1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/bootmem.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 15 #include "internal.h" 16 #include <asm/dma.h> 17 #include <asm/pgalloc.h> 18 #include <asm/pgtable.h> 19 20 /* 21 * Permanent SPARSEMEM data: 22 * 23 * 1) mem_section - memory sections, mem_map's for valid memory 24 */ 25 #ifdef CONFIG_SPARSEMEM_EXTREME 26 struct mem_section **mem_section; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) 69 section = kzalloc_node(array_size, GFP_KERNEL, nid); 70 else 71 section = memblock_virt_alloc_node(array_size, nid); 72 73 return section; 74 } 75 76 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 77 { 78 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 79 struct mem_section *section; 80 81 if (mem_section[root]) 82 return -EEXIST; 83 84 section = sparse_index_alloc(nid); 85 if (!section) 86 return -ENOMEM; 87 88 mem_section[root] = section; 89 90 return 0; 91 } 92 #else /* !SPARSEMEM_EXTREME */ 93 static inline int sparse_index_init(unsigned long section_nr, int nid) 94 { 95 return 0; 96 } 97 #endif 98 99 #ifdef CONFIG_SPARSEMEM_EXTREME 100 int __section_nr(struct mem_section* ms) 101 { 102 unsigned long root_nr; 103 struct mem_section *root = NULL; 104 105 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 106 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 107 if (!root) 108 continue; 109 110 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 111 break; 112 } 113 114 VM_BUG_ON(!root); 115 116 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 117 } 118 #else 119 int __section_nr(struct mem_section* ms) 120 { 121 return (int)(ms - mem_section[0]); 122 } 123 #endif 124 125 /* 126 * During early boot, before section_mem_map is used for an actual 127 * mem_map, we use section_mem_map to store the section's NUMA 128 * node. This keeps us from having to use another data structure. The 129 * node information is cleared just before we store the real mem_map. 130 */ 131 static inline unsigned long sparse_encode_early_nid(int nid) 132 { 133 return (nid << SECTION_NID_SHIFT); 134 } 135 136 static inline int sparse_early_nid(struct mem_section *section) 137 { 138 return (section->section_mem_map >> SECTION_NID_SHIFT); 139 } 140 141 /* Validate the physical addressing limitations of the model */ 142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 143 unsigned long *end_pfn) 144 { 145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 146 147 /* 148 * Sanity checks - do not allow an architecture to pass 149 * in larger pfns than the maximum scope of sparsemem: 150 */ 151 if (*start_pfn > max_sparsemem_pfn) { 152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 154 *start_pfn, *end_pfn, max_sparsemem_pfn); 155 WARN_ON_ONCE(1); 156 *start_pfn = max_sparsemem_pfn; 157 *end_pfn = max_sparsemem_pfn; 158 } else if (*end_pfn > max_sparsemem_pfn) { 159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 161 *start_pfn, *end_pfn, max_sparsemem_pfn); 162 WARN_ON_ONCE(1); 163 *end_pfn = max_sparsemem_pfn; 164 } 165 } 166 167 /* 168 * There are a number of times that we loop over NR_MEM_SECTIONS, 169 * looking for section_present() on each. But, when we have very 170 * large physical address spaces, NR_MEM_SECTIONS can also be 171 * very large which makes the loops quite long. 172 * 173 * Keeping track of this gives us an easy way to break out of 174 * those loops early. 175 */ 176 int __highest_present_section_nr; 177 static void section_mark_present(struct mem_section *ms) 178 { 179 int section_nr = __section_nr(ms); 180 181 if (section_nr > __highest_present_section_nr) 182 __highest_present_section_nr = section_nr; 183 184 ms->section_mem_map |= SECTION_MARKED_PRESENT; 185 } 186 187 static inline int next_present_section_nr(int section_nr) 188 { 189 do { 190 section_nr++; 191 if (present_section_nr(section_nr)) 192 return section_nr; 193 } while ((section_nr <= __highest_present_section_nr)); 194 195 return -1; 196 } 197 #define for_each_present_section_nr(start, section_nr) \ 198 for (section_nr = next_present_section_nr(start-1); \ 199 ((section_nr >= 0) && \ 200 (section_nr <= __highest_present_section_nr)); \ 201 section_nr = next_present_section_nr(section_nr)) 