xref: /openbmc/linux/mm/sparse.c (revision 83268fa6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19 
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section	- memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 	____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32 
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44 
45 int page_to_nid(const struct page *page)
46 {
47 	return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50 
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 	section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60 
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 	struct mem_section *section = NULL;
65 	unsigned long array_size = SECTIONS_PER_ROOT *
66 				   sizeof(struct mem_section);
67 
68 	if (slab_is_available())
69 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 	else
71 		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
72 					      nid);
73 
74 	return section;
75 }
76 
77 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
78 {
79 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
80 	struct mem_section *section;
81 
82 	if (mem_section[root])
83 		return -EEXIST;
84 
85 	section = sparse_index_alloc(nid);
86 	if (!section)
87 		return -ENOMEM;
88 
89 	mem_section[root] = section;
90 
91 	return 0;
92 }
93 #else /* !SPARSEMEM_EXTREME */
94 static inline int sparse_index_init(unsigned long section_nr, int nid)
95 {
96 	return 0;
97 }
98 #endif
99 
100 #ifdef CONFIG_SPARSEMEM_EXTREME
101 int __section_nr(struct mem_section* ms)
102 {
103 	unsigned long root_nr;
104 	struct mem_section *root = NULL;
105 
106 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
107 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
108 		if (!root)
109 			continue;
110 
111 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
112 		     break;
113 	}
114 
115 	VM_BUG_ON(!root);
116 
117 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
118 }
119 #else
120 int __section_nr(struct mem_section* ms)
121 {
122 	return (int)(ms - mem_section[0]);
123 }
124 #endif
125 
126 /*
127  * During early boot, before section_mem_map is used for an actual
128  * mem_map, we use section_mem_map to store the section's NUMA
129  * node.  This keeps us from having to use another data structure.  The
130  * node information is cleared just before we store the real mem_map.
131  */
132 static inline unsigned long sparse_encode_early_nid(int nid)
133 {
134 	return (nid << SECTION_NID_SHIFT);
135 }
136 
137 static inline int sparse_early_nid(struct mem_section *section)
138 {
139 	return (section->section_mem_map >> SECTION_NID_SHIFT);
140 }
141 
142 /* Validate the physical addressing limitations of the model */
143 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
144 						unsigned long *end_pfn)
145 {
146 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
147 
148 	/*
149 	 * Sanity checks - do not allow an architecture to pass
150 	 * in larger pfns than the maximum scope of sparsemem:
151 	 */
152 	if (*start_pfn > max_sparsemem_pfn) {
153 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
154 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
155 			*start_pfn, *end_pfn, max_sparsemem_pfn);
156 		WARN_ON_ONCE(1);
157 		*start_pfn = max_sparsemem_pfn;
158 		*end_pfn = max_sparsemem_pfn;
159 	} else if (*end_pfn > max_sparsemem_pfn) {
160 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
161 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
162 			*start_pfn, *end_pfn, max_sparsemem_pfn);
163 		WARN_ON_ONCE(1);
164 		*end_pfn = max_sparsemem_pfn;
165 	}
166 }
167 
168 /*
169  * There are a number of times that we loop over NR_MEM_SECTIONS,
170  * looking for section_present() on each.  But, when we have very
171  * large physical address spaces, NR_MEM_SECTIONS can also be
172  * very large which makes the loops quite long.
173  *
174  * Keeping track of this gives us an easy way to break out of
175  * those loops early.
