xref: /openbmc/linux/mm/sparse.c (revision ae213c44)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19 
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section	- memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 	____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32 
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44 
45 int page_to_nid(const struct page *page)
46 {
47 	return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50 
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 	section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60 
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 	struct mem_section *section = NULL;
65 	unsigned long array_size = SECTIONS_PER_ROOT *
66 				   sizeof(struct mem_section);
67 
68 	if (slab_is_available()) {
69 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 	} else {
71 		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
72 					      nid);
73 		if (!section)
74 			panic("%s: Failed to allocate %lu bytes nid=%d\n",
75 			      __func__, array_size, nid);
76 	}
77 
78 	return section;
79 }
80 
81 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
82 {
83 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84 	struct mem_section *section;
85 
86 	if (mem_section[root])
87 		return -EEXIST;
88 
89 	section = sparse_index_alloc(nid);
90 	if (!section)
91 		return -ENOMEM;
92 
93 	mem_section[root] = section;
94 
95 	return 0;
96 }
97 #else /* !SPARSEMEM_EXTREME */
98 static inline int sparse_index_init(unsigned long section_nr, int nid)
99 {
100 	return 0;
101 }
102 #endif
103 
104 #ifdef CONFIG_SPARSEMEM_EXTREME
105 int __section_nr(struct mem_section* ms)
106 {
107 	unsigned long root_nr;
108 	struct mem_section *root = NULL;
109 
110 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
111 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
112 		if (!root)
113 			continue;
114 
115 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
116 		     break;
117 	}
118 
119 	VM_BUG_ON(!root);
120 
121 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
122 }
123 #else
124 int __section_nr(struct mem_section* ms)
125 {
126 	return (int)(ms - mem_section[0]);
127 }
128 #endif
129 
130 /*
131  * During early boot, before section_mem_map is used for an actual
132  * mem_map, we use section_mem_map to store the section's NUMA
133  * node.  This keeps us from having to use another data structure.  The
134  * node information is cleared just before we store the real mem_map.
135  */
136 static inline unsigned long sparse_encode_early_nid(int nid)
137 {
138 	return (nid << SECTION_NID_SHIFT);
139 }
140 
141 static inline int sparse_early_nid(struct mem_section *section)
142 {
143 	return (section->section_mem_map >> SECTION_NID_SHIFT);
144 }
145 
146 /* Validate the physical addressing limitations of the model */
147 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
148 						unsigned long *end_pfn)
149 {
150 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
151 
152 	/*
153 	 * Sanity checks - do not allow an architecture to pass
154 	 * in larger pfns than the maximum scope of sparsemem:
155 	 */
156 	if (*start_pfn > max_sparsemem_pfn) {
157 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
158 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
159 			*start_pfn, *end_pfn, max_sparsemem_pfn);
160 		WARN_ON_ONCE(1);
161 		*start_pfn = max_sparsemem_pfn;
162 		*end_pfn = max_sparsemem_pfn;
163 	} else if (*end_pfn > max_sparsemem_pfn) {
164 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
165 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166 			*start_pfn, *end_pfn, max_sparsemem_pfn);
167 		WARN_ON_ONCE(1);
168 		*end_pfn = max_sparsemem_pfn;
169 	}
170 }
171 
172 /*
173  * There are a number of times that we loop over NR_MEM_SECTIONS,
174  * looking for section_present() on each.  But, when we have very
175  * large physical address spaces, NR_MEM_SECTIONS can also be
176  * very large which makes the loops quite long.
177  *
178  * Keeping track of this gives us an easy way to break out of
179  * those loops early.
