1 /* 2 * sparse memory mappings. 3 */ 4 #include <linux/mm.h> 5 #include <linux/slab.h> 6 #include <linux/mmzone.h> 7 #include <linux/bootmem.h> 8 #include <linux/compiler.h> 9 #include <linux/highmem.h> 10 #include <linux/export.h> 11 #include <linux/spinlock.h> 12 #include <linux/vmalloc.h> 13 14 #include "internal.h" 15 #include <asm/dma.h> 16 #include <asm/pgalloc.h> 17 #include <asm/pgtable.h> 18 19 /* 20 * Permanent SPARSEMEM data: 21 * 22 * 1) mem_section - memory sections, mem_map's for valid memory 23 */ 24 #ifdef CONFIG_SPARSEMEM_EXTREME 25 struct mem_section *mem_section[NR_SECTION_ROOTS] 26 ____cacheline_internodealigned_in_smp; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) { 69 if (node_state(nid, N_HIGH_MEMORY)) 70 section = kzalloc_node(array_size, GFP_KERNEL, nid); 71 else 72 section = kzalloc(array_size, GFP_KERNEL); 73 } else { 74 section = memblock_virt_alloc_node(array_size, nid); 75 } 76 77 return section; 78 } 79 80 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 81 { 82 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 83 struct mem_section *section; 84 85 if (mem_section[root]) 86 return -EEXIST; 87 88 section = sparse_index_alloc(nid); 89 if (!section) 90 return -ENOMEM; 91 92 mem_section[root] = section; 93 94 return 0; 95 } 96 #else /* !SPARSEMEM_EXTREME */ 97 static inline int sparse_index_init(unsigned long section_nr, int nid) 98 { 99 return 0; 100 } 101 #endif 102 103 #ifdef CONFIG_SPARSEMEM_EXTREME 104 int __section_nr(struct mem_section* ms) 105 { 106 unsigned long root_nr; 107 struct mem_section* root; 108 109 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 110 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 111 if (!root) 112 continue; 113 114 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 115 break; 116 } 117 118 VM_BUG_ON(root_nr == NR_SECTION_ROOTS); 119 120 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 121 } 122 #else 123 int __section_nr(struct mem_section* ms) 124 { 125 return (int)(ms - mem_section[0]); 126 } 127 #endif 128 129 /* 130 * During early boot, before section_mem_map is used for an actual 131 * mem_map, we use section_mem_map to store the section's NUMA 132 * node. This keeps us from having to use another data structure. The 133 * node information is cleared just before we store the real mem_map. 134 */ 135 static inline unsigned long sparse_encode_early_nid(int nid) 136 { 137 return (nid << SECTION_NID_SHIFT); 138 } 139 140 static inline int sparse_early_nid(struct mem_section *section) 141 { 142 return (section->section_mem_map >> SECTION_NID_SHIFT); 143 } 144 145 /* Validate the physical addressing limitations of the model */ 146 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 147 unsigned long *end_pfn) 148 { 149 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 150 151 /* 152 * Sanity checks - do not allow an architecture to pass 153 * in larger pfns than the maximum scope of sparsemem: 154 */ 155 if (*start_pfn > max_sparsemem_pfn) { 156 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 157 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 158 *start_pfn, *end_pfn, max_sparsemem_pfn); 159 WARN_ON_ONCE(1); 160 *start_pfn = max_sparsemem_pfn; 161 *end_pfn = max_sparsemem_pfn; 162 } else if (*end_pfn > max_sparsemem_pfn) { 163 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 164 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 165 *start_pfn, *end_pfn, max_sparsemem_pfn); 166 WARN_ON_ONCE(1); 167 *end_pfn = max_sparsemem_pfn; 168 } 169 } 170 171 /* Record a memory area against a node. */ 172 void __init memory_present(int nid, unsigned long start, unsigned long end) 173 { 174 unsigned long pfn; 175 176 start &= PAGE_SECTION_MASK; 177 mminit_validate_memmodel_limits(&start, &end); 178 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 179 unsigned long section = pfn_to_section_nr(pfn); 180 struct mem_section *ms; 181 182 sparse_index_init(section, nid); 183 set_section_nid(section, nid); 184 185 ms = __nr_to_section(section); 186 if (!ms->section_mem_map) 187 ms->section_mem_map = sparse_encode_early_nid(nid) | 188 SECTION_MARKED_PRESENT; 189 } 190 } 191 192 /* 193 * Only used by the i386 NUMA architecures, but relatively 194 * generic code. 195 */ 196 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 197 unsigned long end_pfn) 198 { 199 unsigned long pfn; 200 unsigned long nr_pages = 0; 201 202 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 203 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 204 if (nid != early_pfn_to_nid(pfn)) 205 continue; 206 207 if (pfn_present(pfn)) 208 nr_pages += PAGES_PER_SECTION; 209 } 210 211 return nr_pages * sizeof(struct page); 212 } 213 214 /* 215 * Subtle, we encode the real pfn into the mem_map such that 216 * the identity pfn - section_mem_map will return the actual 217 * physical page frame number. 