1 /* 2 * sparse memory mappings. 3 */ 4 #include <linux/mm.h> 5 #include <linux/slab.h> 6 #include <linux/mmzone.h> 7 #include <linux/bootmem.h> 8 #include <linux/highmem.h> 9 #include <linux/export.h> 10 #include <linux/spinlock.h> 11 #include <linux/vmalloc.h> 12 #include "internal.h" 13 #include <asm/dma.h> 14 #include <asm/pgalloc.h> 15 #include <asm/pgtable.h> 16 17 /* 18 * Permanent SPARSEMEM data: 19 * 20 * 1) mem_section - memory sections, mem_map's for valid memory 21 */ 22 #ifdef CONFIG_SPARSEMEM_EXTREME 23 struct mem_section *mem_section[NR_SECTION_ROOTS] 24 ____cacheline_internodealigned_in_smp; 25 #else 26 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 27 ____cacheline_internodealigned_in_smp; 28 #endif 29 EXPORT_SYMBOL(mem_section); 30 31 #ifdef NODE_NOT_IN_PAGE_FLAGS 32 /* 33 * If we did not store the node number in the page then we have to 34 * do a lookup in the section_to_node_table in order to find which 35 * node the page belongs to. 36 */ 37 #if MAX_NUMNODES <= 256 38 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 39 #else 40 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #endif 42 43 int page_to_nid(const struct page *page) 44 { 45 return section_to_node_table[page_to_section(page)]; 46 } 47 EXPORT_SYMBOL(page_to_nid); 48 49 static void set_section_nid(unsigned long section_nr, int nid) 50 { 51 section_to_node_table[section_nr] = nid; 52 } 53 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 54 static inline void set_section_nid(unsigned long section_nr, int nid) 55 { 56 } 57 #endif 58 59 #ifdef CONFIG_SPARSEMEM_EXTREME 60 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) 61 { 62 struct mem_section *section = NULL; 63 unsigned long array_size = SECTIONS_PER_ROOT * 64 sizeof(struct mem_section); 65 66 if (slab_is_available()) { 67 if (node_state(nid, N_HIGH_MEMORY)) 68 section = kzalloc_node(array_size, GFP_KERNEL, nid); 69 else 70 section = kzalloc(array_size, GFP_KERNEL); 71 } else { 72 section = alloc_bootmem_node(NODE_DATA(nid), array_size); 73 } 74 75 return section; 76 } 77 78 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 79 { 80 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 81 struct mem_section *section; 82 int ret = 0; 83 84 if (mem_section[root]) 85 return -EEXIST; 86 87 section = sparse_index_alloc(nid); 88 if (!section) 89 return -ENOMEM; 90 91 mem_section[root] = section; 92 93 return ret; 94 } 95 #else /* !SPARSEMEM_EXTREME */ 96 static inline int sparse_index_init(unsigned long section_nr, int nid) 97 { 98 return 0; 99 } 100 #endif 101 102 /* 103 * Although written for the SPARSEMEM_EXTREME case, this happens 104 * to also work for the flat array case because 105 * NR_SECTION_ROOTS==NR_MEM_SECTIONS. 106 */ 107 int __section_nr(struct mem_section* ms) 108 { 109 unsigned long root_nr; 110 struct mem_section* root; 111 112 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 113 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 114 if (!root) 115 continue; 116 117 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 118 break; 119 } 120 121 VM_BUG_ON(root_nr == NR_SECTION_ROOTS); 122 123 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 124 } 125 126 /* 127 * During early boot, before section_mem_map is used for an actual 128 * mem_map, we use section_mem_map to store the section's NUMA 129 * node. This keeps us from having to use another data structure. The 130 * node information is cleared just before we store the real mem_map. 131 */ 132 static inline unsigned long sparse_encode_early_nid(int nid) 133 { 134 return (nid << SECTION_NID_SHIFT); 135 } 136 137 static inline int sparse_early_nid(struct mem_section *section) 138 { 139 return (section->section_mem_map >> SECTION_NID_SHIFT); 140 } 141 142 /* Validate the physical addressing limitations of the model */ 143 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 144 unsigned long *end_pfn) 145 { 146 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 147 148 /* 149 * Sanity checks - do not allow an architecture to pass 150 * in larger pfns than the maximum scope of sparsemem: 151 */ 152 if (*start_pfn > max_sparsemem_pfn) { 153 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 154 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 155 *start_pfn, *end_pfn, max_sparsemem_pfn); 156 WARN_ON_ONCE(1); 157 *start_pfn = max_sparsemem_pfn; 158 *end_pfn = max_sparsemem_pfn; 159 } else if (*end_pfn > max_sparsemem_pfn) { 