xref: /openbmc/linux/mm/sparse.c (revision aac5987a)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/compiler.h>
9 #include <linux/highmem.h>
10 #include <linux/export.h>
11 #include <linux/spinlock.h>
12 #include <linux/vmalloc.h>
13 
14 #include "internal.h"
15 #include <asm/dma.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
18 
19 /*
20  * Permanent SPARSEMEM data:
21  *
22  * 1) mem_section	- memory sections, mem_map's for valid memory
23  */
24 #ifdef CONFIG_SPARSEMEM_EXTREME
25 struct mem_section *mem_section[NR_SECTION_ROOTS]
26 	____cacheline_internodealigned_in_smp;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 	____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32 
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44 
45 int page_to_nid(const struct page *page)
46 {
47 	return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50 
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 	section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60 
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 	struct mem_section *section = NULL;
65 	unsigned long array_size = SECTIONS_PER_ROOT *
66 				   sizeof(struct mem_section);
67 
68 	if (slab_is_available()) {
69 		if (node_state(nid, N_HIGH_MEMORY))
70 			section = kzalloc_node(array_size, GFP_KERNEL, nid);
71 		else
72 			section = kzalloc(array_size, GFP_KERNEL);
73 	} else {
74 		section = memblock_virt_alloc_node(array_size, nid);
75 	}
76 
77 	return section;
78 }
79 
80 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
81 {
82 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
83 	struct mem_section *section;
84 
85 	if (mem_section[root])
86 		return -EEXIST;
87 
88 	section = sparse_index_alloc(nid);
89 	if (!section)
90 		return -ENOMEM;
91 
92 	mem_section[root] = section;
93 
94 	return 0;
95 }
96 #else /* !SPARSEMEM_EXTREME */
97 static inline int sparse_index_init(unsigned long section_nr, int nid)
98 {
99 	return 0;
100 }
101 #endif
102 
103 #ifdef CONFIG_SPARSEMEM_EXTREME
104 int __section_nr(struct mem_section* ms)
105 {
106 	unsigned long root_nr;
107 	struct mem_section* root;
108 
109 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
110 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
111 		if (!root)
112 			continue;
113 
114 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
115 		     break;
116 	}
117 
118 	VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
119 
120 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
121 }
122 #else
123 int __section_nr(struct mem_section* ms)
124 {
125 	return (int)(ms - mem_section[0]);
126 }
127 #endif
128 
129 /*
130  * During early boot, before section_mem_map is used for an actual
131  * mem_map, we use section_mem_map to store the section's NUMA
132  * node.  This keeps us from having to use another data structure.  The
133  * node information is cleared just before we store the real mem_map.
134  */
135 static inline unsigned long sparse_encode_early_nid(int nid)
136 {
137 	return (nid << SECTION_NID_SHIFT);
138 }
139 
140 static inline int sparse_early_nid(struct mem_section *section)
141 {
142 	return (section->section_mem_map >> SECTION_NID_SHIFT);
143 }
144 
145 /* Validate the physical addressing limitations of the model */
146 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
147 						unsigned long *end_pfn)
148 {
149 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
150 
151 	/*
152 	 * Sanity checks - do not allow an architecture to pass
153 	 * in larger pfns than the maximum scope of sparsemem:
154 	 */
155 	if (*start_pfn > max_sparsemem_pfn) {
156 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
157 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
158 			*start_pfn, *end_pfn, max_sparsemem_pfn);
159 		WARN_ON_ONCE(1);
160 		*start_pfn = max_sparsemem_pfn;
161 		*end_pfn = max_sparsemem_pfn;
162 	} else if (*end_pfn > max_sparsemem_pfn) {
163 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
164 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
165 			*start_pfn, *end_pfn, max_sparsemem_pfn);
166 		WARN_ON_ONCE(1);
167 		*end_pfn = max_sparsemem_pfn;
168 	}
169 }
170 
171 /* Record a memory area against a node. */
172 void __init memory_present(int nid, unsigned long start, unsigned long end)
173 {
174 	unsigned long pfn;
175 
176 	start &= PAGE_SECTION_MASK;
177 	mminit_validate_memmodel_limits(&start, &end);
178 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
179 		unsigned long section = pfn_to_section_nr(pfn);
180 		struct mem_section *ms;
181 
182 		sparse_index_init(section, nid);
183 		set_section_nid(section, nid);
184 
185 		ms = __nr_to_section(section);
186 		if (!ms->section_mem_map)
187 			ms->section_mem_map = sparse_encode_early_nid(nid) |
188 							SECTION_MARKED_PRESENT;
189 	}
190 }
191 
192 /*
193  * Only used by the i386 NUMA architecures, but relatively
194  * generic code.
