xref: /openbmc/linux/mm/sparse.c (revision 82ced6fd)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
11 #include "internal.h"
12 #include <asm/dma.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 
16 /*
17  * Permanent SPARSEMEM data:
18  *
19  * 1) mem_section	- memory sections, mem_map's for valid memory
20  */
21 #ifdef CONFIG_SPARSEMEM_EXTREME
22 struct mem_section *mem_section[NR_SECTION_ROOTS]
23 	____cacheline_internodealigned_in_smp;
24 #else
25 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
26 	____cacheline_internodealigned_in_smp;
27 #endif
28 EXPORT_SYMBOL(mem_section);
29 
30 #ifdef NODE_NOT_IN_PAGE_FLAGS
31 /*
32  * If we did not store the node number in the page then we have to
33  * do a lookup in the section_to_node_table in order to find which
34  * node the page belongs to.
35  */
36 #if MAX_NUMNODES <= 256
37 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
38 #else
39 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
40 #endif
41 
42 int page_to_nid(struct page *page)
43 {
44 	return section_to_node_table[page_to_section(page)];
45 }
46 EXPORT_SYMBOL(page_to_nid);
47 
48 static void set_section_nid(unsigned long section_nr, int nid)
49 {
50 	section_to_node_table[section_nr] = nid;
51 }
52 #else /* !NODE_NOT_IN_PAGE_FLAGS */
53 static inline void set_section_nid(unsigned long section_nr, int nid)
54 {
55 }
56 #endif
57 
58 #ifdef CONFIG_SPARSEMEM_EXTREME
59 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
60 {
61 	struct mem_section *section = NULL;
62 	unsigned long array_size = SECTIONS_PER_ROOT *
63 				   sizeof(struct mem_section);
64 
65 	if (slab_is_available())
66 		section = kmalloc_node(array_size, GFP_KERNEL, nid);
67 	else
68 		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
69 
70 	if (section)
71 		memset(section, 0, array_size);
72 
73 	return section;
74 }
75 
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78 	static DEFINE_SPINLOCK(index_init_lock);
79 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
80 	struct mem_section *section;
81 	int ret = 0;
82 
83 	if (mem_section[root])
84 		return -EEXIST;
85 
86 	section = sparse_index_alloc(nid);
87 	if (!section)
88 		return -ENOMEM;
89 	/*
90 	 * This lock keeps two different sections from
91 	 * reallocating for the same index
92 	 */
93 	spin_lock(&index_init_lock);
94 
95 	if (mem_section[root]) {
96 		ret = -EEXIST;
97 		goto out;
98 	}
99 
100 	mem_section[root] = section;
101 out:
102 	spin_unlock(&index_init_lock);
103 	return ret;
104 }
105 #else /* !SPARSEMEM_EXTREME */
106 static inline int sparse_index_init(unsigned long section_nr, int nid)
107 {
108 	return 0;
109 }
110 #endif
111 
112 /*
113  * Although written for the SPARSEMEM_EXTREME case, this happens
114  * to also work for the flat array case because
115  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
116  */
117 int __section_nr(struct mem_section* ms)
118 {
119 	unsigned long root_nr;
120 	struct mem_section* root;
121 
122 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
123 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
124 		if (!root)
125 			continue;
126 
127 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
128 		     break;
129 	}
130 
131 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
132 }
133 
134 /*
135  * During early boot, before section_mem_map is used for an actual
136  * mem_map, we use section_mem_map to store the section's NUMA
137  * node.  This keeps us from having to use another data structure.  The
138  * node information is cleared just before we store the real mem_map.