160 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 161 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 162 *start_pfn, *end_pfn, max_sparsemem_pfn); 163 WARN_ON_ONCE(1); 164 *end_pfn = max_sparsemem_pfn; 165 } 166 } 167 168 /* Record a memory area against a node. */ 169 void __init memory_present(int nid, unsigned long start, unsigned long end) 170 { 171 unsigned long pfn; 172 173 start &= PAGE_SECTION_MASK; 174 mminit_validate_memmodel_limits(&start, &end); 175 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 176 unsigned long section = pfn_to_section_nr(pfn); 177 struct mem_section *ms; 178 179 sparse_index_init(section, nid); 180 set_section_nid(section, nid); 181 182 ms = __nr_to_section(section); 183 if (!ms->section_mem_map) 184 ms->section_mem_map = sparse_encode_early_nid(nid) | 185 SECTION_MARKED_PRESENT; 186 } 187 } 188 189 /* 190 * Only used by the i386 NUMA architecures, but relatively 191 * generic code. 192 */ 193 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 194 unsigned long end_pfn) 195 { 196 unsigned long pfn; 197 unsigned long nr_pages = 0; 198 199 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 200 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 201 if (nid != early_pfn_to_nid(pfn)) 202 continue; 203 204 if (pfn_present(pfn)) 205 nr_pages += PAGES_PER_SECTION; 206 } 207 208 return nr_pages * sizeof(struct page); 209 } 210 211 /* 212 * Subtle, we encode the real pfn into the mem_map such that 213 * the identity pfn - section_mem_map will return the actual 214 * physical page frame number. 215 */ 216 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 217 { 218 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 219 } 220 221 /* 222 * Decode mem_map from the coded memmap 223 */ 224 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 225 { 226 /* mask off the extra low bits of information */ 227 coded_mem_map &= SECTION_MAP_MASK; 228 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 229 } 230 231 static int __meminit sparse_init_one_section(struct mem_section *ms, 232 unsigned long pnum, struct page *mem_map, 233 unsigned long *pageblock_bitmap) 234 { 235 if (!present_section(ms)) 236 return -EINVAL; 237 238 ms->section_mem_map &= ~SECTION_MAP_MASK; 239 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 240 SECTION_HAS_MEM_MAP; 241 ms->pageblock_flags = pageblock_bitmap; 242 243 return 1; 244 } 245 246 unsigned long usemap_size(void) 247 { 248 unsigned long size_bytes; 249 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; 250 size_bytes = roundup(size_bytes, sizeof(unsigned long)); 251 return size_bytes; 252 } 253 254 #ifdef CONFIG_MEMORY_HOTPLUG 255 static unsigned long *__kmalloc_section_usemap(void) 256 { 257 return kmalloc(usemap_size(), GFP_KERNEL); 258 } 259 #endif /* CONFIG_MEMORY_HOTPLUG */ 260 261 #ifdef CONFIG_MEMORY_HOTREMOVE 262 static unsigned long * __init 263 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 264 unsigned long size) 265 { 266 unsigned long goal, limit; 267 unsigned long *p; 268 int nid; 269 /* 270 * A page may contain usemaps for other sections preventing the 271 * page being freed and making a section unremovable while 272 * other sections referencing the usemap retmain active. Similarly, 273 * a pgdat can prevent a section being removed. If section A 274 * contains a pgdat and section B contains the usemap, both 275 * sections become inter-dependent. This allocates usemaps 276 * from the same section as the pgdat where possible to avoid 277 * this problem. 278 */ 279 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 280 limit = goal + (1UL << PA_SECTION_SHIFT); 281 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 282 again: 283 p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size, 284 SMP_CACHE_BYTES, goal, limit); 285 if (!p && limit) { 286 limit = 0; 287 goto again; 288 } 289 return p; 290 } 291 292 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 293 { 294 unsigned long usemap_snr, pgdat_snr; 295 static unsigned long old_usemap_snr = NR_MEM_SECTIONS; 296 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; 297 struct pglist_data *pgdat = NODE_DATA(nid); 298 int usemap_nid; 299 300 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 301 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 302 if (usemap_snr == pgdat_snr) 303 return; 304 305 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 306 /* skip redundant message */ 307 return; 308 309 old_usemap_snr = usemap_snr; 310 old_pgdat_snr = pgdat_snr; 311 312 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 313 if (usemap_nid != nid) { 314 printk(KERN_INFO 315 "node %d must be removed before remove section %ld\n", 316 nid, usemap_snr); 317 return; 318 } 319 /* 320 * There is a circular dependency. 