202 203 static inline unsigned long first_present_section_nr(void) 204 { 205 return next_present_section_nr(-1); 206 } 207 208 /* Record a memory area against a node. */ 209 void __init memory_present(int nid, unsigned long start, unsigned long end) 210 { 211 unsigned long pfn; 212 213 #ifdef CONFIG_SPARSEMEM_EXTREME 214 if (unlikely(!mem_section)) { 215 unsigned long size, align; 216 217 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS; 218 align = 1 << (INTERNODE_CACHE_SHIFT); 219 mem_section = memblock_virt_alloc(size, align); 220 } 221 #endif 222 223 start &= PAGE_SECTION_MASK; 224 mminit_validate_memmodel_limits(&start, &end); 225 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 226 unsigned long section = pfn_to_section_nr(pfn); 227 struct mem_section *ms; 228 229 sparse_index_init(section, nid); 230 set_section_nid(section, nid); 231 232 ms = __nr_to_section(section); 233 if (!ms->section_mem_map) { 234 ms->section_mem_map = sparse_encode_early_nid(nid) | 235 SECTION_IS_ONLINE; 236 section_mark_present(ms); 237 } 238 } 239 } 240 241 /* 242 * Subtle, we encode the real pfn into the mem_map such that 243 * the identity pfn - section_mem_map will return the actual 244 * physical page frame number. 245 */ 246 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 247 { 248 unsigned long coded_mem_map = 249 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 250 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); 251 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 252 return coded_mem_map; 253 } 254 255 /* 256 * Decode mem_map from the coded memmap 257 */ 258 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 259 { 260 /* mask off the extra low bits of information */ 261 coded_mem_map &= SECTION_MAP_MASK; 262 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 263 } 264 265 static void __meminit sparse_init_one_section(struct mem_section *ms, 266 unsigned long pnum, struct page *mem_map, 267 unsigned long *pageblock_bitmap) 268 { 269 ms->section_mem_map &= ~SECTION_MAP_MASK; 270 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 271 SECTION_HAS_MEM_MAP; 272 ms->pageblock_flags = pageblock_bitmap; 273 } 274 275 unsigned long usemap_size(void) 276 { 277 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 278 } 279 280 #ifdef CONFIG_MEMORY_HOTPLUG 281 static unsigned long *__kmalloc_section_usemap(void) 282 { 283 return kmalloc(usemap_size(), GFP_KERNEL); 284 } 285 #endif /* CONFIG_MEMORY_HOTPLUG */ 286 287 #ifdef CONFIG_MEMORY_HOTREMOVE 288 static unsigned long * __init 289 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 290 unsigned long size) 291 { 292 unsigned long goal, limit; 293 unsigned long *p; 294 int nid; 295 /* 296 * A page may contain usemaps for other sections preventing the 297 * page being freed and making a section unremovable while 298 * other sections referencing the usemap remain active. Similarly, 299 * a pgdat can prevent a section being removed. If section A 300 * contains a pgdat and section B contains the usemap, both 301 * sections become inter-dependent. This allocates usemaps 302 * from the same section as the pgdat where possible to avoid 303 * this problem. 304 */ 305 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 306 limit = goal + (1UL << PA_SECTION_SHIFT); 307 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 308 again: 309 p = memblock_virt_alloc_try_nid_nopanic(size, 310 SMP_CACHE_BYTES, goal, limit, 311 nid); 312 if (!p && limit) { 313 limit = 0; 314 goto again; 315 } 316 return p; 317 } 318 319 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 320 { 321 unsigned long usemap_snr, pgdat_snr; 322 static unsigned long old_usemap_snr; 323 static unsigned long old_pgdat_snr; 324 struct pglist_data *pgdat = NODE_DATA(nid); 325 int usemap_nid; 326 327 /* First call */ 328 if (!old_usemap_snr) { 329 old_usemap_snr = NR_MEM_SECTIONS; 330 old_pgdat_snr = NR_MEM_SECTIONS; 331 } 332 333 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 334 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 335 if (usemap_snr == pgdat_snr) 336 return; 337 338 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 339 /* skip redundant message */ 340 return; 341 342 old_usemap_snr = usemap_snr; 343 old_pgdat_snr = pgdat_snr; 344 345 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 346 if (usemap_nid != nid) { 347 pr_info("node %d must be removed before remove section %ld\n", 348 nid, usemap_snr); 349 return; 350 } 351 /* 352 * There is a circular dependency. 