139  */
140 static inline unsigned long sparse_encode_early_nid(int nid)
141 {
142 	return (nid << SECTION_NID_SHIFT);
143 }
144 
145 static inline int sparse_early_nid(struct mem_section *section)
146 {
147 	return (section->section_mem_map >> SECTION_NID_SHIFT);
148 }
149 
150 /* Validate the physical addressing limitations of the model */
151 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
152 						unsigned long *end_pfn)
153 {
154 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
155 
156 	/*
157 	 * Sanity checks - do not allow an architecture to pass
158 	 * in larger pfns than the maximum scope of sparsemem:
159 	 */
160 	if (*start_pfn > max_sparsemem_pfn) {
161 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
162 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
163 			*start_pfn, *end_pfn, max_sparsemem_pfn);
164 		WARN_ON_ONCE(1);
165 		*start_pfn = max_sparsemem_pfn;
166 		*end_pfn = max_sparsemem_pfn;
167 	} else if (*end_pfn > max_sparsemem_pfn) {
168 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
169 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
170 			*start_pfn, *end_pfn, max_sparsemem_pfn);
171 		WARN_ON_ONCE(1);
172 		*end_pfn = max_sparsemem_pfn;
173 	}
174 }
175 
176 /* Record a memory area against a node. */
177 void __init memory_present(int nid, unsigned long start, unsigned long end)
178 {
179 	unsigned long pfn;
180 
181 	start &= PAGE_SECTION_MASK;
182 	mminit_validate_memmodel_limits(&start, &end);
183 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
184 		unsigned long section = pfn_to_section_nr(pfn);
185 		struct mem_section *ms;
186 
187 		sparse_index_init(section, nid);
188 		set_section_nid(section, nid);
189 
190 		ms = __nr_to_section(section);
191 		if (!ms->section_mem_map)
192 			ms->section_mem_map = sparse_encode_early_nid(nid) |
193 							SECTION_MARKED_PRESENT;
194 	}
195 }
196 
197 /*
198  * Only used by the i386 NUMA architecures, but relatively
199  * generic code.
200  */
201 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
202 						     unsigned long end_pfn)
203 {
204 	unsigned long pfn;
205 	unsigned long nr_pages = 0;
206 
207 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
208 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
209 		if (nid != early_pfn_to_nid(pfn))
210 			continue;
211 
212 		if (pfn_present(pfn))
213 			nr_pages += PAGES_PER_SECTION;
214 	}
215 
216 	return nr_pages * sizeof(struct page);
217 }
218 
219 /*
220  * Subtle, we encode the real pfn into the mem_map such that
221  * the identity pfn - section_mem_map will return the actual
222  * physical page frame number.
223  */
224 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
225 {
226 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
227 }
228 
229 /*
230  * Decode mem_map from the coded memmap
231  */
232 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
233 {
234 	/* mask off the extra low bits of information */
235 	coded_mem_map &= SECTION_MAP_MASK;
236 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
237 }
238 
239 static int __meminit sparse_init_one_section(struct mem_section *ms,
240 		unsigned long pnum, struct page *mem_map,
241 		unsigned long *pageblock_bitmap)
242 {
243 	if (!present_section(ms))
244 		return -EINVAL;
245 
246 	ms->section_mem_map &= ~SECTION_MAP_MASK;
247 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
248 							SECTION_HAS_MEM_MAP;
249  	ms->pageblock_flags = pageblock_bitmap;
250 
251 	return 1;
252 }
253 
254 unsigned long usemap_size(void)
255 {
256 	unsigned long size_bytes;
257 	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
258 	size_bytes = roundup(size_bytes, sizeof(unsigned long));
259 	return size_bytes;
260 }
261 
262 #ifdef CONFIG_MEMORY_HOTPLUG
263 static unsigned long *__kmalloc_section_usemap(void)
264 {
265 	return kmalloc(usemap_size(), GFP_KERNEL);
266 }
267 #endif /* CONFIG_MEMORY_HOTPLUG */
268 
269 #ifdef CONFIG_MEMORY_HOTREMOVE
270 static unsigned long * __init
271 sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
272 {
273 	unsigned long section_nr;
274 
275 	/*
276 	 * A page may contain usemaps for other sections preventing the
277 	 * page being freed and making a section unremovable while
278 	 * other sections referencing the usemap retmain active. Similarly,
279 	 * a pgdat can prevent a section being removed. If section A
280 	 * contains a pgdat and section B contains the usemap, both
281 	 * sections become inter-dependent. This allocates usemaps
282 	 * from the same section as the pgdat where possible to avoid
283 	 * this problem.
284 	 */
285 	section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
286 	return alloc_bootmem_section(usemap_size(), section_nr);
287 }
288 
289 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
290 {
291 	unsigned long usemap_snr, pgdat_snr;
292 	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
293 	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
294 	struct pglist_data *pgdat = NODE_DATA(nid);
295 	int usemap_nid;
296 
297 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
298 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
299 	if (usemap_snr == pgdat_snr)
300 		return;
301 
302 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
303 		/* skip redundant message */
304 		return;
305 
306 	old_usemap_snr = usemap_snr;
307 	old_pgdat_snr = pgdat_snr;
308 
309 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
310 	if (usemap_nid != nid) {
311 		printk(KERN_INFO
312 		       "node %d must be removed before remove section %ld\n",
313 		       nid, usemap_snr);
314 		return;
315 	}
316 	/*
317 	 * There is a circular dependency.
