1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/memblock.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 17 #include "internal.h" 18 #include <asm/dma.h> 19 20 /* 21 * Permanent SPARSEMEM data: 22 * 23 * 1) mem_section - memory sections, mem_map's for valid memory 24 */ 25 #ifdef CONFIG_SPARSEMEM_EXTREME 26 struct mem_section **mem_section; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) { 69 section = kzalloc_node(array_size, GFP_KERNEL, nid); 70 } else { 71 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES, 72 nid); 73 if (!section) 74 panic("%s: Failed to allocate %lu bytes nid=%d\n", 75 __func__, array_size, nid); 76 } 77 78 return section; 79 } 80 81 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 82 { 83 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 84 struct mem_section *section; 85 86 /* 87 * An existing section is possible in the sub-section hotplug 88 * case. First hot-add instantiates, follow-on hot-add reuses 89 * the existing section. 90 * 91 * The mem_hotplug_lock resolves the apparent race below. 92 */ 93 if (mem_section[root]) 94 return 0; 95 96 section = sparse_index_alloc(nid); 97 if (!section) 98 return -ENOMEM; 99 100 mem_section[root] = section; 101 102 return 0; 103 } 104 #else /* !SPARSEMEM_EXTREME */ 105 static inline int sparse_index_init(unsigned long section_nr, int nid) 106 { 107 return 0; 108 } 109 #endif 110 111 #ifdef CONFIG_SPARSEMEM_EXTREME 112 unsigned long __section_nr(struct mem_section *ms) 113 { 114 unsigned long root_nr; 115 struct mem_section *root = NULL; 116 117 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 118 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 119 if (!root) 120 continue; 121 122 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 123 break; 124 } 125 126 VM_BUG_ON(!root); 127 128 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 129 } 130 #else 131 unsigned long __section_nr(struct mem_section *ms) 132 { 133 return (unsigned long)(ms - mem_section[0]); 134 } 135 #endif 136 137 /* 138 * During early boot, before section_mem_map is used for an actual 139 * mem_map, we use section_mem_map to store the section's NUMA 140 * node. This keeps us from having to use another data structure. The 141 * node information is cleared just before we store the real mem_map. 142 */ 143 static inline unsigned long sparse_encode_early_nid(int nid) 144 { 145 return (nid << SECTION_NID_SHIFT); 146 } 147 148 static inline int sparse_early_nid(struct mem_section *section) 149 { 150 return (section->section_mem_map >> SECTION_NID_SHIFT); 151 } 152 153 /* Validate the physical addressing limitations of the model */ 154 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 155 unsigned long *end_pfn) 156 { 157 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 158 159 /* 160 * Sanity checks - do not allow an architecture to pass 161 * in larger pfns than the maximum scope of sparsemem: 162 */ 163 if (*start_pfn > max_sparsemem_pfn) { 164 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 165 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 166 *start_pfn, *end_pfn, max_sparsemem_pfn); 167 WARN_ON_ONCE(1); 168 *start_pfn = max_sparsemem_pfn; 169 *end_pfn = max_sparsemem_pfn; 170 } else if (*end_pfn > max_sparsemem_pfn) { 171 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 172 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 173 *start_pfn, *end_pfn, max_sparsemem_pfn); 174 WARN_ON_ONCE(1); 175 *end_pfn = max_sparsemem_pfn; 176 } 177 } 178 179 /* 180 * There are a number of times that we loop over NR_MEM_SECTIONS, 181 * looking for section_present() on each. But, when we have very 182 * large physical address spaces, NR_MEM_SECTIONS can also be 183 * very large which makes the loops quite long. 184 * 185 * Keeping track of this gives us an easy way to break out of 186 * those loops early. 