195  */
196 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
197 						     unsigned long end_pfn)
198 {
199 	unsigned long pfn;
200 	unsigned long nr_pages = 0;
201 
202 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
203 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
204 		if (nid != early_pfn_to_nid(pfn))
205 			continue;
206 
207 		if (pfn_present(pfn))
208 			nr_pages += PAGES_PER_SECTION;
209 	}
210 
211 	return nr_pages * sizeof(struct page);
212 }
213 
214 /*
215  * Subtle, we encode the real pfn into the mem_map such that
216  * the identity pfn - section_mem_map will return the actual
217  * physical page frame number.
218  */
219 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
220 {
221 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
222 }
223 
224 /*
225  * Decode mem_map from the coded memmap
226  */
227 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
228 {
229 	/* mask off the extra low bits of information */
230 	coded_mem_map &= SECTION_MAP_MASK;
231 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
232 }
233 
234 static int __meminit sparse_init_one_section(struct mem_section *ms,
235 		unsigned long pnum, struct page *mem_map,
236 		unsigned long *pageblock_bitmap)
237 {
238 	if (!present_section(ms))
239 		return -EINVAL;
240 
241 	ms->section_mem_map &= ~SECTION_MAP_MASK;
242 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
243 							SECTION_HAS_MEM_MAP;
244  	ms->pageblock_flags = pageblock_bitmap;
245 
246 	return 1;
247 }
248 
249 unsigned long usemap_size(void)
250 {
251 	unsigned long size_bytes;
252 	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
253 	size_bytes = roundup(size_bytes, sizeof(unsigned long));
254 	return size_bytes;
255 }
256 
257 #ifdef CONFIG_MEMORY_HOTPLUG
258 static unsigned long *__kmalloc_section_usemap(void)
259 {
260 	return kmalloc(usemap_size(), GFP_KERNEL);
261 }
262 #endif /* CONFIG_MEMORY_HOTPLUG */
263 
264 #ifdef CONFIG_MEMORY_HOTREMOVE
265 static unsigned long * __init
266 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
267 					 unsigned long size)
268 {
269 	unsigned long goal, limit;
270 	unsigned long *p;
271 	int nid;
272 	/*
273 	 * A page may contain usemaps for other sections preventing the
274 	 * page being freed and making a section unremovable while
275 	 * other sections referencing the usemap remain active. Similarly,
276 	 * a pgdat can prevent a section being removed. If section A
277 	 * contains a pgdat and section B contains the usemap, both
278 	 * sections become inter-dependent. This allocates usemaps
279 	 * from the same section as the pgdat where possible to avoid
280 	 * this problem.
281 	 */
282 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
283 	limit = goal + (1UL << PA_SECTION_SHIFT);
284 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
285 again:
286 	p = memblock_virt_alloc_try_nid_nopanic(size,
287 						SMP_CACHE_BYTES, goal, limit,
288 						nid);
289 	if (!p && limit) {
290 		limit = 0;
291 		goto again;
292 	}
293 	return p;
294 }
295 
296 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
297 {
298 	unsigned long usemap_snr, pgdat_snr;
299 	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
300 	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
301 	struct pglist_data *pgdat = NODE_DATA(nid);
302 	int usemap_nid;
303 
304 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
305 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
306 	if (usemap_snr == pgdat_snr)
307 		return;
308 
309 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
310 		/* skip redundant message */
311 		return;
312 
313 	old_usemap_snr = usemap_snr;
314 	old_pgdat_snr = pgdat_snr;
315 
316 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
317 	if (usemap_nid != nid) {
318 		pr_info("node %d must be removed before remove section %ld\n",
319 			nid, usemap_snr);
320 		return;
321 	}
322 	/*
323 	 * There is a circular dependency.
324 	 * Some platforms allow un-removable section because they will just
325 	 * gather other removable sections for dynamic partitioning.
326 	 * Just notify un-removable section's number here.