180  */
181 int __highest_present_section_nr;
182 static void section_mark_present(struct mem_section *ms)
183 {
184 	int section_nr = __section_nr(ms);
185 
186 	if (section_nr > __highest_present_section_nr)
187 		__highest_present_section_nr = section_nr;
188 
189 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
190 }
191 
192 static inline int next_present_section_nr(int section_nr)
193 {
194 	do {
195 		section_nr++;
196 		if (present_section_nr(section_nr))
197 			return section_nr;
198 	} while ((section_nr <= __highest_present_section_nr));
199 
200 	return -1;
201 }
202 #define for_each_present_section_nr(start, section_nr)		\
203 	for (section_nr = next_present_section_nr(start-1);	\
204 	     ((section_nr != -1) &&				\
205 	      (section_nr <= __highest_present_section_nr));	\
206 	     section_nr = next_present_section_nr(section_nr))
207 
208 static inline unsigned long first_present_section_nr(void)
209 {
210 	return next_present_section_nr(-1);
211 }
212 
213 /* Record a memory area against a node. */
214 void __init memory_present(int nid, unsigned long start, unsigned long end)
215 {
216 	unsigned long pfn;
217 
218 #ifdef CONFIG_SPARSEMEM_EXTREME
219 	if (unlikely(!mem_section)) {
220 		unsigned long size, align;
221 
222 		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
223 		align = 1 << (INTERNODE_CACHE_SHIFT);
224 		mem_section = memblock_alloc(size, align);
225 		if (!mem_section)
226 			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
227 			      __func__, size, align);
228 	}
229 #endif
230 
231 	start &= PAGE_SECTION_MASK;
232 	mminit_validate_memmodel_limits(&start, &end);
233 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
234 		unsigned long section = pfn_to_section_nr(pfn);
235 		struct mem_section *ms;
236 
237 		sparse_index_init(section, nid);
238 		set_section_nid(section, nid);
239 
240 		ms = __nr_to_section(section);
241 		if (!ms->section_mem_map) {
242 			ms->section_mem_map = sparse_encode_early_nid(nid) |
243 							SECTION_IS_ONLINE;
244 			section_mark_present(ms);
245 		}
246 	}
247 }
248 
249 /*
250  * Mark all memblocks as present using memory_present(). This is a
251  * convienence function that is useful for a number of arches
252  * to mark all of the systems memory as present during initialization.
253  */
254 void __init memblocks_present(void)
255 {
256 	struct memblock_region *reg;
257 
258 	for_each_memblock(memory, reg) {
259 		memory_present(memblock_get_region_node(reg),
260 			       memblock_region_memory_base_pfn(reg),
261 			       memblock_region_memory_end_pfn(reg));
262 	}
263 }
264 
265 /*
266  * Subtle, we encode the real pfn into the mem_map such that
267  * the identity pfn - section_mem_map will return the actual
268  * physical page frame number.
269  */
270 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
271 {
272 	unsigned long coded_mem_map =
273 		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
274 	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
275 	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
276 	return coded_mem_map;
277 }
278 
279 /*
280  * Decode mem_map from the coded memmap
281  */
282 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
283 {
284 	/* mask off the extra low bits of information */
285 	coded_mem_map &= SECTION_MAP_MASK;
286 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
287 }
288 
289 static void __meminit sparse_init_one_section(struct mem_section *ms,
290 		unsigned long pnum, struct page *mem_map,
291 		unsigned long *pageblock_bitmap)
292 {
293 	ms->section_mem_map &= ~SECTION_MAP_MASK;
294 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
295 							SECTION_HAS_MEM_MAP;
296  	ms->pageblock_flags = pageblock_bitmap;
297 }
298 
299 unsigned long usemap_size(void)
300 {
301 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
302 }
303 
304 #ifdef CONFIG_MEMORY_HOTPLUG
305 static unsigned long *__kmalloc_section_usemap(void)
306 {
307 	return kmalloc(usemap_size(), GFP_KERNEL);
308 }
309 #endif /* CONFIG_MEMORY_HOTPLUG */
310 
311 #ifdef CONFIG_MEMORY_HOTREMOVE
312 static unsigned long * __init
313 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
314 					 unsigned long size)
315 {
316 	unsigned long goal, limit;
317 	unsigned long *p;
318 	int nid;
319 	/*
320 	 * A page may contain usemaps for other sections preventing the
321 	 * page being freed and making a section unremovable while
322 	 * other sections referencing the usemap remain active. Similarly,
323 	 * a pgdat can prevent a section being removed. If section A
324 	 * contains a pgdat and section B contains the usemap, both
325 	 * sections become inter-dependent. This allocates usemaps
326 	 * from the same section as the pgdat where possible to avoid
327 	 * this problem.
328 	 */
329 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
330 	limit = goal + (1UL << PA_SECTION_SHIFT);
331 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
332 again:
333 	p = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
334 	if (!p && limit) {
335 		limit = 0;
336 		goto again;
337 	}
338 	return p;
339 }
340 
341 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
342 {
343 	unsigned long usemap_snr, pgdat_snr;
344 	static unsigned long old_usemap_snr;
345 	static unsigned long old_pgdat_snr;
346 	struct pglist_data *pgdat = NODE_DATA(nid);
347 	int usemap_nid;
348 
349 	/* First call */
350 	if (!old_usemap_snr) {
351 		old_usemap_snr = NR_MEM_SECTIONS;
352 		old_pgdat_snr = NR_MEM_SECTIONS;
353 	}
354 
355 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
356 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
357 	if (usemap_snr == pgdat_snr)
358 		return;
359 
360 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
361 		/* skip redundant message */
362 		return;
363 
364 	old_usemap_snr = usemap_snr;
365 	old_pgdat_snr = pgdat_snr;
366 
367 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
368 	if (usemap_nid != nid) {
369 		pr_info("node %d must be removed before remove section %ld\n",
370 			nid, usemap_snr);
371 		return;
372 	}
373 	/*
374 	 * There is a circular dependency.