176  */
177 int __highest_present_section_nr;
178 static void section_mark_present(struct mem_section *ms)
179 {
180 	int section_nr = __section_nr(ms);
181 
182 	if (section_nr > __highest_present_section_nr)
183 		__highest_present_section_nr = section_nr;
184 
185 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
186 }
187 
188 static inline int next_present_section_nr(int section_nr)
189 {
190 	do {
191 		section_nr++;
192 		if (present_section_nr(section_nr))
193 			return section_nr;
194 	} while ((section_nr <= __highest_present_section_nr));
195 
196 	return -1;
197 }
198 #define for_each_present_section_nr(start, section_nr)		\
199 	for (section_nr = next_present_section_nr(start-1);	\
200 	     ((section_nr >= 0) &&				\
201 	      (section_nr <= __highest_present_section_nr));	\
202 	     section_nr = next_present_section_nr(section_nr))
203 
204 static inline unsigned long first_present_section_nr(void)
205 {
206 	return next_present_section_nr(-1);
207 }
208 
209 /* Record a memory area against a node. */
210 void __init memory_present(int nid, unsigned long start, unsigned long end)
211 {
212 	unsigned long pfn;
213 
214 #ifdef CONFIG_SPARSEMEM_EXTREME
215 	if (unlikely(!mem_section)) {
216 		unsigned long size, align;
217 
218 		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
219 		align = 1 << (INTERNODE_CACHE_SHIFT);
220 		mem_section = memblock_alloc(size, align);
221 	}
222 #endif
223 
224 	start &= PAGE_SECTION_MASK;
225 	mminit_validate_memmodel_limits(&start, &end);
226 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
227 		unsigned long section = pfn_to_section_nr(pfn);
228 		struct mem_section *ms;
229 
230 		sparse_index_init(section, nid);
231 		set_section_nid(section, nid);
232 
233 		ms = __nr_to_section(section);
234 		if (!ms->section_mem_map) {
235 			ms->section_mem_map = sparse_encode_early_nid(nid) |
236 							SECTION_IS_ONLINE;
237 			section_mark_present(ms);
238 		}
239 	}
240 }
241 
242 /*
243  * Subtle, we encode the real pfn into the mem_map such that
244  * the identity pfn - section_mem_map will return the actual
245  * physical page frame number.
246  */
247 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
248 {
249 	unsigned long coded_mem_map =
250 		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
251 	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
252 	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
253 	return coded_mem_map;
254 }
255 
256 /*
257  * Decode mem_map from the coded memmap
258  */
259 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
260 {
261 	/* mask off the extra low bits of information */
262 	coded_mem_map &= SECTION_MAP_MASK;
263 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
264 }
265 
266 static void __meminit sparse_init_one_section(struct mem_section *ms,
267 		unsigned long pnum, struct page *mem_map,
268 		unsigned long *pageblock_bitmap)
269 {
270 	ms->section_mem_map &= ~SECTION_MAP_MASK;
271 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
272 							SECTION_HAS_MEM_MAP;
273  	ms->pageblock_flags = pageblock_bitmap;
274 }
275 
276 unsigned long usemap_size(void)
277 {
278 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
279 }
280 
281 #ifdef CONFIG_MEMORY_HOTPLUG
282 static unsigned long *__kmalloc_section_usemap(void)
283 {
284 	return kmalloc(usemap_size(), GFP_KERNEL);
285 }
286 #endif /* CONFIG_MEMORY_HOTPLUG */
287 
288 #ifdef CONFIG_MEMORY_HOTREMOVE
289 static unsigned long * __init
290 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
291 					 unsigned long size)
292 {
293 	unsigned long goal, limit;
294 	unsigned long *p;
295 	int nid;
296 	/*
297 	 * A page may contain usemaps for other sections preventing the
298 	 * page being freed and making a section unremovable while
299 	 * other sections referencing the usemap remain active. Similarly,
300 	 * a pgdat can prevent a section being removed. If section A
301 	 * contains a pgdat and section B contains the usemap, both
302 	 * sections become inter-dependent. This allocates usemaps
303 	 * from the same section as the pgdat where possible to avoid
304 	 * this problem.
305 	 */
306 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
307 	limit = goal + (1UL << PA_SECTION_SHIFT);
308 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
309 again:
310 	p = memblock_alloc_try_nid_nopanic(size,
311 						SMP_CACHE_BYTES, goal, limit,
312 						nid);
313 	if (!p && limit) {
314 		limit = 0;
315 		goto again;
316 	}
317 	return p;
318 }
319 
320 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
321 {
322 	unsigned long usemap_snr, pgdat_snr;
323 	static unsigned long old_usemap_snr;
324 	static unsigned long old_pgdat_snr;
325 	struct pglist_data *pgdat = NODE_DATA(nid);
326 	int usemap_nid;
327 
328 	/* First call */
329 	if (!old_usemap_snr) {
330 		old_usemap_snr = NR_MEM_SECTIONS;
331 		old_pgdat_snr = NR_MEM_SECTIONS;
332 	}
333 
334 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
335 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
336 	if (usemap_snr == pgdat_snr)
337 		return;
338 
339 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
340 		/* skip redundant message */
341 		return;
342 
343 	old_usemap_snr = usemap_snr;
344 	old_pgdat_snr = pgdat_snr;
345 
346 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
347 	if (usemap_nid != nid) {
348 		pr_info("node %d must be removed before remove section %ld\n",
349 			nid, usemap_snr);
350 		return;
351 	}
352 	/*
353 	 * There is a circular dependency.