327 	 */
328 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
329 		usemap_snr, pgdat_snr, nid);
330 }
331 #else
332 static unsigned long * __init
333 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
334 					 unsigned long size)
335 {
336 	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
337 }
338 
339 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
340 {
341 }
342 #endif /* CONFIG_MEMORY_HOTREMOVE */
343 
344 static void __init sparse_early_usemaps_alloc_node(void *data,
345 				 unsigned long pnum_begin,
346 				 unsigned long pnum_end,
347 				 unsigned long usemap_count, int nodeid)
348 {
349 	void *usemap;
350 	unsigned long pnum;
351 	unsigned long **usemap_map = (unsigned long **)data;
352 	int size = usemap_size();
353 
354 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
355 							  size * usemap_count);
356 	if (!usemap) {
357 		pr_warn("%s: allocation failed\n", __func__);
358 		return;
359 	}
360 
361 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
362 		if (!present_section_nr(pnum))
363 			continue;
364 		usemap_map[pnum] = usemap;
365 		usemap += size;
366 		check_usemap_section_nr(nodeid, usemap_map[pnum]);
367 	}
368 }
369 
370 #ifndef CONFIG_SPARSEMEM_VMEMMAP
371 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
372 {
373 	struct page *map;
374 	unsigned long size;
375 
376 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
377 	if (map)
378 		return map;
379 
380 	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
381 	map = memblock_virt_alloc_try_nid(size,
382 					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
383 					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
384 	return map;
385 }
386 void __init sparse_mem_maps_populate_node(struct page **map_map,
387 					  unsigned long pnum_begin,
388 					  unsigned long pnum_end,
389 					  unsigned long map_count, int nodeid)
390 {
391 	void *map;
392 	unsigned long pnum;
393 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
394 
395 	map = alloc_remap(nodeid, size * map_count);
396 	if (map) {
397 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
398 			if (!present_section_nr(pnum))
399 				continue;
400 			map_map[pnum] = map;
401 			map += size;
402 		}
403 		return;
404 	}
405 
406 	size = PAGE_ALIGN(size);
407 	map = memblock_virt_alloc_try_nid(size * map_count,
408 					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
409 					  BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
410 	if (map) {
411 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
412 			if (!present_section_nr(pnum))
413 				continue;
414 			map_map[pnum] = map;
415 			map += size;
416 		}
417 		return;
418 	}
419 
420 	/* fallback */
421 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
422 		struct mem_section *ms;
423 
424 		if (!present_section_nr(pnum))
425 			continue;
426 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
427 		if (map_map[pnum])
428 			continue;
429 		ms = __nr_to_section(pnum);
430 		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
431 		       __func__);
432 		ms->section_mem_map = 0;
433 	}
434 }
435 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
436 
437 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
438 static void __init sparse_early_mem_maps_alloc_node(void *data,
439 				 unsigned long pnum_begin,
440 				 unsigned long pnum_end,
441 				 unsigned long map_count, int nodeid)
442 {
443 	struct page **map_map = (struct page **)data;
444 	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
445 					 map_count, nodeid);
446 }
447 #else
448 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
449 {
450 	struct page *map;
451 	struct mem_section *ms = __nr_to_section(pnum);
452 	int nid = sparse_early_nid(ms);
453 
454 	map = sparse_mem_map_populate(pnum, nid);
455 	if (map)
456 		return map;
457 
458 	pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
459 	       __func__);
460 	ms->section_mem_map = 0;
461 	return NULL;
462 }
463 #endif
464 
465 void __weak __meminit vmemmap_populate_print_last(void)
466 {
467 }
468 
469 /**
470  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
471  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
472  */
473 static void __init alloc_usemap_and_memmap(void (*alloc_func)
474 					(void *, unsigned long, unsigned long,
475 					unsigned long, int), void *data)
476 {
477 	unsigned long pnum;
478 	unsigned long map_count;
479 	int nodeid_begin = 0;
480 	unsigned long pnum_begin = 0;
481 
482 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
483 		struct mem_section *ms;
484 
485 		if (!present_section_nr(pnum))
486 			continue;
487 		ms = __nr_to_section(pnum);
488 		nodeid_begin = sparse_early_nid(ms);
489 		pnum_begin = pnum;
490 		break;
491 	}
492 	map_count = 1;
493 	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
494 		struct mem_section *ms;
495 		int nodeid;
496 
497 		if (!present_section_nr(pnum))
498 			continue;
499 		ms = __nr_to_section(pnum);
500 		nodeid = sparse_early_nid(ms);
501 		if (nodeid == nodeid_begin) {
502 			map_count++;
503 			continue;
504 		}
505 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
506 		alloc_func(data, pnum_begin, pnum,
507 						map_count, nodeid_begin);
508 		/* new start, update count etc*/
509 		nodeid_begin = nodeid;
510 		pnum_begin = pnum;
511 		map_count = 1;
512 	}
513 	/* ok, last chunk */
514 	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
515 						map_count, nodeid_begin);
516 }
517 
518 /*
519  * Allocate the accumulated non-linear sections, allocate a mem_map
520  * for each and record the physical to section mapping.