187 */ 188 unsigned long __highest_present_section_nr; 189 static void section_mark_present(struct mem_section *ms) 190 { 191 unsigned long section_nr = __section_nr(ms); 192 193 if (section_nr > __highest_present_section_nr) 194 __highest_present_section_nr = section_nr; 195 196 ms->section_mem_map |= SECTION_MARKED_PRESENT; 197 } 198 199 #define for_each_present_section_nr(start, section_nr) \ 200 for (section_nr = next_present_section_nr(start-1); \ 201 ((section_nr != -1) && \ 202 (section_nr <= __highest_present_section_nr)); \ 203 section_nr = next_present_section_nr(section_nr)) 204 205 static inline unsigned long first_present_section_nr(void) 206 { 207 return next_present_section_nr(-1); 208 } 209 210 #ifdef CONFIG_SPARSEMEM_VMEMMAP 211 static void subsection_mask_set(unsigned long *map, unsigned long pfn, 212 unsigned long nr_pages) 213 { 214 int idx = subsection_map_index(pfn); 215 int end = subsection_map_index(pfn + nr_pages - 1); 216 217 bitmap_set(map, idx, end - idx + 1); 218 } 219 220 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 221 { 222 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 223 unsigned long nr, start_sec = pfn_to_section_nr(pfn); 224 225 if (!nr_pages) 226 return; 227 228 for (nr = start_sec; nr <= end_sec; nr++) { 229 struct mem_section *ms; 230 unsigned long pfns; 231 232 pfns = min(nr_pages, PAGES_PER_SECTION 233 - (pfn & ~PAGE_SECTION_MASK)); 234 ms = __nr_to_section(nr); 235 subsection_mask_set(ms->usage->subsection_map, pfn, pfns); 236 237 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr, 238 pfns, subsection_map_index(pfn), 239 subsection_map_index(pfn + pfns - 1)); 240 241 pfn += pfns; 242 nr_pages -= pfns; 243 } 244 } 245 #else 246 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 247 { 248 } 249 #endif 250 251 /* Record a memory area against a node. */ 252 static void __init memory_present(int nid, unsigned long start, unsigned long end) 253 { 254 unsigned long pfn; 255 256 #ifdef CONFIG_SPARSEMEM_EXTREME 257 if (unlikely(!mem_section)) { 258 unsigned long size, align; 259 260 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS; 261 align = 1 << (INTERNODE_CACHE_SHIFT); 262 mem_section = memblock_alloc(size, align); 263 if (!mem_section) 264 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 265 __func__, size, align); 266 } 267 #endif 268 269 start &= PAGE_SECTION_MASK; 270 mminit_validate_memmodel_limits(&start, &end); 271 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 272 unsigned long section = pfn_to_section_nr(pfn); 273 struct mem_section *ms; 274 275 sparse_index_init(section, nid); 276 set_section_nid(section, nid); 277 278 ms = __nr_to_section(section); 279 if (!ms->section_mem_map) { 280 ms->section_mem_map = sparse_encode_early_nid(nid) | 281 SECTION_IS_ONLINE; 282 section_mark_present(ms); 283 } 284 } 285 } 286 287 /* 288 * Mark all memblocks as present using memory_present(). 289 * This is a convenience function that is useful to mark all of the systems 290 * memory as present during initialization. 291 */ 292 static void __init memblocks_present(void) 293 { 294 struct memblock_region *reg; 295 296 for_each_memblock(memory, reg) { 297 memory_present(memblock_get_region_node(reg), 298 memblock_region_memory_base_pfn(reg), 299 memblock_region_memory_end_pfn(reg)); 300 } 301 } 302 303 /* 304 * Subtle, we encode the real pfn into the mem_map such that 305 * the identity pfn - section_mem_map will return the actual 306 * physical page frame number. 