321 * Some platforms allow un-removable section because they will just 322 * gather other removable sections for dynamic partitioning. 323 * Just notify un-removable section's number here. 324 */ 325 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, 326 pgdat_snr, nid); 327 printk(KERN_CONT 328 " have a circular dependency on usemap and pgdat allocations\n"); 329 } 330 #else 331 static unsigned long * __init 332 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 333 unsigned long size) 334 { 335 return alloc_bootmem_node_nopanic(pgdat, size); 336 } 337 338 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 339 { 340 } 341 #endif /* CONFIG_MEMORY_HOTREMOVE */ 342 343 static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map, 344 unsigned long pnum_begin, 345 unsigned long pnum_end, 346 unsigned long usemap_count, int nodeid) 347 { 348 void *usemap; 349 unsigned long pnum; 350 int size = usemap_size(); 351 352 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), 353 size * usemap_count); 354 if (!usemap) { 355 printk(KERN_WARNING "%s: allocation failed\n", __func__); 356 return; 357 } 358 359 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 360 if (!present_section_nr(pnum)) 361 continue; 362 usemap_map[pnum] = usemap; 363 usemap += size; 364 check_usemap_section_nr(nodeid, usemap_map[pnum]); 365 } 366 } 367 368 #ifndef CONFIG_SPARSEMEM_VMEMMAP 369 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) 370 { 371 struct page *map; 372 unsigned long size; 373 374 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); 375 if (map) 376 return map; 377 378 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 379 map = __alloc_bootmem_node_high(NODE_DATA(nid), size, 380 PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 381 return map; 382 } 383 void __init sparse_mem_maps_populate_node(struct page **map_map, 384 unsigned long pnum_begin, 385 unsigned long pnum_end, 386 unsigned long map_count, int nodeid) 387 { 388 void *map; 389 unsigned long pnum; 390 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; 391 392 map = alloc_remap(nodeid, size * map_count); 393 if (map) { 394 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 395 if (!present_section_nr(pnum)) 396 continue; 397 map_map[pnum] = map; 398 map += size; 399 } 400 return; 401 } 402 403 size = PAGE_ALIGN(size); 404 map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count, 405 PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 406 if (map) { 407 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 408 if (!present_section_nr(pnum)) 409 continue; 410 map_map[pnum] = map; 411 map += size; 412 } 413 return; 414 } 415 416 /* fallback */ 417 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 418 struct mem_section *ms; 419 420 if (!present_section_nr(pnum)) 421 continue; 422 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); 423 if (map_map[pnum]) 424 continue; 425 ms = __nr_to_section(pnum); 426 printk(KERN_ERR "%s: sparsemem memory map backing failed " 427 "some memory will not be available.\n", __func__); 428 ms->section_mem_map = 0; 429 } 430 } 431 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 432 433 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 434 static void __init sparse_early_mem_maps_alloc_node(struct page **map_map, 435 unsigned long pnum_begin, 436 unsigned long pnum_end, 437 unsigned long map_count, int nodeid) 438 { 439 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, 440 map_count, nodeid); 441 } 442 #else 443 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 444 { 445 struct page *map; 446 struct mem_section *ms = __nr_to_section(pnum); 447 int nid = sparse_early_nid(ms); 448 449 map = sparse_mem_map_populate(pnum, nid); 450 if (map) 451 return map; 452 453 printk(KERN_ERR "%s: sparsemem memory map backing failed " 454 "some memory will not be available.\n", __func__); 455 ms->section_mem_map = 0; 456 return NULL; 457 } 458 #endif 459 460 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void) 461 { 462 } 463 464 /* 465 * Allocate the accumulated non-linear sections, allocate a mem_map 466 * for each and record the physical to section mapping. 