354 	 * Some platforms allow un-removable section because they will just
355 	 * gather other removable sections for dynamic partitioning.
356 	 * Just notify un-removable section's number here.
357 	 */
358 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
359 		usemap_snr, pgdat_snr, nid);
360 }
361 #else
362 static unsigned long * __init
363 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
364 					 unsigned long size)
365 {
366 	return memblock_alloc_node_nopanic(size, pgdat->node_id);
367 }
368 
369 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
370 {
371 }
372 #endif /* CONFIG_MEMORY_HOTREMOVE */
373 
374 #ifdef CONFIG_SPARSEMEM_VMEMMAP
375 static unsigned long __init section_map_size(void)
376 {
377 	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
378 }
379 
380 #else
381 static unsigned long __init section_map_size(void)
382 {
383 	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
384 }
385 
386 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
387 		struct vmem_altmap *altmap)
388 {
389 	unsigned long size = section_map_size();
390 	struct page *map = sparse_buffer_alloc(size);
391 
392 	if (map)
393 		return map;
394 
395 	map = memblock_alloc_try_nid(size,
396 					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
397 					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
398 	return map;
399 }
400 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
401 
402 static void *sparsemap_buf __meminitdata;
403 static void *sparsemap_buf_end __meminitdata;
404 
405 static void __init sparse_buffer_init(unsigned long size, int nid)
406 {
407 	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
408 	sparsemap_buf =
409 		memblock_alloc_try_nid_raw(size, PAGE_SIZE,
410 						__pa(MAX_DMA_ADDRESS),
411 						MEMBLOCK_ALLOC_ACCESSIBLE, nid);
412 	sparsemap_buf_end = sparsemap_buf + size;
413 }
414 
415 static void __init sparse_buffer_fini(void)
416 {
417 	unsigned long size = sparsemap_buf_end - sparsemap_buf;
418 
419 	if (sparsemap_buf && size > 0)
420 		memblock_free_early(__pa(sparsemap_buf), size);
421 	sparsemap_buf = NULL;
422 }
423 
424 void * __meminit sparse_buffer_alloc(unsigned long size)
425 {
426 	void *ptr = NULL;
427 
428 	if (sparsemap_buf) {
429 		ptr = PTR_ALIGN(sparsemap_buf, size);
430 		if (ptr + size > sparsemap_buf_end)
431 			ptr = NULL;
432 		else
433 			sparsemap_buf = ptr + size;
434 	}
435 	return ptr;
436 }
437 
438 void __weak __meminit vmemmap_populate_print_last(void)
439 {
440 }
441 
442 /*
443  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
444  * And number of present sections in this node is map_count.
445  */
446 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
447 				   unsigned long pnum_end,
448 				   unsigned long map_count)
449 {
450 	unsigned long pnum, usemap_longs, *usemap;
451 	struct page *map;
452 
453 	usemap_longs = BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS);
454 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
455 							  usemap_size() *
456 							  map_count);
457 	if (!usemap) {
458 		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
459 		goto failed;
460 	}
461 	sparse_buffer_init(map_count * section_map_size(), nid);
462 	for_each_present_section_nr(pnum_begin, pnum) {
463 		if (pnum >= pnum_end)
464 			break;
465 
466 		map = sparse_mem_map_populate(pnum, nid, NULL);
467 		if (!map) {
468 			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
469 			       __func__, nid);
470 			pnum_begin = pnum;
471 			goto failed;
472 		}
473 		check_usemap_section_nr(nid, usemap);
474 		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usemap);
475 		usemap += usemap_longs;
476 	}
477 	sparse_buffer_fini();
478 	return;
479 failed:
480 	/* We failed to allocate, mark all the following pnums as not present */
481 	for_each_present_section_nr(pnum_begin, pnum) {
482 		struct mem_section *ms;
483 
484 		if (pnum >= pnum_end)
485 			break;
486 		ms = __nr_to_section(pnum);
487 		ms->section_mem_map = 0;
488 	}
489 }
490 
491 /*
492  * Allocate the accumulated non-linear sections, allocate a mem_map
493  * for each and record the physical to section mapping.