307 */ 308 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 309 { 310 unsigned long coded_mem_map = 311 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 312 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); 313 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 314 return coded_mem_map; 315 } 316 317 /* 318 * Decode mem_map from the coded memmap 319 */ 320 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 321 { 322 /* mask off the extra low bits of information */ 323 coded_mem_map &= SECTION_MAP_MASK; 324 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 325 } 326 327 static void __meminit sparse_init_one_section(struct mem_section *ms, 328 unsigned long pnum, struct page *mem_map, 329 struct mem_section_usage *usage, unsigned long flags) 330 { 331 ms->section_mem_map &= ~SECTION_MAP_MASK; 332 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) 333 | SECTION_HAS_MEM_MAP | flags; 334 ms->usage = usage; 335 } 336 337 static unsigned long usemap_size(void) 338 { 339 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 340 } 341 342 size_t mem_section_usage_size(void) 343 { 344 return sizeof(struct mem_section_usage) + usemap_size(); 345 } 346 347 #ifdef CONFIG_MEMORY_HOTREMOVE 348 static struct mem_section_usage * __init 349 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 350 unsigned long size) 351 { 352 struct mem_section_usage *usage; 353 unsigned long goal, limit; 354 int nid; 355 /* 356 * A page may contain usemaps for other sections preventing the 357 * page being freed and making a section unremovable while 358 * other sections referencing the usemap remain active. Similarly, 359 * a pgdat can prevent a section being removed. If section A 360 * contains a pgdat and section B contains the usemap, both 361 * sections become inter-dependent. This allocates usemaps 362 * from the same section as the pgdat where possible to avoid 363 * this problem. 364 */ 365 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 366 limit = goal + (1UL << PA_SECTION_SHIFT); 367 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 368 again: 369 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid); 370 if (!usage && limit) { 371 limit = 0; 372 goto again; 373 } 374 return usage; 375 } 376 377 static void __init check_usemap_section_nr(int nid, 378 struct mem_section_usage *usage) 379 { 380 unsigned long usemap_snr, pgdat_snr; 381 static unsigned long old_usemap_snr; 382 static unsigned long old_pgdat_snr; 383 struct pglist_data *pgdat = NODE_DATA(nid); 384 int usemap_nid; 385 386 /* First call */ 387 if (!old_usemap_snr) { 388 old_usemap_snr = NR_MEM_SECTIONS; 389 old_pgdat_snr = NR_MEM_SECTIONS; 390 } 391 392 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT); 393 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 394 if (usemap_snr == pgdat_snr) 395 return; 396 397 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 398 /* skip redundant message */ 399 return; 400 401 old_usemap_snr = usemap_snr; 402 old_pgdat_snr = pgdat_snr; 403 404 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 405 if (usemap_nid != nid) { 406 pr_info("node %d must be removed before remove section %ld\n", 407 nid, usemap_snr); 408 return; 409 } 410 /* 411 * There is a circular dependency. 412 * Some platforms allow un-removable section because they will just 413 * gather other removable sections for dynamic partitioning. 414 * Just notify un-removable section's number here. 415 */ 416 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 417 usemap_snr, pgdat_snr, nid); 418 } 419 #else 420 static struct mem_section_usage * __init 421 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 422 unsigned long size) 423 { 424 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id); 425 } 426 427 static void __init check_usemap_section_nr(int nid, 428 struct mem_section_usage *usage) 429 { 430 } 431 #endif /* CONFIG_MEMORY_HOTREMOVE */ 432 433 #ifdef CONFIG_SPARSEMEM_VMEMMAP 434 static unsigned long __init section_map_size(void) 435 { 436 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); 437 } 438 439 #else 440 static unsigned long __init section_map_size(void) 441 { 442 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 443 } 444 445 struct page __init *__populate_section_memmap(unsigned long pfn, 446 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 447 { 448 unsigned long size = section_map_size(); 449 struct