218 */ 219 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 220 { 221 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 222 } 223 224 /* 225 * Decode mem_map from the coded memmap 226 */ 227 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 228 { 229 /* mask off the extra low bits of information */ 230 coded_mem_map &= SECTION_MAP_MASK; 231 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 232 } 233 234 static int __meminit sparse_init_one_section(struct mem_section *ms, 235 unsigned long pnum, struct page *mem_map, 236 unsigned long *pageblock_bitmap) 237 { 238 if (!present_section(ms)) 239 return -EINVAL; 240 241 ms->section_mem_map &= ~SECTION_MAP_MASK; 242 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 243 SECTION_HAS_MEM_MAP; 244 ms->pageblock_flags = pageblock_bitmap; 245 246 return 1; 247 } 248 249 unsigned long usemap_size(void) 250 { 251 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 252 } 253 254 #ifdef CONFIG_MEMORY_HOTPLUG 255 static unsigned long *__kmalloc_section_usemap(void) 256 { 257 return kmalloc(usemap_size(), GFP_KERNEL); 258 } 259 #endif /* CONFIG_MEMORY_HOTPLUG */ 260 261 #ifdef CONFIG_MEMORY_HOTREMOVE 262 static unsigned long * __init 263 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 264 unsigned long size) 265 { 266 unsigned long goal, limit; 267 unsigned long *p; 268 int nid; 269 /* 270 * A page may contain usemaps for other sections preventing the 271 * page being freed and making a section unremovable while 272 * other sections referencing the usemap remain active. Similarly, 273 * a pgdat can prevent a section being removed. If section A 274 * contains a pgdat and section B contains the usemap, both 275 * sections become inter-dependent. This allocates usemaps 276 * from the same section as the pgdat where possible to avoid 277 * this problem. 278 */ 279 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 280 limit = goal + (1UL << PA_SECTION_SHIFT); 281 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 282 again: 283 p = memblock_virt_alloc_try_nid_nopanic(size, 284 SMP_CACHE_BYTES, goal, limit, 285 nid); 286 if (!p && limit) { 287 limit = 0; 288 goto again; 289 } 290 return p; 291 } 292 293 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 294 { 295 unsigned long usemap_snr, pgdat_snr; 296 static unsigned long old_usemap_snr = NR_MEM_SECTIONS; 297 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; 298 struct pglist_data *pgdat = NODE_DATA(nid); 299 int usemap_nid; 300 301 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 302 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 303 if (usemap_snr == pgdat_snr) 304 return; 305 306 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 307 /* skip redundant message */ 308 return; 309 310 old_usemap_snr = usemap_snr; 311 old_pgdat_snr = pgdat_snr; 312 313 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 314 if (usemap_nid != nid) { 315 pr_info("node %d must be removed before remove section %ld\n", 316 nid, usemap_snr); 317 return; 318 } 319 /* 320 * There is a circular dependency. 321 * Some platforms allow un-removable section because they will just 322 * gather other removable sections for dynamic partitioning. 