494  */
495 void __init sparse_init(void)
496 {
497 	unsigned long pnum_begin = first_present_section_nr();
498 	int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
499 	unsigned long pnum_end, map_count = 1;
500 
501 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
502 	set_pageblock_order();
503 
504 	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
505 		int nid = sparse_early_nid(__nr_to_section(pnum_end));
506 
507 		if (nid == nid_begin) {
508 			map_count++;
509 			continue;
510 		}
511 		/* Init node with sections in range [pnum_begin, pnum_end) */
512 		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
513 		nid_begin = nid;
514 		pnum_begin = pnum_end;
515 		map_count = 1;
516 	}
517 	/* cover the last node */
518 	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
519 	vmemmap_populate_print_last();
520 }
521 
522 #ifdef CONFIG_MEMORY_HOTPLUG
523 
524 /* Mark all memory sections within the pfn range as online */
525 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
526 {
527 	unsigned long pfn;
528 
529 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
530 		unsigned long section_nr = pfn_to_section_nr(pfn);
531 		struct mem_section *ms;
532 
533 		/* onlining code should never touch invalid ranges */
534 		if (WARN_ON(!valid_section_nr(section_nr)))
535 			continue;
536 
537 		ms = __nr_to_section(section_nr);
538 		ms->section_mem_map |= SECTION_IS_ONLINE;
539 	}
540 }
541 
542 #ifdef CONFIG_MEMORY_HOTREMOVE
543 /* Mark all memory sections within the pfn range as online */
544 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
545 {
546 	unsigned long pfn;
547 
548 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
549 		unsigned long section_nr = pfn_to_section_nr(pfn);
550 		struct mem_section *ms;
551 
552 		/*
553 		 * TODO this needs some double checking. Offlining code makes
554 		 * sure to check pfn_valid but those checks might be just bogus
555 		 */
556 		if (WARN_ON(!valid_section_nr(section_nr)))
557 			continue;
558 
559 		ms = __nr_to_section(section_nr);
560 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
561 	}
562 }
563 #endif
564 
565 #ifdef CONFIG_SPARSEMEM_VMEMMAP
566 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
567 		struct vmem_altmap *altmap)
568 {
569 	/* This will make the necessary allocations eventually. */
570 	return sparse_mem_map_populate(pnum, nid, altmap);
571 }
572 static void __kfree_section_memmap(struct page *memmap,
573 		struct vmem_altmap *altmap)
574 {
575 	unsigned long start = (unsigned long)memmap;
576 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
577 
578 	vmemmap_free(start, end, altmap);
579 }
580 #ifdef CONFIG_MEMORY_HOTREMOVE
581 static void free_map_bootmem(struct page *memmap)
582 {
583 	unsigned long start = (unsigned long)memmap;
584 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
585 
586 	vmemmap_free(start, end, NULL);
587 }
588 #endif /* CONFIG_MEMORY_HOTREMOVE */
589 #else
590 static struct page *__kmalloc_section_memmap(void)
591 {
592 	struct page *page, *ret;
593 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
594 
595 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
596 	if (page)
597 		goto got_map_page;
598 
599 	ret = vmalloc(memmap_size);
600 	if (ret)
601 		goto got_map_ptr;
602 
603 	return NULL;
604 got_map_page:
605 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
606 got_map_ptr:
607 
608 	return ret;
609 }
610 
611 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
612 		struct vmem_altmap *altmap)
613 {
614 	return __kmalloc_section_memmap();
615 }
616 
617 static void __kfree_section_memmap(struct page *memmap,
618 		struct vmem_altmap *altmap)
619 {
620 	if (is_vmalloc_addr(memmap))
621 		vfree(memmap);
622 	else
623 		free_pages((unsigned long)memmap,
624 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
625 }
626 
627 #ifdef CONFIG_MEMORY_HOTREMOVE
628 static void free_map_bootmem(struct page *memmap)
629 {
630 	unsigned long maps_section_nr, removing_section_nr, i;
631 	unsigned long magic, nr_pages;
632 	struct page *page = virt_to_page(memmap);
633 
634 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
635 		>> PAGE_SHIFT;
636 
637 	for (i = 0; i < nr_pages; i++, page++) {
638 		magic = (unsigned long) page->freelist;
639 
640 		BUG_ON(magic == NODE_INFO);
641 
642 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
643 		removing_section_nr = page_private(page);
644 
645 		/*
646 		 * When this function is called, the removing section is
647 		 * logical offlined state. This means all pages are isolated
648 		 * from page allocator. If removing section's memmap is placed
649 		 * on the same section, it must not be freed.
650 		 * If it is freed, page allocator may allocate it which will
651 		 * be removed physically soon.