page *map = sparse_buffer_alloc(size); 450 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 451 452 if (map) 453 return map; 454 455 map = memblock_alloc_try_nid_raw(size, size, addr, 456 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 457 if (!map) 458 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n", 459 __func__, size, PAGE_SIZE, nid, &addr); 460 461 return map; 462 } 463 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 464 465 static void *sparsemap_buf __meminitdata; 466 static void *sparsemap_buf_end __meminitdata; 467 468 static inline void __meminit sparse_buffer_free(unsigned long size) 469 { 470 WARN_ON(!sparsemap_buf || size == 0); 471 memblock_free_early(__pa(sparsemap_buf), size); 472 } 473 474 static void __init sparse_buffer_init(unsigned long size, int nid) 475 { 476 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 477 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */ 478 /* 479 * Pre-allocated buffer is mainly used by __populate_section_memmap 480 * and we want it to be properly aligned to the section size - this is 481 * especially the case for VMEMMAP which maps memmap to PMDs 482 */ 483 sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(), 484 addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 485 sparsemap_buf_end = sparsemap_buf + size; 486 } 487 488 static void __init sparse_buffer_fini(void) 489 { 490 unsigned long size = sparsemap_buf_end - sparsemap_buf; 491 492 if (sparsemap_buf && size > 0) 493 sparse_buffer_free(size); 494 sparsemap_buf = NULL; 495 } 496 497 void * __meminit sparse_buffer_alloc(unsigned long size) 498 { 499 void *ptr = NULL; 500 501 if (sparsemap_buf) { 502 ptr = (void *) roundup((unsigned long)sparsemap_buf, size); 503 if (ptr + size > sparsemap_buf_end) 504 ptr = NULL; 505 else { 506 /* Free redundant aligned space */ 507 if ((unsigned long)(ptr - sparsemap_buf) > 0) 508 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf)); 509 sparsemap_buf = ptr + size; 510 } 511 } 512 return ptr; 513 } 514 515 void __weak __meminit vmemmap_populate_print_last(void) 516 { 517 } 518 519 /* 520 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) 521 * And number of present sections in this node is map_count. 522 */ 523 static void __init sparse_init_nid(int nid, unsigned long pnum_begin, 524 unsigned long pnum_end, 525 unsigned long map_count) 526 { 527 struct mem_section_usage *usage; 528 unsigned long pnum; 529 struct page *map; 530 531 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid), 532 mem_section_usage_size() * map_count); 533 if (!usage) { 534 pr_err("%s: node[%d] usemap allocation failed", __func__, nid); 535 goto failed; 536 } 537 sparse_buffer_init(map_count * section_map_size(), nid); 538 for_each_present_section_nr(pnum_begin, pnum) { 539 unsigned long pfn = section_nr_to_pfn(pnum); 540 541 if (pnum >= pnum_end) 542 break; 543 544 map = __populate_section_memmap(pfn, PAGES_PER_SECTION, 545 nid, NULL); 546 if (!map) { 547 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", 548 __func__, nid); 549 pnum_begin = pnum; 550 goto failed; 551 } 552 check_usemap_section_nr(nid, usage); 553 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage, 554 SECTION_IS_EARLY); 555 usage = (void *) usage + mem_section_usage_size(); 556 } 557 sparse_buffer_fini(); 558 return; 559 failed: 560 /* We failed to allocate, mark all the following pnums as not present */ 561 for_each_present_section_nr(pnum_begin, pnum) { 562 struct mem_section *ms; 563 564 if (pnum >= pnum_end) 565 break; 566 ms = __nr_to_section(pnum); 567 ms->section_mem_map = 0; 568 } 569 } 570 571 /* 572 * Allocate the accumulated non-linear sections, allocate a mem_map 573 * for each and record the physical to section mapping. 