467 */ 468 void __init sparse_init(void) 469 { 470 unsigned long pnum; 471 struct page *map; 472 unsigned long *usemap; 473 unsigned long **usemap_map; 474 int size; 475 int nodeid_begin = 0; 476 unsigned long pnum_begin = 0; 477 unsigned long usemap_count; 478 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 479 unsigned long map_count; 480 int size2; 481 struct page **map_map; 482 #endif 483 484 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 485 set_pageblock_order(); 486 487 /* 488 * map is using big page (aka 2M in x86 64 bit) 489 * usemap is less one page (aka 24 bytes) 490 * so alloc 2M (with 2M align) and 24 bytes in turn will 491 * make next 2M slip to one more 2M later. 492 * then in big system, the memory will have a lot of holes... 493 * here try to allocate 2M pages continuously. 494 * 495 * powerpc need to call sparse_init_one_section right after each 496 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 497 */ 498 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 499 usemap_map = alloc_bootmem(size); 500 if (!usemap_map) 501 panic("can not allocate usemap_map\n"); 502 503 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 504 struct mem_section *ms; 505 506 if (!present_section_nr(pnum)) 507 continue; 508 ms = __nr_to_section(pnum); 509 nodeid_begin = sparse_early_nid(ms); 510 pnum_begin = pnum; 511 break; 512 } 513 usemap_count = 1; 514 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { 515 struct mem_section *ms; 516 int nodeid; 517 518 if (!present_section_nr(pnum)) 519 continue; 520 ms = __nr_to_section(pnum); 521 nodeid = sparse_early_nid(ms); 522 if (nodeid == nodeid_begin) { 523 usemap_count++; 524 continue; 525 } 526 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 527 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum, 528 usemap_count, nodeid_begin); 529 /* new start, update count etc*/ 530 nodeid_begin = nodeid; 531 pnum_begin = pnum; 532 usemap_count = 1; 533 } 534 /* ok, last chunk */ 535 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS, 536 usemap_count, nodeid_begin); 537 538 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 539 size2 = sizeof(struct page *) * NR_MEM_SECTIONS; 540 map_map = alloc_bootmem(size2); 541 if (!map_map) 542 panic("can not allocate map_map\n"); 543 544 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 545 struct mem_section *ms; 546 547 if (!present_section_nr(pnum)) 548 continue; 549 ms = __nr_to_section(pnum); 550 nodeid_begin = sparse_early_nid(ms); 551 pnum_begin = pnum; 552 break; 553 } 554 map_count = 1; 555 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { 556 struct mem_section *ms; 557 int nodeid; 558 559 if (!present_section_nr(pnum)) 560 continue; 561 ms = __nr_to_section(pnum); 562 nodeid = sparse_early_nid(ms); 563 if (nodeid == nodeid_begin) { 564 map_count++; 565 continue; 566 } 567 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 568 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum, 569 map_count, nodeid_begin); 570 /* new start, update count etc*/ 571 nodeid_begin = nodeid; 572 pnum_begin = pnum; 573 map_count = 1; 574 } 575 /* ok, last chunk */ 576 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS, 577 map_count, nodeid_begin); 578 #endif 579 580 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 581 if (!present_section_nr(pnum)) 582 continue; 583 584 usemap = usemap_map[pnum]; 585 if (!usemap) 586 continue; 587 588 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 589 map = map_map[pnum]; 590 #else 591 map = sparse_early_mem_map_alloc(pnum); 592 #endif 593 if (!map) 594 continue; 595 596 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 597 usemap); 598 } 599 600 vmemmap_populate_print_last(); 601 602 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 603 free_bootmem(__pa(map_map), size2); 604 #endif 605 free_bootmem(__pa(usemap_map), size); 606 } 607 608 #ifdef CONFIG_MEMORY_HOTPLUG 609 #ifdef CONFIG_SPARSEMEM_VMEMMAP 610 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 611 unsigned long nr_pages) 612 { 613 /* This will make the necessary allocations eventually. */ 614 return sparse_mem_map_populate(pnum, nid); 615 } 616 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) 617 { 618 return; /* XXX: Not implemented yet */ 619 } 620 static void free_map_bootmem(struct page *page, unsigned long nr_pages) 621 { 622 } 623 #else 624 