375 	 * Some platforms allow un-removable section because they will just
376 	 * gather other removable sections for dynamic partitioning.
377 	 * Just notify un-removable section's number here.
378 	 */
379 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
380 		usemap_snr, pgdat_snr, nid);
381 }
382 #else
383 static unsigned long * __init
384 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
385 					 unsigned long size)
386 {
387 	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
388 }
389 
390 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
391 {
392 }
393 #endif /* CONFIG_MEMORY_HOTREMOVE */
394 
395 #ifdef CONFIG_SPARSEMEM_VMEMMAP
396 static unsigned long __init section_map_size(void)
397 {
398 	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
399 }
400 
401 #else
402 static unsigned long __init section_map_size(void)
403 {
404 	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
405 }
406 
407 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
408 		struct vmem_altmap *altmap)
409 {
410 	unsigned long size = section_map_size();
411 	struct page *map = sparse_buffer_alloc(size);
412 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
413 
414 	if (map)
415 		return map;
416 
417 	map = memblock_alloc_try_nid(size,
418 					  PAGE_SIZE, addr,
419 					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
420 	if (!map)
421 		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
422 		      __func__, size, PAGE_SIZE, nid, &addr);
423 
424 	return map;
425 }
426 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
427 
428 static void *sparsemap_buf __meminitdata;
429 static void *sparsemap_buf_end __meminitdata;
430 
431 static void __init sparse_buffer_init(unsigned long size, int nid)
432 {
433 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
434 	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
435 	sparsemap_buf =
436 		memblock_alloc_try_nid_raw(size, PAGE_SIZE,
437 						addr,
438 						MEMBLOCK_ALLOC_ACCESSIBLE, nid);
439 	sparsemap_buf_end = sparsemap_buf + size;
440 }
441 
442 static void __init sparse_buffer_fini(void)
443 {
444 	unsigned long size = sparsemap_buf_end - sparsemap_buf;
445 
446 	if (sparsemap_buf && size > 0)
447 		memblock_free_early(__pa(sparsemap_buf), size);
448 	sparsemap_buf = NULL;
449 }
450 
451 void * __meminit sparse_buffer_alloc(unsigned long size)
452 {
453 	void *ptr = NULL;
454 
455 	if (sparsemap_buf) {
456 		ptr = PTR_ALIGN(sparsemap_buf, size);
457 		if (ptr + size > sparsemap_buf_end)
458 			ptr = NULL;
459 		else
460 			sparsemap_buf = ptr + size;
461 	}
462 	return ptr;
463 }
464 
465 void __weak __meminit vmemmap_populate_print_last(void)
466 {
467 }
468 
469 /*
470  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
471  * And number of present sections in this node is map_count.
472  */
473 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
474 				   unsigned long pnum_end,
475 				   unsigned long map_count)
476 {
477 	unsigned long pnum, usemap_longs, *usemap;
478 	struct page *map;
479 
480 	usemap_longs = BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS);
481 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
482 							  usemap_size() *
483 							  map_count);
484 	if (!usemap) {
485 		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
486 		goto failed;
487 	}
488 	sparse_buffer_init(map_count * section_map_size(), nid);
489 	for_each_present_section_nr(pnum_begin, pnum) {
490 		if (pnum >= pnum_end)
491 			break;
492 
493 		map = sparse_mem_map_populate(pnum, nid, NULL);
494 		if (!map) {
495 			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
496 			       __func__, nid);
497 			pnum_begin = pnum;
498 			goto failed;
499 		}
500 		check_usemap_section_nr(nid, usemap);
501 		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usemap);
502 		usemap += usemap_longs;
503 	}
504 	sparse_buffer_fini();
505 	return;
506 failed:
507 	/* We failed to allocate, mark all the following pnums as not present */
508 	for_each_present_section_nr(pnum_begin, pnum) {
509 		struct mem_section *ms;
510 
511 		if (pnum >= pnum_end)
512 			break;
513 		ms = __nr_to_section(pnum);
514 		ms->section_mem_map = 0;
515 	}
516 }
517 
518 /*
519  * Allocate the accumulated non-linear sections, allocate a mem_map
520  * for each and record the physical to section mapping.