318 	 * Some platforms allow un-removable section because they will just
319 	 * gather other removable sections for dynamic partitioning.
320 	 * Just notify un-removable section's number here.
321 	 */
322 	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
323 	       pgdat_snr, nid);
324 	printk(KERN_CONT
325 	       " have a circular dependency on usemap and pgdat allocations\n");
326 }
327 #else
328 static unsigned long * __init
329 sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
330 {
331 	return NULL;
332 }
333 
334 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
335 {
336 }
337 #endif /* CONFIG_MEMORY_HOTREMOVE */
338 
339 static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
340 {
341 	unsigned long *usemap;
342 	struct mem_section *ms = __nr_to_section(pnum);
343 	int nid = sparse_early_nid(ms);
344 
345 	usemap = sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid));
346 	if (usemap)
347 		return usemap;
348 
349 	usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
350 	if (usemap) {
351 		check_usemap_section_nr(nid, usemap);
352 		return usemap;
353 	}
354 
355 	/* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
356 	nid = 0;
357 
358 	printk(KERN_WARNING "%s: allocation failed\n", __func__);
359 	return NULL;
360 }
361 
362 #ifndef CONFIG_SPARSEMEM_VMEMMAP
363 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
364 {
365 	struct page *map;
366 
367 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
368 	if (map)
369 		return map;
370 
371 	map = alloc_bootmem_pages_node(NODE_DATA(nid),
372 		       PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
373 	return map;
374 }
375 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
376 
377 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
378 {
379 	struct page *map;
380 	struct mem_section *ms = __nr_to_section(pnum);
381 	int nid = sparse_early_nid(ms);
382 
383 	map = sparse_mem_map_populate(pnum, nid);
384 	if (map)
385 		return map;
386 
387 	printk(KERN_ERR "%s: sparsemem memory map backing failed "
388 			"some memory will not be available.\n", __func__);
389 	ms->section_mem_map = 0;
390 	return NULL;
391 }
392 
393 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
394 {
395 }
396 /*
397  * Allocate the accumulated non-linear sections, allocate a mem_map
398  * for each and record the physical to section mapping.
399  */
400 void __init sparse_init(void)
401 {
402 	unsigned long pnum;
403 	struct page *map;
404 	unsigned long *usemap;
405 	unsigned long **usemap_map;
406 	int size;
407 
408 	/*
409 	 * map is using big page (aka 2M in x86 64 bit)
410 	 * usemap is less one page (aka 24 bytes)
411 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
412 	 * make next 2M slip to one more 2M later.
413 	 * then in big system, the memory will have a lot of holes...
414 	 * here try to allocate 2M pages continously.
415 	 *
416 	 * powerpc need to call sparse_init_one_section right after each
417 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
418 	 */
419 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
420 	usemap_map = alloc_bootmem(size);
421 	if (!usemap_map)
422 		panic("can not allocate usemap_map\n");
423 
424 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
425 		if (!present_section_nr(pnum))
426 			continue;
427 		usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
428 	}
429 
430 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
431 		if (!present_section_nr(pnum))
432 			continue;
433 
434 		usemap = usemap_map[pnum];
435 		if (!usemap)
436 			continue;
437 
438 		map = sparse_early_mem_map_alloc(pnum);
439 		if (!map)
440 			continue;
441 
442 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
443 								usemap);
444 	}
445 
446 	vmemmap_populate_print_last();
447 
448 	free_bootmem(__pa(usemap_map), size);
449 }
450 
451 #ifdef CONFIG_MEMORY_HOTPLUG
452 #ifdef CONFIG_SPARSEMEM_VMEMMAP
453 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
454 						 unsigned long nr_pages)
455 {
456 	/* This will make the necessary allocations eventually. */
457 	return sparse_mem_map_populate(pnum, nid);
458 }
459 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
460 {
461 	return; /* XXX: Not implemented yet */
462 }
463 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
464 {
465 }
466 #else
467 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
468 {
469 	struct page *page, *ret;
470 	unsigned long memmap_size = sizeof(struct page) * nr_pages;
471 
472 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
473 	if (page)
474 		goto got_map_page;
475 
476 	ret = vmalloc(memmap_size);
477 	if (ret)
478 		goto got_map_ptr;
479 
480 	return NULL;
481 got_map_page:
482 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
483 got_map_ptr:
484 	memset(ret, 0, memmap_size);
485 
486 	return ret;
487 }
488 
489 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
490 						  unsigned long nr_pages)
491 {
492 	return __kmalloc_section_memmap(nr_pages);
493 }
494 
495 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
496 {
497 	if (is_vmalloc_addr(memmap))
498 		vfree(memmap);
499 	else
500 		free_pages((unsigned long)memmap,
501 			   get_order(sizeof(struct page) * nr_pages));
502 }
503 
504 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
505 {
506 	unsigned long maps_section_nr, removing_section_nr, i;
507 	int magic;
508 
509 	for (i = 0; i < nr_pages; i++, page++) {
510 		magic = atomic_read(&page->_mapcount);
511 
512 		BUG_ON(magic == NODE_INFO);
513 
514 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
515 		removing_section_nr = page->private;
516 
517 		/*
518 		 * When this function is called, the removing section is
519 		 * logical offlined state. This means all pages are isolated
520 		 * from page allocator. If removing section's memmap is placed
521 		 * on the same section, it must not be freed.