323 * Just notify un-removable section's number here. 324 */ 325 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 326 usemap_snr, pgdat_snr, nid); 327 } 328 #else 329 static unsigned long * __init 330 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 331 unsigned long size) 332 { 333 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id); 334 } 335 336 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 337 { 338 } 339 #endif /* CONFIG_MEMORY_HOTREMOVE */ 340 341 static void __init sparse_early_usemaps_alloc_node(void *data, 342 unsigned long pnum_begin, 343 unsigned long pnum_end, 344 unsigned long usemap_count, int nodeid) 345 { 346 void *usemap; 347 unsigned long pnum; 348 unsigned long **usemap_map = (unsigned long **)data; 349 int size = usemap_size(); 350 351 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), 352 size * usemap_count); 353 if (!usemap) { 354 pr_warn("%s: allocation failed\n", __func__); 355 return; 356 } 357 358 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 359 if (!present_section_nr(pnum)) 360 continue; 361 usemap_map[pnum] = usemap; 362 usemap += size; 363 check_usemap_section_nr(nodeid, usemap_map[pnum]); 364 } 365 } 366 367 #ifndef CONFIG_SPARSEMEM_VMEMMAP 368 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) 369 { 370 struct page *map; 371 unsigned long size; 372 373 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); 374 if (map) 375 return map; 376 377 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 378 map = memblock_virt_alloc_try_nid(size, 379 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 380 BOOTMEM_ALLOC_ACCESSIBLE, nid); 381 return map; 382 } 383 void __init sparse_mem_maps_populate_node(struct page **map_map, 384 unsigned long pnum_begin, 385 unsigned long pnum_end, 386 unsigned long map_count, int nodeid) 387 { 388 void *map; 389 unsigned long pnum; 390 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; 391 392 map = alloc_remap(nodeid, size * map_count); 393 if (map) { 394 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 395 if (!present_section_nr(pnum)) 396 continue; 397 map_map[pnum] = map; 398 map += size; 399 } 400 return; 401 } 402 403 size = PAGE_ALIGN(size); 404 map = memblock_virt_alloc_try_nid(size * map_count, 405 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 406 BOOTMEM_ALLOC_ACCESSIBLE, nodeid); 407 if (map) { 408 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 409 if (!present_section_nr(pnum)) 410 continue; 411 map_map[pnum] = map; 412 map += size; 413 } 414 return; 415 } 416 417 /* fallback */ 418 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 419 struct mem_section *ms; 420 421 if (!present_section_nr(pnum)) 422 continue; 423 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); 424 if (map_map[pnum]) 425 continue; 426 ms = __nr_to_section(pnum); 427 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 428 __func__); 429 ms->section_mem_map = 0; 430 } 431 } 432 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 433 434 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 435 static void __init sparse_early_mem_maps_alloc_node(void *data, 436 unsigned long pnum_begin, 437 unsigned long pnum_end, 438 unsigned long map_count, int nodeid) 439 { 440 struct page **map_map = (struct page **)data; 441 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, 442 map_count, nodeid); 443 } 444 #else 445 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 446 { 447 struct page *map; 448 struct mem_section *ms = __nr_to_section(pnum); 449 int nid = sparse_early_nid(ms); 450 451 map = sparse_mem_map_populate(pnum, nid); 452 if (map) 453 return map; 454 455 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 456 __func__); 457 ms->section_mem_map = 0; 458 return NULL; 459 } 460 #endif 461 462 void __weak __meminit vmemmap_populate_print_last(void) 463 { 464 } 465 466 /** 467 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap 468 * @map: usemap_map for pageblock flags or mmap_map for vmemmap 469 */ 470 static void __init alloc_usemap_and_memmap(void (*alloc_func) 471 (void *, unsigned long, unsigned long, 472 unsigned long, int), void *data) 473 { 474 unsigned long pnum; 475 unsigned long map_count; 476 int nodeid_begin = 0; 477 unsigned long pnum_begin = 0; 478 479 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 480 struct mem_section *ms; 481 482 if (!present_section_nr(pnum)) 483 continue; 484 ms = __nr_to_section(pnum); 485 nodeid_begin = sparse_early_nid(ms); 486 pnum_begin = pnum; 487 break; 488 } 489 map_count = 1; 490 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { 491 struct mem_section *ms; 492 int nodeid; 493 494 if (!present_section_nr(pnum)) 495 continue; 496 ms = __nr_to_section(pnum); 497 nodeid = sparse_early_nid(ms); 498 if (nodeid == nodeid_begin) { 499 map_count++; 500 continue; 501 } 502 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 503 alloc_func(data, pnum_begin, pnum, 504 map_count, nodeid_begin); 505 /* new start, update count etc*/ 506 nodeid_begin = nodeid; 507 pnum_begin = pnum; 508 map_count = 1; 509 } 510 /* ok, last chunk */ 511 alloc_func(data, pnum_begin, NR_MEM_SECTIONS, 512 map_count, nodeid_begin); 513 } 514 515 /* 516 * Allocate the accumulated non-linear sections, allocate a mem_map 517 * for each and record the physical to section mapping. 