574 */ 575 void __init sparse_init(void) 576 { 577 unsigned long pnum_end, pnum_begin, map_count = 1; 578 int nid_begin; 579 580 memblocks_present(); 581 582 pnum_begin = first_present_section_nr(); 583 nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); 584 585 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 586 set_pageblock_order(); 587 588 for_each_present_section_nr(pnum_begin + 1, pnum_end) { 589 int nid = sparse_early_nid(__nr_to_section(pnum_end)); 590 591 if (nid == nid_begin) { 592 map_count++; 593 continue; 594 } 595 /* Init node with sections in range [pnum_begin, pnum_end) */ 596 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 597 nid_begin = nid; 598 pnum_begin = pnum_end; 599 map_count = 1; 600 } 601 /* cover the last node */ 602 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 603 vmemmap_populate_print_last(); 604 } 605 606 #ifdef CONFIG_MEMORY_HOTPLUG 607 608 /* Mark all memory sections within the pfn range as online */ 609 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 610 { 611 unsigned long pfn; 612 613 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 614 unsigned long section_nr = pfn_to_section_nr(pfn); 615 struct mem_section *ms; 616 617 /* onlining code should never touch invalid ranges */ 618 if (WARN_ON(!valid_section_nr(section_nr))) 619 continue; 620 621 ms = __nr_to_section(section_nr); 622 ms->section_mem_map |= SECTION_IS_ONLINE; 623 } 624 } 625 626 #ifdef CONFIG_MEMORY_HOTREMOVE 627 /* Mark all memory sections within the pfn range as offline */ 628 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 629 { 630 unsigned long pfn; 631 632 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 633 unsigned long section_nr = pfn_to_section_nr(pfn); 634 struct mem_section *ms; 635 636 /* 637 * TODO this needs some double checking. Offlining code makes 638 * sure to check pfn_valid but those checks might be just bogus 639 */ 640 if (WARN_ON(!valid_section_nr(section_nr))) 641 continue; 642 643 ms = __nr_to_section(section_nr); 644 ms->section_mem_map &= ~SECTION_IS_ONLINE; 645 } 646 } 647 #endif 648 649 #ifdef CONFIG_SPARSEMEM_VMEMMAP 650 static struct page * __meminit populate_section_memmap(unsigned long pfn, 651 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 652 { 653 return __populate_section_memmap(pfn, nr_pages, nid, altmap); 654 } 655 656 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 657 struct vmem_altmap *altmap) 658 { 659 unsigned long start = (unsigned long) pfn_to_page(pfn); 660 unsigned long end = start + nr_pages * sizeof(struct page); 661 662 vmemmap_free(start, end, altmap); 663 } 664 static void free_map_bootmem(struct page *memmap) 665 { 666 unsigned long start = (unsigned long)memmap; 667 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 668 669 vmemmap_free(start, end, NULL); 670 } 671 672 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 673 { 674 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 675 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 }; 676 struct mem_section *ms = __pfn_to_section(pfn); 677 unsigned long *subsection_map = ms->usage 678 ? &ms->usage->subsection_map[0] : NULL; 679 680 subsection_mask_set(map, pfn, nr_pages); 681 if (subsection_map) 682 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION); 683 684 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION), 685 "section already deactivated (%#lx + %ld)\n", 686 pfn, nr_pages)) 687 return -EINVAL; 688 689 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION); 690 return 0; 691 } 692 693 static bool is_subsection_map_empty(struct mem_section *ms) 694 { 695 return bitmap_empty(&ms->usage->subsection_map[0], 696 SUBSECTIONS_PER_SECTION); 697 } 698 699 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 700 { 701 struct mem_section *ms = __pfn_to_section(pfn); 702 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 703 unsigned long *subsection_map; 704 int rc = 0; 705 706 subsection_mask_set(map, pfn, nr_pages); 707 708 subsection_map = &ms->usage->subsection_map[0]; 709 710 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION)) 