353 * Some platforms allow un-removable section because they will just 354 * gather other removable sections for dynamic partitioning. 355 * Just notify un-removable section's number here. 356 */ 357 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 358 usemap_snr, pgdat_snr, nid); 359 } 360 #else 361 static unsigned long * __init 362 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 363 unsigned long size) 364 { 365 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id); 366 } 367 368 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 369 { 370 } 371 #endif /* CONFIG_MEMORY_HOTREMOVE */ 372 373 #ifdef CONFIG_SPARSEMEM_VMEMMAP 374 static unsigned long __init section_map_size(void) 375 { 376 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); 377 } 378 379 #else 380 static unsigned long __init section_map_size(void) 381 { 382 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 383 } 384 385 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid, 386 struct vmem_altmap *altmap) 387 { 388 unsigned long size = section_map_size(); 389 struct page *map = sparse_buffer_alloc(size); 390 391 if (map) 392 return map; 393 394 map = memblock_virt_alloc_try_nid(size, 395 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 396 BOOTMEM_ALLOC_ACCESSIBLE, nid); 397 return map; 398 } 399 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 400 401 static void *sparsemap_buf __meminitdata; 402 static void *sparsemap_buf_end __meminitdata; 403 404 static void __init sparse_buffer_init(unsigned long size, int nid) 405 { 406 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */ 407 sparsemap_buf = 408 memblock_virt_alloc_try_nid_raw(size, PAGE_SIZE, 409 __pa(MAX_DMA_ADDRESS), 410 BOOTMEM_ALLOC_ACCESSIBLE, nid); 411 sparsemap_buf_end = sparsemap_buf + size; 412 } 413 414 static void __init sparse_buffer_fini(void) 415 { 416 unsigned long size = sparsemap_buf_end - sparsemap_buf; 417 418 if (sparsemap_buf && size > 0) 419 memblock_free_early(__pa(sparsemap_buf), size); 420 sparsemap_buf = NULL; 421 } 422 423 void * __meminit sparse_buffer_alloc(unsigned long size) 424 { 425 void *ptr = NULL; 426 427 if (sparsemap_buf) { 428 ptr = PTR_ALIGN(sparsemap_buf, size); 429 if (ptr + size > sparsemap_buf_end) 430 ptr = NULL; 431 else 432 sparsemap_buf = ptr + size; 433 } 434 return ptr; 435 } 436 437 void __weak __meminit vmemmap_populate_print_last(void) 438 { 439 } 440 441 /* 442 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) 443 * And number of present sections in this node is map_count. 444 */ 445 static void __init sparse_init_nid(int nid, unsigned long pnum_begin, 446 unsigned long pnum_end, 447 unsigned long map_count) 448 { 449 unsigned long pnum, usemap_longs, *usemap; 450 struct page *map; 451 452 usemap_longs = BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS); 453 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid), 454 usemap_size() * 455 map_count); 456 if (!usemap) { 457 pr_err("%s: node[%d] usemap allocation failed", __func__, nid); 458 goto failed; 459 } 460 sparse_buffer_init(map_count * section_map_size(), nid); 461 for_each_present_section_nr(pnum_begin, pnum) { 462 if (pnum >= pnum_end) 463 break; 464 465 map = sparse_mem_map_populate(pnum, nid, NULL); 466 if (!map) { 467 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", 468 __func__, nid); 469 pnum_begin = pnum; 470 goto failed; 471 } 472 check_usemap_section_nr(nid, usemap); 473 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usemap); 474 usemap += usemap_longs; 475 } 476 sparse_buffer_fini(); 477 return; 478 failed: 479 /* We failed to allocate, mark all the following pnums as not present */ 480 for_each_present_section_nr(pnum_begin, pnum) { 481 struct mem_section *ms; 482 483 if (pnum >= pnum_end) 484 break; 485 ms = __nr_to_section(pnum); 486 ms->section_mem_map = 0; 487 } 488 } 489 490 /* 491 * Allocate the accumulated non-linear sections, allocate a mem_map 492 * for each and record the physical to section mapping. 