static struct page *__kmalloc_section_memmap(unsigned long nr_pages) 625 { 626 struct page *page, *ret; 627 unsigned long memmap_size = sizeof(struct page) * nr_pages; 628 629 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 630 if (page) 631 goto got_map_page; 632 633 ret = vmalloc(memmap_size); 634 if (ret) 635 goto got_map_ptr; 636 637 return NULL; 638 got_map_page: 639 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 640 got_map_ptr: 641 memset(ret, 0, memmap_size); 642 643 return ret; 644 } 645 646 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 647 unsigned long nr_pages) 648 { 649 return __kmalloc_section_memmap(nr_pages); 650 } 651 652 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) 653 { 654 if (is_vmalloc_addr(memmap)) 655 vfree(memmap); 656 else 657 free_pages((unsigned long)memmap, 658 get_order(sizeof(struct page) * nr_pages)); 659 } 660 661 static void free_map_bootmem(struct page *page, unsigned long nr_pages) 662 { 663 unsigned long maps_section_nr, removing_section_nr, i; 664 unsigned long magic; 665 666 for (i = 0; i < nr_pages; i++, page++) { 667 magic = (unsigned long) page->lru.next; 668 669 BUG_ON(magic == NODE_INFO); 670 671 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 672 removing_section_nr = page->private; 673 674 /* 675 * When this function is called, the removing section is 676 * logical offlined state. This means all pages are isolated 677 * from page allocator. If removing section's memmap is placed 678 * on the same section, it must not be freed. 679 * If it is freed, page allocator may allocate it which will 680 * be removed physically soon. 681 */ 682 if (maps_section_nr != removing_section_nr) 683 put_page_bootmem(page); 684 } 685 } 686 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 687 688 static void free_section_usemap(struct page *memmap, unsigned long *usemap) 689 { 690 struct page *usemap_page; 691 unsigned long nr_pages; 692 693 if (!usemap) 694 return; 695 696 usemap_page = virt_to_page(usemap); 697 /* 698 * Check to see if allocation came from hot-plug-add 699 */ 700 if (PageSlab(usemap_page)) { 701 kfree(usemap); 702 if (memmap) 703 __kfree_section_memmap(memmap, PAGES_PER_SECTION); 704 return; 705 } 706 707 /* 708 * The usemap came from bootmem. This is packed with other usemaps 709 * on the section which has pgdat at boot time. Just keep it as is now. 710 */ 711 712 if (memmap) { 713 struct page *memmap_page; 714 memmap_page = virt_to_page(memmap); 715 716 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 717 >> PAGE_SHIFT; 718 719 free_map_bootmem(memmap_page, nr_pages); 720 } 721 } 722 723 /* 724 * returns the number of sections whose mem_maps were properly 725 * set. If this is <=0, then that means that the passed-in 726 * map was not consumed and must be freed. 727 */ 728 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn, 729 int nr_pages) 730 { 731 unsigned long section_nr = pfn_to_section_nr(start_pfn); 732 struct pglist_data *pgdat = zone->zone_pgdat; 733 struct mem_section *ms; 734 struct page *memmap; 735 unsigned long *usemap; 736 unsigned long flags; 737 int ret; 738 739 /* 740 * no locking for this, because it does its own 741 * plus, it does a kmalloc 742 */ 743 ret = sparse_index_init(section_nr, pgdat->node_id); 744 if (ret < 0 && ret != -EEXIST) 745 return ret; 746 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages); 747 if (!memmap) 748 return -ENOMEM; 749 usemap = __kmalloc_section_usemap(); 750 if (!usemap) { 751 __kfree_section_memmap(memmap, nr_pages); 752 return -ENOMEM; 753 } 754 755 pgdat_resize_lock(pgdat, &flags); 756 757 ms = __pfn_to_section(start_pfn); 758 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 759 ret = -EEXIST; 760 goto out; 761 } 762 763 ms->section_mem_map |= SECTION_MARKED_PRESENT; 764 765 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 766 767 out: 768 pgdat_resize_unlock(pgdat, &flags); 769 if (ret <= 0) { 770 kfree(usemap); 771 __kfree_section_memmap(memmap, nr_pages); 772 } 773 return ret; 774 } 775 776 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms) 777 { 778 struct page *memmap = NULL; 779 unsigned long *usemap = NULL; 780 781 if (ms->section_mem_map) { 782 usemap = ms->pageblock_flags; 783 memmap = sparse_decode_mem_map(ms->section_mem_map, 784 __section_nr(ms)); 785 ms->section_mem_map = 0; 786 ms->pageblock_flags = NULL; 787 } 788 789 free_section_usemap(memmap, usemap); 790 } 791 #endif 792