711 rc = -EINVAL; 712 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION)) 713 rc = -EEXIST; 714 else 715 bitmap_or(subsection_map, map, subsection_map, 716 SUBSECTIONS_PER_SECTION); 717 718 return rc; 719 } 720 #else 721 struct page * __meminit populate_section_memmap(unsigned long pfn, 722 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 723 { 724 return kvmalloc_node(array_size(sizeof(struct page), 725 PAGES_PER_SECTION), GFP_KERNEL, nid); 726 } 727 728 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 729 struct vmem_altmap *altmap) 730 { 731 kvfree(pfn_to_page(pfn)); 732 } 733 734 static void free_map_bootmem(struct page *memmap) 735 { 736 unsigned long maps_section_nr, removing_section_nr, i; 737 unsigned long magic, nr_pages; 738 struct page *page = virt_to_page(memmap); 739 740 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 741 >> PAGE_SHIFT; 742 743 for (i = 0; i < nr_pages; i++, page++) { 744 magic = (unsigned long) page->freelist; 745 746 BUG_ON(magic == NODE_INFO); 747 748 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 749 removing_section_nr = page_private(page); 750 751 /* 752 * When this function is called, the removing section is 753 * logical offlined state. This means all pages are isolated 754 * from page allocator. If removing section's memmap is placed 755 * on the same section, it must not be freed. 756 * If it is freed, page allocator may allocate it which will 757 * be removed physically soon. 758 */ 759 if (maps_section_nr != removing_section_nr) 760 put_page_bootmem(page); 761 } 762 } 763 764 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 765 { 766 return 0; 767 } 768 769 static bool is_subsection_map_empty(struct mem_section *ms) 770 { 771 return true; 772 } 773 774 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 775 { 776 return 0; 777 } 778 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 779 780 /* 781 * To deactivate a memory region, there are 3 cases to handle across 782 * two configurations (SPARSEMEM_VMEMMAP={y,n}): 783 * 784 * 1. deactivation of a partial hot-added section (only possible in 785 * the SPARSEMEM_VMEMMAP=y case). 786 * a) section was present at memory init. 787 * b) section was hot-added post memory init. 788 * 2. deactivation of a complete hot-added section. 789 * 3. deactivation of a complete section from memory init. 790 * 791 * For 1, when subsection_map does not empty we will not be freeing the 792 * usage map, but still need to free the vmemmap range. 793 * 794 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified 795 */ 796 static void section_deactivate(unsigned long pfn, unsigned long nr_pages, 797 struct vmem_altmap *altmap) 798 { 799 struct mem_section *ms = __pfn_to_section(pfn); 800 bool section_is_early = early_section(ms); 801 struct page *memmap = NULL; 802 bool empty; 803 804 if (clear_subsection_map(pfn, nr_pages)) 805 return; 806 807 empty = is_subsection_map_empty(ms); 808 if (empty) { 809 unsigned long section_nr = pfn_to_section_nr(pfn); 810 811 /* 812 * When removing an early section, the usage map is kept (as the 813 * usage maps of other sections fall into the same page). It 814 * will be re-used when re-adding the section - which is then no 815 * longer an early section. If the usage map is PageReserved, it 816 * was allocated during boot. 817 */ 818 if (!PageReserved(virt_to_page(ms->usage))) { 819 kfree(ms->usage); 820 ms->usage = NULL; 821 } 822 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 823 /* 824 * Mark the section invalid so that valid_section() 825 * return false. This prevents code from dereferencing 826 * ms->usage array. 827 */ 828 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP; 829 } 830 831 /* 832 * The memmap of early sections is always fully populated. See 833 * section_activate() and pfn_valid() . 