493 */ 494 void __init sparse_init(void) 495 { 496 unsigned long pnum_begin = first_present_section_nr(); 497 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); 498 unsigned long pnum_end, map_count = 1; 499 500 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 501 set_pageblock_order(); 502 503 for_each_present_section_nr(pnum_begin + 1, pnum_end) { 504 int nid = sparse_early_nid(__nr_to_section(pnum_end)); 505 506 if (nid == nid_begin) { 507 map_count++; 508 continue; 509 } 510 /* Init node with sections in range [pnum_begin, pnum_end) */ 511 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 512 nid_begin = nid; 513 pnum_begin = pnum_end; 514 map_count = 1; 515 } 516 /* cover the last node */ 517 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 518 vmemmap_populate_print_last(); 519 } 520 521 #ifdef CONFIG_MEMORY_HOTPLUG 522 523 /* Mark all memory sections within the pfn range as online */ 524 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 525 { 526 unsigned long pfn; 527 528 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 529 unsigned long section_nr = pfn_to_section_nr(pfn); 530 struct mem_section *ms; 531 532 /* onlining code should never touch invalid ranges */ 533 if (WARN_ON(!valid_section_nr(section_nr))) 534 continue; 535 536 ms = __nr_to_section(section_nr); 537 ms->section_mem_map |= SECTION_IS_ONLINE; 538 } 539 } 540 541 #ifdef CONFIG_MEMORY_HOTREMOVE 542 /* Mark all memory sections within the pfn range as online */ 543 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 544 { 545 unsigned long pfn; 546 547 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 548 unsigned long section_nr = pfn_to_section_nr(pfn); 549 struct mem_section *ms; 550 551 /* 552 * TODO this needs some double checking. Offlining code makes 553 * sure to check pfn_valid but those checks might be just bogus 554 */ 555 if (WARN_ON(!valid_section_nr(section_nr))) 556 continue; 557 558 ms = __nr_to_section(section_nr); 559 ms->section_mem_map &= ~SECTION_IS_ONLINE; 560 } 561 } 562 #endif 563 564 #ifdef CONFIG_SPARSEMEM_VMEMMAP 565 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 566 struct vmem_altmap *altmap) 567 { 568 /* This will make the necessary allocations eventually. */ 569 return sparse_mem_map_populate(pnum, nid, altmap); 570 } 571 static void __kfree_section_memmap(struct page *memmap, 572 struct vmem_altmap *altmap) 573 { 574 unsigned long start = (unsigned long)memmap; 575 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 576 577 vmemmap_free(start, end, altmap); 578 } 579 #ifdef CONFIG_MEMORY_HOTREMOVE 580 static void free_map_bootmem(struct page *memmap) 581 { 582 unsigned long start = (unsigned long)memmap; 583 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 584 585 vmemmap_free(start, end, NULL); 586 } 587 #endif /* CONFIG_MEMORY_HOTREMOVE */ 588 #else 589 static struct page *__kmalloc_section_memmap(void) 590 { 591 struct page *page, *ret; 592 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION; 593 594 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 595 if (page) 596 goto got_map_page; 597 598 ret = vmalloc(memmap_size); 599 if (ret) 600 goto got_map_ptr; 601 602 return NULL; 603 got_map_page: 604 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 605 got_map_ptr: 606 607 return ret; 608 } 609 610 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 611 struct vmem_altmap *altmap) 612 { 613 return __kmalloc_section_memmap(); 614 } 615 616 static void __kfree_section_memmap(struct page *memmap, 617 struct vmem_altmap *altmap) 618 { 619 if (is_vmalloc_addr(memmap)) 620 vfree(memmap); 621 else 622 free_pages((unsigned long)memmap, 623 get_order(sizeof(struct page) * PAGES_PER_SECTION)); 624 } 625 626 #ifdef CONFIG_MEMORY_HOTREMOVE 627 static void free_map_bootmem(struct page *memmap) 628 { 629 unsigned long maps_section_nr, removing_section_nr, i; 630 unsigned long magic, nr_pages; 631 struct page *page = virt_to_page(memmap); 632 633 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 634 >> PAGE_SHIFT; 635 636 for (i = 0; i < nr_pages; i++, page++) { 637 magic = (unsigned long) page->freelist; 638 639 BUG_ON(magic == NODE_INFO); 640 641 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 642 removing_section_nr = page_private(page); 643 644 /* 645 * When this function is called, the removing section is 646 * logical offlined state. This means all pages are isolated 647 * from page allocator. If removing section's memmap is placed 648 * on the same section, it must not be freed. 