522 		 * If it is freed, page allocator may allocate it which will
523 		 * be removed physically soon.
524 		 */
525 		if (maps_section_nr != removing_section_nr)
526 			put_page_bootmem(page);
527 	}
528 }
529 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
530 
531 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
532 {
533 	struct page *usemap_page;
534 	unsigned long nr_pages;
535 
536 	if (!usemap)
537 		return;
538 
539 	usemap_page = virt_to_page(usemap);
540 	/*
541 	 * Check to see if allocation came from hot-plug-add
542 	 */
543 	if (PageSlab(usemap_page)) {
544 		kfree(usemap);
545 		if (memmap)
546 			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
547 		return;
548 	}
549 
550 	/*
551 	 * The usemap came from bootmem. This is packed with other usemaps
552 	 * on the section which has pgdat at boot time. Just keep it as is now.
553 	 */
554 
555 	if (memmap) {
556 		struct page *memmap_page;
557 		memmap_page = virt_to_page(memmap);
558 
559 		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
560 			>> PAGE_SHIFT;
561 
562 		free_map_bootmem(memmap_page, nr_pages);
563 	}
564 }
565 
566 /*
567  * returns the number of sections whose mem_maps were properly
568  * set.  If this is <=0, then that means that the passed-in
569  * map was not consumed and must be freed.
570  */
571 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
572 			   int nr_pages)
573 {
574 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
575 	struct pglist_data *pgdat = zone->zone_pgdat;
576 	struct mem_section *ms;
577 	struct page *memmap;
578 	unsigned long *usemap;
579 	unsigned long flags;
580 	int ret;
581 
582 	/*
583 	 * no locking for this, because it does its own
584 	 * plus, it does a kmalloc
585 	 */
586 	ret = sparse_index_init(section_nr, pgdat->node_id);
587 	if (ret < 0 && ret != -EEXIST)
588 		return ret;
589 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
590 	if (!memmap)
591 		return -ENOMEM;
592 	usemap = __kmalloc_section_usemap();
593 	if (!usemap) {
594 		__kfree_section_memmap(memmap, nr_pages);
595 		return -ENOMEM;
596 	}
597 
598 	pgdat_resize_lock(pgdat, &flags);
599 
600 	ms = __pfn_to_section(start_pfn);
601 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
602 		ret = -EEXIST;
603 		goto out;
604 	}
605 
606 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
607 
608 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
609 
610 out:
611 	pgdat_resize_unlock(pgdat, &flags);
612 	if (ret <= 0) {
613 		kfree(usemap);
614 		__kfree_section_memmap(memmap, nr_pages);
615 	}
616 	return ret;
617 }
618 
619 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
620 {
621 	struct page *memmap = NULL;
622 	unsigned long *usemap = NULL;
623 
624 	if (ms->section_mem_map) {
625 		usemap = ms->pageblock_flags;
626 		memmap = sparse_decode_mem_map(ms->section_mem_map,
627 						__section_nr(ms));
628 		ms->section_mem_map = 0;
629 		ms->pageblock_flags = NULL;
630 	}
631 
632 	free_section_usemap(memmap, usemap);
633 }
634 #endif
635