834 */ 835 if (!section_is_early) 836 depopulate_section_memmap(pfn, nr_pages, altmap); 837 else if (memmap) 838 free_map_bootmem(memmap); 839 840 if (empty) 841 ms->section_mem_map = (unsigned long)NULL; 842 } 843 844 static struct page * __meminit section_activate(int nid, unsigned long pfn, 845 unsigned long nr_pages, struct vmem_altmap *altmap) 846 { 847 struct mem_section *ms = __pfn_to_section(pfn); 848 struct mem_section_usage *usage = NULL; 849 struct page *memmap; 850 int rc = 0; 851 852 if (!ms->usage) { 853 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL); 854 if (!usage) 855 return ERR_PTR(-ENOMEM); 856 ms->usage = usage; 857 } 858 859 rc = fill_subsection_map(pfn, nr_pages); 860 if (rc) { 861 if (usage) 862 ms->usage = NULL; 863 kfree(usage); 864 return ERR_PTR(rc); 865 } 866 867 /* 868 * The early init code does not consider partially populated 869 * initial sections, it simply assumes that memory will never be 870 * referenced. If we hot-add memory into such a section then we 871 * do not need to populate the memmap and can simply reuse what 872 * is already there. 873 */ 874 if (nr_pages < PAGES_PER_SECTION && early_section(ms)) 875 return pfn_to_page(pfn); 876 877 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap); 878 if (!memmap) { 879 section_deactivate(pfn, nr_pages, altmap); 880 return ERR_PTR(-ENOMEM); 881 } 882 883 return memmap; 884 } 885 886 /** 887 * sparse_add_section - add a memory section, or populate an existing one 888 * @nid: The node to add section on 889 * @start_pfn: start pfn of the memory range 890 * @nr_pages: number of pfns to add in the section 891 * @altmap: device page map 892 * 893 * This is only intended for hotplug. 894 * 895 * Note that only VMEMMAP supports sub-section aligned hotplug, 896 * the proper alignment and size are gated by check_pfn_span(). 897 * 898 * 899 * Return: 900 * * 0 - On success. 901 * * -EEXIST - Section has been present. 902 * * -ENOMEM - Out of memory. 903 */ 904 int __meminit sparse_add_section(int nid, unsigned long start_pfn, 905 unsigned long nr_pages, struct vmem_altmap *altmap) 906 { 907 unsigned long section_nr = pfn_to_section_nr(start_pfn); 908 struct mem_section *ms; 909 struct page *memmap; 910 int ret; 911 912 ret = sparse_index_init(section_nr, nid); 913 if (ret < 0) 914 return ret; 915 916 memmap = section_activate(nid, start_pfn, nr_pages, altmap); 917 if (IS_ERR(memmap)) 918 return PTR_ERR(memmap); 919 920 /* 921 * Poison uninitialized struct pages in order to catch invalid flags 922 * combinations. 923 */ 924 page_init_poison(memmap, sizeof(struct page) * nr_pages); 925 926 ms = __nr_to_section(section_nr); 927 set_section_nid(section_nr, nid); 928 section_mark_present(ms); 929 930 /* Align memmap to section boundary in the subsection case */ 931 if (section_nr_to_pfn(section_nr) != start_pfn) 932 memmap = pfn_to_page(section_nr_to_pfn(section_nr)); 933 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0); 934 935 return 0; 936 } 937 938 #ifdef CONFIG_MEMORY_FAILURE 939 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 940 { 941 int i; 942 943 /* 944 * A further optimization is to have per section refcounted 945 * num_poisoned_pages. But that would need more space per memmap, so 946 * for now just do a quick global check to speed up this routine in the 947 * absence of bad pages. 948 */ 949 if (atomic_long_read(&num_poisoned_pages) == 0) 950 return; 951 952 for (i = 0; i < nr_pages; i++) { 953 if (PageHWPoison(&memmap[i])) { 954 num_poisoned_pages_dec(); 955 ClearPageHWPoison(&memmap[i]); 956 } 957 } 958 } 959 #else 960 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 961 { 962 } 963 #endif 964 965 void sparse_remove_section(struct mem_section *ms, unsigned long pfn, 966 unsigned long nr_pages, unsigned long map_offset, 967 struct vmem_altmap *altmap) 968 { 969 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset, 970 nr_pages - map_offset); 971 section_deactivate(pfn, nr_pages, altmap); 972 } 973 #endif /* CONFIG_MEMORY_HOTPLUG */ 974