521  */
522 void __init sparse_init(void)
523 {
524 	unsigned long pnum;
525 	struct page *map;
526 	unsigned long *usemap;
527 	unsigned long **usemap_map;
528 	int size;
529 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
530 	int size2;
531 	struct page **map_map;
532 #endif
533 
534 	/* see include/linux/mmzone.h 'struct mem_section' definition */
535 	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
536 
537 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
538 	set_pageblock_order();
539 
540 	/*
541 	 * map is using big page (aka 2M in x86 64 bit)
542 	 * usemap is less one page (aka 24 bytes)
543 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
544 	 * make next 2M slip to one more 2M later.
545 	 * then in big system, the memory will have a lot of holes...
546 	 * here try to allocate 2M pages continuously.
547 	 *
548 	 * powerpc need to call sparse_init_one_section right after each
549 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
550 	 */
551 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
552 	usemap_map = memblock_virt_alloc(size, 0);
553 	if (!usemap_map)
554 		panic("can not allocate usemap_map\n");
555 	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
556 							(void *)usemap_map);
557 
558 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
559 	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
560 	map_map = memblock_virt_alloc(size2, 0);
561 	if (!map_map)
562 		panic("can not allocate map_map\n");
563 	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
564 							(void *)map_map);
565 #endif
566 
567 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
568 		if (!present_section_nr(pnum))
569 			continue;
570 
571 		usemap = usemap_map[pnum];
572 		if (!usemap)
573 			continue;
574 
575 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
576 		map = map_map[pnum];
577 #else
578 		map = sparse_early_mem_map_alloc(pnum);
579 #endif
580 		if (!map)
581 			continue;
582 
583 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
584 								usemap);
585 	}
586 
587 	vmemmap_populate_print_last();
588 
589 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
590 	memblock_free_early(__pa(map_map), size2);
591 #endif
592 	memblock_free_early(__pa(usemap_map), size);
593 }
594 
595 #ifdef CONFIG_MEMORY_HOTPLUG
596 #ifdef CONFIG_SPARSEMEM_VMEMMAP
597 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
598 {
599 	/* This will make the necessary allocations eventually. */
600 	return sparse_mem_map_populate(pnum, nid);
601 }
602 static void __kfree_section_memmap(struct page *memmap)
603 {
604 	unsigned long start = (unsigned long)memmap;
605 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
606 
607 	vmemmap_free(start, end);
608 }
609 #ifdef CONFIG_MEMORY_HOTREMOVE
610 static void free_map_bootmem(struct page *memmap)
611 {
612 	unsigned long start = (unsigned long)memmap;
613 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
614 
615 	vmemmap_free(start, end);
616 }
617 #endif /* CONFIG_MEMORY_HOTREMOVE */
618 #else
619 static struct page *__kmalloc_section_memmap(void)
620 {
621 	struct page *page, *ret;
622 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
623 
624 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
625 	if (page)
626 		goto got_map_page;
627 
628 	ret = vmalloc(memmap_size);
629 	if (ret)
630 		goto got_map_ptr;
631 
632 	return NULL;
633 got_map_page:
634 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
635 got_map_ptr:
636 
637 	return ret;
638 }
639 
640 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
641 {
642 	return __kmalloc_section_memmap();
643 }
644 
645 static void __kfree_section_memmap(struct page *memmap)
646 {
647 	if (is_vmalloc_addr(memmap))
648 		vfree(memmap);
649 	else
650 		free_pages((unsigned long)memmap,
651 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
652 }
653 
654 #ifdef CONFIG_MEMORY_HOTREMOVE
655 static void free_map_bootmem(struct page *memmap)
656 {
657 	unsigned long maps_section_nr, removing_section_nr, i;
658 	unsigned long magic, nr_pages;
659 	struct page *page = virt_to_page(memmap);
660 
661 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
662 		>> PAGE_SHIFT;
663 
664 	for (i = 0; i < nr_pages; i++, page++) {
665 		magic = (unsigned long) page->freelist;
666 
667 		BUG_ON(magic == NODE_INFO);
668 
669 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
670 		removing_section_nr = page_private(page);
671 
672 		/*
673 		 * When this function is called, the removing section is
674 		 * logical offlined state. This means all pages are isolated
675 		 * from page allocator. If removing section's memmap is placed
676 		 * on the same section, it must not be freed.