518 */ 519 void __init sparse_init(void) 520 { 521 unsigned long pnum; 522 struct page *map; 523 unsigned long *usemap; 524 unsigned long **usemap_map; 525 int size; 526 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 527 int size2; 528 struct page **map_map; 529 #endif 530 531 /* see include/linux/mmzone.h 'struct mem_section' definition */ 532 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section))); 533 534 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 535 set_pageblock_order(); 536 537 /* 538 * map is using big page (aka 2M in x86 64 bit) 539 * usemap is less one page (aka 24 bytes) 540 * so alloc 2M (with 2M align) and 24 bytes in turn will 541 * make next 2M slip to one more 2M later. 542 * then in big system, the memory will have a lot of holes... 543 * here try to allocate 2M pages continuously. 544 * 545 * powerpc need to call sparse_init_one_section right after each 546 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 547 */ 548 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 549 usemap_map = memblock_virt_alloc(size, 0); 550 if (!usemap_map) 551 panic("can not allocate usemap_map\n"); 552 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node, 553 (void *)usemap_map); 554 555 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 556 size2 = sizeof(struct page *) * NR_MEM_SECTIONS; 557 map_map = memblock_virt_alloc(size2, 0); 558 if (!map_map) 559 panic("can not allocate map_map\n"); 560 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node, 561 (void *)map_map); 562 #endif 563 564 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 565 if (!present_section_nr(pnum)) 566 continue; 567 568 usemap = usemap_map[pnum]; 569 if (!usemap) 570 continue; 571 572 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 573 map = map_map[pnum]; 574 #else 575 map = sparse_early_mem_map_alloc(pnum); 576 #endif 577 if (!map) 578 continue; 579 580 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 581 usemap); 582 } 583 584 vmemmap_populate_print_last(); 585 586 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 587 memblock_free_early(__pa(map_map), size2); 588 #endif 589 memblock_free_early(__pa(usemap_map), size); 590 } 591 592 #ifdef CONFIG_MEMORY_HOTPLUG 593 #ifdef CONFIG_SPARSEMEM_VMEMMAP 594 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid) 595 { 596 /* This will make the necessary allocations eventually. */ 597 return sparse_mem_map_populate(pnum, nid); 598 } 599 static void __kfree_section_memmap(struct page *memmap) 600 { 601 unsigned long start = (unsigned long)memmap; 602 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 603 604 vmemmap_free(start, end); 605 } 606 #ifdef CONFIG_MEMORY_HOTREMOVE 607 static void free_map_bootmem(struct page *memmap) 608 { 609 unsigned long start = (unsigned long)memmap; 610 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 611 612 vmemmap_free(start, end); 613 } 614 #endif /* CONFIG_MEMORY_HOTREMOVE */ 615 #else 616 static struct page *__kmalloc_section_memmap(void) 617 { 618 struct page *page, *ret; 619 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION; 620 621 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 622 if (page) 623 goto got_map_page; 624 625 ret = vmalloc(memmap_size); 626 if (ret) 627 goto got_map_ptr; 628 629 return NULL; 630 got_map_page: 631 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 632 got_map_ptr: 633 634 return ret; 635 } 636 637 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid) 638 { 639 return __kmalloc_section_memmap(); 640 } 641 642 static void __kfree_section_memmap(struct page *memmap) 643 { 644 if (is_vmalloc_addr(memmap)) 645 vfree(memmap); 646 else 647 free_pages((unsigned long)memmap, 648 get_order(sizeof(struct page) * PAGES_PER_SECTION)); 649 } 650 651 #ifdef CONFIG_MEMORY_HOTREMOVE 652 static