 else 777 depopulate_section_memmap(pfn, nr_pages, altmap); 778 } 779 780 static struct page * __meminit section_activate(int nid, unsigned long pfn, 781 unsigned long nr_pages, struct vmem_altmap *altmap) 782 { 783 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 784 struct mem_section *ms = __pfn_to_section(pfn); 785 struct mem_section_usage *usage = NULL; 786 unsigned long *subsection_map; 787 struct page *memmap; 788 int rc = 0; 789 790 subsection_mask_set(map, pfn, nr_pages); 791 792 if (!ms->usage) { 793 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL); 794 if (!usage) 795 return ERR_PTR(-ENOMEM); 796 ms->usage = usage; 797 } 798 subsection_map = &ms->usage->subsection_map[0]; 799 800 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION)) 801 rc = -EINVAL; 802 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION)) 803 rc = -EEXIST; 804 else 805 bitmap_or(subsection_map, map, subsection_map, 806 SUBSECTIONS_PER_SECTION); 807 808 if (rc) { 809 if (usage) 810 ms->usage = NULL; 811 kfree(usage); 812 return ERR_PTR(rc); 813 } 814 815 /* 816 * The early init code does not consider partially populated 817 * initial sections, it simply assumes that memory will never be 818 * referenced. If we hot-add memory into such a section then we 819 * do not need to populate the memmap and can simply reuse what 820 * is already there. 821 */ 822 if (nr_pages < PAGES_PER_SECTION && early_section(ms)) 823 return pfn_to_page(pfn); 824 825 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap); 826 if (!memmap) { 827 section_deactivate(pfn, nr_pages, altmap); 828 return ERR_PTR(-ENOMEM); 829 } 830 831 return memmap; 832 } 833 834 /** 835 * sparse_add_section - add a memory section, or populate an existing one 836 * @nid: The node to add section on 837 * @start_pfn: start pfn of the memory range 838 * @nr_pages: number of pfns to add in the section 839 * @altmap: device page map 840 * 841 * This is only intended for hotplug. 842 * 843 * Return: 844 * * 0 - On success. 845 * * -EEXIST - Section has been present. 846 * * -ENOMEM - Out of memory. 847 */ 848 int __meminit sparse_add_section(int nid, unsigned long start_pfn, 849 unsigned long nr_pages, struct vmem_altmap *altmap) 850 { 851 unsigned long section_nr = pfn_to_section_nr(start_pfn); 852 struct mem_section *ms; 853 struct page *memmap; 854 int ret; 855 856 ret = sparse_index_init(section_nr, nid); 857 if (ret < 0) 858 return ret; 859 860 memmap = section_activate(nid, start_pfn, nr_pages, altmap); 861 if (IS_ERR(memmap)) 862 return PTR_ERR(memmap); 863 864 /* 865 * Poison uninitialized struct pages in order to catch invalid flags 866 * combinations. 867 */ 868 page_init_poison(pfn_to_page(start_pfn), sizeof(struct page) * nr_pages); 869 870 ms = __pfn_to_section(start_pfn); 871 set_section_nid(section_nr, nid); 872 section_mark_present(ms); 873 874 /* Align memmap to section boundary in the subsection case */ 875 if (section_nr_to_pfn(section_nr) != start_pfn) 876 memmap = pfn_to_kaddr(section_nr_to_pfn(section_nr)); 877 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0); 878 879 return 0; 880 } 881 882 #ifdef CONFIG_MEMORY_FAILURE 883 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 884 { 885 int i; 886 887 if (!memmap) 888 return; 889 890 /* 891 * A further optimization is to have per section refcounted 892 * num_poisoned_pages. But that would need more space per memmap, so 893 * for now just do a quick global check to speed up this routine in the 894 * absence of bad pages. 895 */ 896 if (atomic_long_read(&num_poisoned_pages) == 0) 897 return; 898 899 for (i = 0; i < nr_pages; i++) { 900 if (PageHWPoison(&memmap[i])) { 901 atomic_long_sub(1, &num_poisoned_pages); 902 ClearPageHWPoison(&memmap[i]); 903 } 904 } 905 } 906 #else 907 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 908 { 909 } 910 #endif 911 912 void sparse_remove_section(struct mem_section *ms, unsigned long pfn, 913 unsigned long nr_pages, unsigned long map_offset, 914 struct vmem_altmap *altmap) 915 { 916 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset, 917 nr_pages - map_offset); 918 section_deactivate(pfn, nr_pages, altmap); 919 } 920 #endif /* CONFIG_MEMORY_HOTPLUG */ 921