677 		 * If it is freed, page allocator may allocate it which will
678 		 * be removed physically soon.
679 		 */
680 		if (maps_section_nr != removing_section_nr)
681 			put_page_bootmem(page);
682 	}
683 }
684 #endif /* CONFIG_MEMORY_HOTREMOVE */
685 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
686 
687 /*
688  * returns the number of sections whose mem_maps were properly
689  * set.  If this is <=0, then that means that the passed-in
690  * map was not consumed and must be freed.
691  */
692 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
693 {
694 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
695 	struct pglist_data *pgdat = zone->zone_pgdat;
696 	struct mem_section *ms;
697 	struct page *memmap;
698 	unsigned long *usemap;
699 	unsigned long flags;
700 	int ret;
701 
702 	/*
703 	 * no locking for this, because it does its own
704 	 * plus, it does a kmalloc
705 	 */
706 	ret = sparse_index_init(section_nr, pgdat->node_id);
707 	if (ret < 0 && ret != -EEXIST)
708 		return ret;
709 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
710 	if (!memmap)
711 		return -ENOMEM;
712 	usemap = __kmalloc_section_usemap();
713 	if (!usemap) {
714 		__kfree_section_memmap(memmap);
715 		return -ENOMEM;
716 	}
717 
718 	pgdat_resize_lock(pgdat, &flags);
719 
720 	ms = __pfn_to_section(start_pfn);
721 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
722 		ret = -EEXIST;
723 		goto out;
724 	}
725 
726 	memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
727 
728 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
729 
730 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
731 
732 out:
733 	pgdat_resize_unlock(pgdat, &flags);
734 	if (ret <= 0) {
735 		kfree(usemap);
736 		__kfree_section_memmap(memmap);
737 	}
738 	return ret;
739 }
740 
741 #ifdef CONFIG_MEMORY_HOTREMOVE
742 #ifdef CONFIG_MEMORY_FAILURE
743 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
744 {
745 	int i;
746 
747 	if (!memmap)
748 		return;
749 
750 	for (i = 0; i < nr_pages; i++) {
751 		if (PageHWPoison(&memmap[i])) {
752 			atomic_long_sub(1, &num_poisoned_pages);
753 			ClearPageHWPoison(&memmap[i]);
754 		}
755 	}
756 }
757 #else
758 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
759 {
760 }
761 #endif
762 
763 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
764 {
765 	struct page *usemap_page;
766 
767 	if (!usemap)
768 		return;
769 
770 	usemap_page = virt_to_page(usemap);
771 	/*
772 	 * Check to see if allocation came from hot-plug-add
773 	 */
774 	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
775 		kfree(usemap);
776 		if (memmap)
777 			__kfree_section_memmap(memmap);
778 		return;
779 	}
780 
781 	/*
782 	 * The usemap came from bootmem. This is packed with other usemaps
783 	 * on the section which has pgdat at boot time. Just keep it as is now.
784 	 */
785 
786 	if (memmap)
787 		free_map_bootmem(memmap);
788 }
789 
790 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
791 		unsigned long map_offset)
792 {
793 	struct page *memmap = NULL;
794 	unsigned long *usemap = NULL, flags;
795 	struct pglist_data *pgdat = zone->zone_pgdat;
796 
797 	pgdat_resize_lock(pgdat, &flags);
798 	if (ms->section_mem_map) {
799 		usemap = ms->pageblock_flags;
800 		memmap = sparse_decode_mem_map(ms->section_mem_map,
801 						__section_nr(ms));
802 		ms->section_mem_map = 0;
803 		ms->pageblock_flags = NULL;
804 	}
805 	pgdat_resize_unlock(pgdat, &flags);
806 
807 	clear_hwpoisoned_pages(memmap + map_offset,
808 			PAGES_PER_SECTION - map_offset);
809 	free_section_usemap(memmap, usemap);
810 }
811 #endif /* CONFIG_MEMORY_HOTREMOVE */
812 #endif /* CONFIG_MEMORY_HOTPLUG */
813