void free_map_bootmem(struct page *memmap) 653 { 654 unsigned long maps_section_nr, removing_section_nr, i; 655 unsigned long magic, nr_pages; 656 struct page *page = virt_to_page(memmap); 657 658 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 659 >> PAGE_SHIFT; 660 661 for (i = 0; i < nr_pages; i++, page++) { 662 magic = (unsigned long) page->freelist; 663 664 BUG_ON(magic == NODE_INFO); 665 666 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 667 removing_section_nr = page_private(page); 668 669 /* 670 * When this function is called, the removing section is 671 * logical offlined state. This means all pages are isolated 672 * from page allocator. If removing section's memmap is placed 673 * on the same section, it must not be freed. 674 * If it is freed, page allocator may allocate it which will 675 * be removed physically soon. 676 */ 677 if (maps_section_nr != removing_section_nr) 678 put_page_bootmem(page); 679 } 680 } 681 #endif /* CONFIG_MEMORY_HOTREMOVE */ 682 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 683 684 /* 685 * returns the number of sections whose mem_maps were properly 686 * set. If this is <=0, then that means that the passed-in 687 * map was not consumed and must be freed. 688 */ 689 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn) 690 { 691 unsigned long section_nr = pfn_to_section_nr(start_pfn); 692 struct pglist_data *pgdat = zone->zone_pgdat; 693 struct mem_section *ms; 694 struct page *memmap; 695 unsigned long *usemap; 696 unsigned long flags; 697 int ret; 698 699 /* 700 * no locking for this, because it does its own 701 * plus, it does a kmalloc 702 */ 703 ret = sparse_index_init(section_nr, pgdat->node_id); 704 if (ret < 0 && ret != -EEXIST) 705 return ret; 706 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id); 707 if (!memmap) 708 return -ENOMEM; 709 usemap = __kmalloc_section_usemap(); 710 if (!usemap) { 711 __kfree_section_memmap(memmap); 712 return -ENOMEM; 713 } 714 715 pgdat_resize_lock(pgdat, &flags); 716 717 ms = __pfn_to_section(start_pfn); 718 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 719 ret = -EEXIST; 720 goto out; 721 } 722 723 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION); 724 725 ms->section_mem_map |= SECTION_MARKED_PRESENT; 726 727 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 728 729 out: 730 pgdat_resize_unlock(pgdat, &flags); 731 if (ret <= 0) { 732 kfree(usemap); 733 __kfree_section_memmap(memmap); 734 } 735 return ret; 736 } 737 738 #ifdef CONFIG_MEMORY_HOTREMOVE 739 #ifdef CONFIG_MEMORY_FAILURE 740 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 741 { 742 int i; 743 744 if (!memmap) 745 return; 746 747 for (i = 0; i < nr_pages; i++) { 748 if (PageHWPoison(&memmap[i])) { 749 atomic_long_sub(1, &num_poisoned_pages); 750 ClearPageHWPoison(&memmap[i]); 751 } 752 } 753 } 754 #else 755 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 756 { 757 } 758 #endif 759 760 static void free_section_usemap(struct page *memmap, unsigned long *usemap) 761 { 762 struct page *usemap_page; 763 764 if (!usemap) 765 return; 766 767 usemap_page = virt_to_page(usemap); 768 /* 769 * Check to see if allocation came from hot-plug-add 770 */ 771 if (PageSlab(usemap_page) || PageCompound(usemap_page)) { 772 kfree(usemap); 773 if (memmap) 774 __kfree_section_memmap(memmap); 775 return; 776 } 777 778 /* 779 * The usemap came from bootmem. This is packed with other usemaps 780 * on the section which has pgdat at boot time. Just keep it as is now. 781 */ 782 783 if (memmap) 784 free_map_bootmem(memmap); 785 } 786 787 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms, 788 unsigned long map_offset) 789 { 790 struct page *memmap = NULL; 791 unsigned long *usemap = NULL, flags; 792 struct pglist_data *pgdat = zone->zone_pgdat; 793 794 pgdat_resize_lock(pgdat, &flags); 795 if (ms->section_mem_map) { 796 usemap = ms->pageblock_flags; 797 memmap = sparse_decode_mem_map(ms->section_mem_map, 798 __section_nr(ms)); 799 ms->section_mem_map = 0; 800 ms->pageblock_flags = NULL; 801 } 802 pgdat_resize_unlock(pgdat, &flags); 803 804 clear_hwpoisoned_pages(memmap + map_offset, 805 PAGES_PER_SECTION - map_offset); 806 free_section_usemap(memmap, usemap); 807 } 808 #endif /* CONFIG_MEMORY_HOTREMOVE */ 809 #endif /* CONFIG_MEMORY_HOTPLUG */ 810