521  */
522 void __init sparse_init(void)
523 {
524 	unsigned long pnum_begin = first_present_section_nr();
525 	int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
526 	unsigned long pnum_end, map_count = 1;
527 
528 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
529 	set_pageblock_order();
530 
531 	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
532 		int nid = sparse_early_nid(__nr_to_section(pnum_end));
533 
534 		if (nid == nid_begin) {
535 			map_count++;
536 			continue;
537 		}
538 		/* Init node with sections in range [pnum_begin, pnum_end) */
539 		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
540 		nid_begin = nid;
541 		pnum_begin = pnum_end;
542 		map_count = 1;
543 	}
544 	/* cover the last node */
545 	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
546 	vmemmap_populate_print_last();
547 }
548 
549 #ifdef CONFIG_MEMORY_HOTPLUG
550 
551 /* Mark all memory sections within the pfn range as online */
552 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
553 {
554 	unsigned long pfn;
555 
556 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
557 		unsigned long section_nr = pfn_to_section_nr(pfn);
558 		struct mem_section *ms;
559 
560 		/* onlining code should never touch invalid ranges */
561 		if (WARN_ON(!valid_section_nr(section_nr)))
562 			continue;
563 
564 		ms = __nr_to_section(section_nr);
565 		ms->section_mem_map |= SECTION_IS_ONLINE;
566 	}
567 }
568 
569 #ifdef CONFIG_MEMORY_HOTREMOVE
570 /* Mark all memory sections within the pfn range as offline */
571 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
572 {
573 	unsigned long pfn;
574 
575 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
576 		unsigned long section_nr = pfn_to_section_nr(pfn);
577 		struct mem_section *ms;
578 
579 		/*
580 		 * TODO this needs some double checking. Offlining code makes
581 		 * sure to check pfn_valid but those checks might be just bogus
582 		 */
583 		if (WARN_ON(!valid_section_nr(section_nr)))
584 			continue;
585 
586 		ms = __nr_to_section(section_nr);
587 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
588 	}
589 }
590 #endif
591 
592 #ifdef CONFIG_SPARSEMEM_VMEMMAP
593 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
594 		struct vmem_altmap *altmap)
595 {
596 	/* This will make the necessary allocations eventually. */
597 	return sparse_mem_map_populate(pnum, nid, altmap);
598 }
599 static void __kfree_section_memmap(struct page *memmap,
600 		struct vmem_altmap *altmap)
601 {
602 	unsigned long start = (unsigned long)memmap;
603 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
604 
605 	vmemmap_free(start, end, altmap);
606 }
607 #ifdef CONFIG_MEMORY_HOTREMOVE
608 static void free_map_bootmem(struct page *memmap)
609 {
610 	unsigned long start = (unsigned long)memmap;
611 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
612 
613 	vmemmap_free(start, end, NULL);
614 }
615 #endif /* CONFIG_MEMORY_HOTREMOVE */
616 #else
617 static struct page *__kmalloc_section_memmap(void)
618 {
619 	struct page *page, *ret;
620 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
621 
622 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
623 	if (page)
624 		goto got_map_page;
625 
626 	ret = vmalloc(memmap_size);
627 	if (ret)
628 		goto got_map_ptr;
629 
630 	return NULL;
631 got_map_page:
632 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
633 got_map_ptr:
634 
635 	return ret;
636 }
637 
638 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
639 		struct vmem_altmap *altmap)
640 {
641 	return __kmalloc_section_memmap();
642 }
643 
644 static void __kfree_section_memmap(struct page *memmap,
645 		struct vmem_altmap *altmap)
646 {
647 	if (is_vmalloc_addr(memmap))
648 		vfree(memmap);
649 	else
650 		free_pages((unsigned long)memmap,
651 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
652 }
653 
654 #ifdef CONFIG_MEMORY_HOTREMOVE
655 static void free_map_bootmem(struct page *memmap)
656 {
657 	unsigned long maps_section_nr, removing_section_nr, i;
658 	unsigned long magic, nr_pages;
659 	struct page *page = virt_to_page(memmap);
660 
661 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
662 		>> PAGE_SHIFT;
663 
664 	for (i = 0; i < nr_pages; i++, page++) {
665 		magic = (unsigned long) page->freelist;
666 
667 		BUG_ON(magic == NODE_INFO);
668 
669 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
670 		removing_section_nr = page_private(page);
671 
672 		/*
673 		 * When this function is called, the removing section is
674 		 * logical offlined state. This means all pages are isolated
675 		 * from page allocator. If removing section's memmap is placed
676 		 * on the same section, it must not be freed.
677 		 * If it is freed, page allocator may allocate it which will
678 		 * be removed physically soon.