652 		 */
653 		if (maps_section_nr != removing_section_nr)
654 			put_page_bootmem(page);
655 	}
656 }
657 #endif /* CONFIG_MEMORY_HOTREMOVE */
658 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
659 
660 /*
661  * returns the number of sections whose mem_maps were properly
662  * set.  If this is <=0, then that means that the passed-in
663  * map was not consumed and must be freed.
664  */
665 int __meminit sparse_add_one_section(struct pglist_data *pgdat,
666 		unsigned long start_pfn, struct vmem_altmap *altmap)
667 {
668 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
669 	struct mem_section *ms;
670 	struct page *memmap;
671 	unsigned long *usemap;
672 	unsigned long flags;
673 	int ret;
674 
675 	/*
676 	 * no locking for this, because it does its own
677 	 * plus, it does a kmalloc
678 	 */
679 	ret = sparse_index_init(section_nr, pgdat->node_id);
680 	if (ret < 0 && ret != -EEXIST)
681 		return ret;
682 	ret = 0;
683 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
684 	if (!memmap)
685 		return -ENOMEM;
686 	usemap = __kmalloc_section_usemap();
687 	if (!usemap) {
688 		__kfree_section_memmap(memmap, altmap);
689 		return -ENOMEM;
690 	}
691 
692 	pgdat_resize_lock(pgdat, &flags);
693 
694 	ms = __pfn_to_section(start_pfn);
695 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
696 		ret = -EEXIST;
697 		goto out;
698 	}
699 
700 	/*
701 	 * Poison uninitialized struct pages in order to catch invalid flags
702 	 * combinations.
703 	 */
704 	page_init_poison(memmap, sizeof(struct page) * PAGES_PER_SECTION);
705 
706 	section_mark_present(ms);
707 	sparse_init_one_section(ms, section_nr, memmap, usemap);
708 
709 out:
710 	pgdat_resize_unlock(pgdat, &flags);
711 	if (ret < 0) {
712 		kfree(usemap);
713 		__kfree_section_memmap(memmap, altmap);
714 	}
715 	return ret;
716 }
717 
718 #ifdef CONFIG_MEMORY_HOTREMOVE
719 #ifdef CONFIG_MEMORY_FAILURE
720 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
721 {
722 	int i;
723 
724 	if (!memmap)
725 		return;
726 
727 	for (i = 0; i < nr_pages; i++) {
728 		if (PageHWPoison(&memmap[i])) {
729 			atomic_long_sub(1, &num_poisoned_pages);
730 			ClearPageHWPoison(&memmap[i]);
731 		}
732 	}
733 }
734 #else
735 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
736 {
737 }
738 #endif
739 
740 static void free_section_usemap(struct page *memmap, unsigned long *usemap,
741 		struct vmem_altmap *altmap)
742 {
743 	struct page *usemap_page;
744 
745 	if (!usemap)
746 		return;
747 
748 	usemap_page = virt_to_page(usemap);
749 	/*
750 	 * Check to see if allocation came from hot-plug-add
751 	 */
752 	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
753 		kfree(usemap);
754 		if (memmap)
755 			__kfree_section_memmap(memmap, altmap);
756 		return;
757 	}
758 
759 	/*
760 	 * The usemap came from bootmem. This is packed with other usemaps
761 	 * on the section which has pgdat at boot time. Just keep it as is now.
762 	 */
763 
764 	if (memmap)
765 		free_map_bootmem(memmap);
766 }
767 
768 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
769 		unsigned long map_offset, struct vmem_altmap *altmap)
770 {
771 	struct page *memmap = NULL;
772 	unsigned long *usemap = NULL, flags;
773 	struct pglist_data *pgdat = zone->zone_pgdat;
774 
775 	pgdat_resize_lock(pgdat, &flags);
776 	if (ms->section_mem_map) {
777 		usemap = ms->pageblock_flags;
778 		memmap = sparse_decode_mem_map(ms->section_mem_map,
779 						__section_nr(ms));
780 		ms->section_mem_map = 0;
781 		ms->pageblock_flags = NULL;
782 	}
783 	pgdat_resize_unlock(pgdat, &flags);
784 
785 	clear_hwpoisoned_pages(memmap + map_offset,
786 			PAGES_PER_SECTION - map_offset);
787 	free_section_usemap(memmap, usemap, altmap);
788 }
789 #endif /* CONFIG_MEMORY_HOTREMOVE */
790 #endif /* CONFIG_MEMORY_HOTPLUG */
791