649 * If it is freed, page allocator may allocate it which will 650 * be removed physically soon. 651 */ 652 if (maps_section_nr != removing_section_nr) 653 put_page_bootmem(page); 654 } 655 } 656 #endif /* CONFIG_MEMORY_HOTREMOVE */ 657 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 658 659 /* 660 * returns the number of sections whose mem_maps were properly 661 * set. If this is <=0, then that means that the passed-in 662 * map was not consumed and must be freed. 663 */ 664 int __meminit sparse_add_one_section(struct pglist_data *pgdat, 665 unsigned long start_pfn, struct vmem_altmap *altmap) 666 { 667 unsigned long section_nr = pfn_to_section_nr(start_pfn); 668 struct mem_section *ms; 669 struct page *memmap; 670 unsigned long *usemap; 671 unsigned long flags; 672 int ret; 673 674 /* 675 * no locking for this, because it does its own 676 * plus, it does a kmalloc 677 */ 678 ret = sparse_index_init(section_nr, pgdat->node_id); 679 if (ret < 0 && ret != -EEXIST) 680 return ret; 681 ret = 0; 682 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap); 683 if (!memmap) 684 return -ENOMEM; 685 usemap = __kmalloc_section_usemap(); 686 if (!usemap) { 687 __kfree_section_memmap(memmap, altmap); 688 return -ENOMEM; 689 } 690 691 pgdat_resize_lock(pgdat, &flags); 692 693 ms = __pfn_to_section(start_pfn); 694 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 695 ret = -EEXIST; 696 goto out; 697 } 698 699 #ifdef CONFIG_DEBUG_VM 700 /* 701 * Poison uninitialized struct pages in order to catch invalid flags 702 * combinations. 703 */ 704 memset(memmap, PAGE_POISON_PATTERN, sizeof(struct page) * PAGES_PER_SECTION); 705 #endif 706 707 section_mark_present(ms); 708 sparse_init_one_section(ms, section_nr, memmap, usemap); 709 710 out: 711 pgdat_resize_unlock(pgdat, &flags); 712 if (ret < 0) { 713 kfree(usemap); 714 __kfree_section_memmap(memmap, altmap); 715 } 716 return ret; 717 } 718 719 #ifdef CONFIG_MEMORY_HOTREMOVE 720 #ifdef CONFIG_MEMORY_FAILURE 721 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 722 { 723 int i; 724 725 if (!memmap) 726 return; 727 728 for (i = 0; i < nr_pages; i++) { 729 if (PageHWPoison(&memmap[i])) { 730 atomic_long_sub(1, &num_poisoned_pages); 731 ClearPageHWPoison(&memmap[i]); 732 } 733 } 734 } 735 #else 736 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 737 { 738 } 739 #endif 740 741 static void free_section_usemap(struct page *memmap, unsigned long *usemap, 742 struct vmem_altmap *altmap) 743 { 744 struct page *usemap_page; 745 746 if (!usemap) 747 return; 748 749 usemap_page = virt_to_page(usemap); 750 /* 751 * Check to see if allocation came from hot-plug-add 752 */ 753 if (PageSlab(usemap_page) || PageCompound(usemap_page)) { 754 kfree(usemap); 755 if (memmap) 756 __kfree_section_memmap(memmap, altmap); 757 return; 758 } 759 760 /* 761 * The usemap came from bootmem. This is packed with other usemaps 762 * on the section which has pgdat at boot time. Just keep it as is now. 763 */ 764 765 if (memmap) 766 free_map_bootmem(memmap); 767 } 768 769 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms, 770 unsigned long map_offset, struct vmem_altmap *altmap) 771 { 772 struct page *memmap = NULL; 773 unsigned long *usemap = NULL, flags; 774 struct pglist_data *pgdat = zone->zone_pgdat; 775 776 pgdat_resize_lock(pgdat, &flags); 777 if (ms->section_mem_map) { 778 usemap = ms->pageblock_flags; 779 memmap = sparse_decode_mem_map(ms->section_mem_map, 780 __section_nr(ms)); 781 ms->section_mem_map = 0; 782 ms->pageblock_flags = NULL; 783 } 784 pgdat_resize_unlock(pgdat, &flags); 785 786 clear_hwpoisoned_pages(memmap + map_offset, 787 PAGES_PER_SECTION - map_offset); 788 free_section_usemap(memmap, usemap, altmap); 789 } 790 #endif /* CONFIG_MEMORY_HOTREMOVE */ 791 #endif /* CONFIG_MEMORY_HOTPLUG */ 792