679 		 */
680 		if (maps_section_nr != removing_section_nr)
681 			put_page_bootmem(page);
682 	}
683 }
684 #endif /* CONFIG_MEMORY_HOTREMOVE */
685 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
686 
687 /**
688  * sparse_add_one_section - add a memory section
689  * @nid: The node to add section on
690  * @start_pfn: start pfn of the memory range
691  * @altmap: device page map
692  *
693  * This is only intended for hotplug.
694  *
695  * Return:
696  * * 0		- On success.
697  * * -EEXIST	- Section has been present.
698  * * -ENOMEM	- Out of memory.
699  */
700 int __meminit sparse_add_one_section(int nid, unsigned long start_pfn,
701 				     struct vmem_altmap *altmap)
702 {
703 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
704 	struct mem_section *ms;
705 	struct page *memmap;
706 	unsigned long *usemap;
707 	int ret;
708 
709 	/*
710 	 * no locking for this, because it does its own
711 	 * plus, it does a kmalloc
712 	 */
713 	ret = sparse_index_init(section_nr, nid);
714 	if (ret < 0 && ret != -EEXIST)
715 		return ret;
716 	ret = 0;
717 	memmap = kmalloc_section_memmap(section_nr, nid, altmap);
718 	if (!memmap)
719 		return -ENOMEM;
720 	usemap = __kmalloc_section_usemap();
721 	if (!usemap) {
722 		__kfree_section_memmap(memmap, altmap);
723 		return -ENOMEM;
724 	}
725 
726 	ms = __pfn_to_section(start_pfn);
727 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
728 		ret = -EEXIST;
729 		goto out;
730 	}
731 
732 	/*
733 	 * Poison uninitialized struct pages in order to catch invalid flags
734 	 * combinations.
735 	 */
736 	page_init_poison(memmap, sizeof(struct page) * PAGES_PER_SECTION);
737 
738 	section_mark_present(ms);
739 	sparse_init_one_section(ms, section_nr, memmap, usemap);
740 
741 out:
742 	if (ret < 0) {
743 		kfree(usemap);
744 		__kfree_section_memmap(memmap, altmap);
745 	}
746 	return ret;
747 }
748 
749 #ifdef CONFIG_MEMORY_HOTREMOVE
750 #ifdef CONFIG_MEMORY_FAILURE
751 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
752 {
753 	int i;
754 
755 	if (!memmap)
756 		return;
757 
758 	/*
759 	 * A further optimization is to have per section refcounted
760 	 * num_poisoned_pages.  But that would need more space per memmap, so
761 	 * for now just do a quick global check to speed up this routine in the
762 	 * absence of bad pages.
763 	 */
764 	if (atomic_long_read(&num_poisoned_pages) == 0)
765 		return;
766 
767 	for (i = 0; i < nr_pages; i++) {
768 		if (PageHWPoison(&memmap[i])) {
769 			atomic_long_sub(1, &num_poisoned_pages);
770 			ClearPageHWPoison(&memmap[i]);
771 		}
772 	}
773 }
774 #else
775 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
776 {
777 }
778 #endif
779 
780 static void free_section_usemap(struct page *memmap, unsigned long *usemap,
781 		struct vmem_altmap *altmap)
782 {
783 	struct page *usemap_page;
784 
785 	if (!usemap)
786 		return;
787 
788 	usemap_page = virt_to_page(usemap);
789 	/*
790 	 * Check to see if allocation came from hot-plug-add
791 	 */
792 	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
793 		kfree(usemap);
794 		if (memmap)
795 			__kfree_section_memmap(memmap, altmap);
796 		return;
797 	}
798 
799 	/*
800 	 * The usemap came from bootmem. This is packed with other usemaps
801 	 * on the section which has pgdat at boot time. Just keep it as is now.
802 	 */
803 
804 	if (memmap)
805 		free_map_bootmem(memmap);
806 }
807 
808 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
809 		unsigned long map_offset, struct vmem_altmap *altmap)
810 {
811 	struct page *memmap = NULL;
812 	unsigned long *usemap = NULL;
813 
814 	if (ms->section_mem_map) {
815 		usemap = ms->pageblock_flags;
816 		memmap = sparse_decode_mem_map(ms->section_mem_map,
817 						__section_nr(ms));
818 		ms->section_mem_map = 0;
819 		ms->pageblock_flags = NULL;
820 	}
821 
822 	clear_hwpoisoned_pages(memmap + map_offset,
823 			PAGES_PER_SECTION - map_offset);
824 	free_section_usemap(memmap, usemap, altmap);
825 }
826 #endif /* CONFIG_MEMORY_HOTREMOVE */
827 #endif /* CONFIG_MEMORY_HOTPLUG */
828