xref: /openbmc/linux/mm/sparse.c (revision 803f6914)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/highmem.h>
9 #include <linux/export.h>
10 #include <linux/spinlock.h>
11 #include <linux/vmalloc.h>
12 #include "internal.h"
13 #include <asm/dma.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 
17 /*
18  * Permanent SPARSEMEM data:
19  *
20  * 1) mem_section	- memory sections, mem_map's for valid memory
21  */
22 #ifdef CONFIG_SPARSEMEM_EXTREME
23 struct mem_section *mem_section[NR_SECTION_ROOTS]
24 	____cacheline_internodealigned_in_smp;
25 #else
26 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
27 	____cacheline_internodealigned_in_smp;
28 #endif
29 EXPORT_SYMBOL(mem_section);
30 
31 #ifdef NODE_NOT_IN_PAGE_FLAGS
32 /*
33  * If we did not store the node number in the page then we have to
34  * do a lookup in the section_to_node_table in order to find which
35  * node the page belongs to.
36  */
37 #if MAX_NUMNODES <= 256
38 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39 #else
40 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #endif
42 
43 int page_to_nid(const struct page *page)
44 {
45 	return section_to_node_table[page_to_section(page)];
46 }
47 EXPORT_SYMBOL(page_to_nid);
48 
49 static void set_section_nid(unsigned long section_nr, int nid)
50 {
51 	section_to_node_table[section_nr] = nid;
52 }
53 #else /* !NODE_NOT_IN_PAGE_FLAGS */
54 static inline void set_section_nid(unsigned long section_nr, int nid)
55 {
56 }
57 #endif
58 
59 #ifdef CONFIG_SPARSEMEM_EXTREME
60 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
61 {
62 	struct mem_section *section = NULL;
63 	unsigned long array_size = SECTIONS_PER_ROOT *
64 				   sizeof(struct mem_section);
65 
66 	if (slab_is_available()) {
67 		if (node_state(nid, N_HIGH_MEMORY))
68 			section = kmalloc_node(array_size, GFP_KERNEL, nid);
69 		else
70 			section = kmalloc(array_size, GFP_KERNEL);
71 	} else
72 		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
73 
74 	if (section)
75 		memset(section, 0, array_size);
76 
77 	return section;
78 }
79 
80 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
81 {
82 	static DEFINE_SPINLOCK(index_init_lock);
83 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84 	struct mem_section *section;
85 	int ret = 0;
86 
87 	if (mem_section[root])
88 		return -EEXIST;
89 
90 	section = sparse_index_alloc(nid);
91 	if (!section)
92 		return -ENOMEM;
93 	/*
94 	 * This lock keeps two different sections from
95 	 * reallocating for the same index
96 	 */
97 	spin_lock(&index_init_lock);
98 
99 	if (mem_section[root]) {
100 		ret = -EEXIST;
101 		goto out;
102 	}
103 
104 	mem_section[root] = section;
105 out:
106 	spin_unlock(&index_init_lock);
107 	return ret;
108 }
109 #else /* !SPARSEMEM_EXTREME */
110 static inline int sparse_index_init(unsigned long section_nr, int nid)
111 {
112 	return 0;
113 }
114 #endif
115 
116 /*
117  * Although written for the SPARSEMEM_EXTREME case, this happens
118  * to also work for the flat array case because
119  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
120  */
121 int __section_nr(struct mem_section* ms)
122 {
123 	unsigned long root_nr;
124 	struct mem_section* root;
125 
126 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
127 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
128 		if (!root)
129 			continue;
130 
131 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
132 		     break;
133 	}
134 
135 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
136 }
137 
138 /*
139  * During early boot, before section_mem_map is used for an actual
140  * mem_map, we use section_mem_map to store the section's NUMA
141  * node.  This keeps us from having to use another data structure.  The
142  * node information is cleared just before we store the real mem_map.
143  */
144 static inline unsigned long sparse_encode_early_nid(int nid)
145 {
146 	return (nid << SECTION_NID_SHIFT);
147 }
148 
149 static inline int sparse_early_nid(struct mem_section *section)
150 {
151 	return (section->section_mem_map >> SECTION_NID_SHIFT);
152 }
153 
154 /* Validate the physical addressing limitations of the model */
155 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
156 						unsigned long *end_pfn)
157 {
158 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
159 
160 	/*
161 	 * Sanity checks - do not allow an architecture to pass
162 	 * in larger pfns than the maximum scope of sparsemem:
163 	 */
164 	if (*start_pfn > max_sparsemem_pfn) {
165 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
166 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167 			*start_pfn, *end_pfn, max_sparsemem_pfn);
168 		WARN_ON_ONCE(1);
169 		*start_pfn = max_sparsemem_pfn;
170 		*end_pfn = max_sparsemem_pfn;
171 	} else if (*end_pfn > max_sparsemem_pfn) {
172 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
173 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174 			*start_pfn, *end_pfn, max_sparsemem_pfn);
175 		WARN_ON_ONCE(1);
176 		*end_pfn = max_sparsemem_pfn;
177 	}
178 }
179 
180 /* Record a memory area against a node. */
181 void __init memory_present(int nid, unsigned long start, unsigned long end)
182 {
183 	unsigned long pfn;
184 
185 	start &= PAGE_SECTION_MASK;
186 	mminit_validate_memmodel_limits(&start, &end);
187 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
188 		unsigned long section = pfn_to_section_nr(pfn);
189 		struct mem_section *ms;
190 
191 		sparse_index_init(section, nid);
192 		set_section_nid(section, nid);
193 
194 		ms = __nr_to_section(section);
195 		if (!ms->section_mem_map)
196 			ms->section_mem_map = sparse_encode_early_nid(nid) |
197 							SECTION_MARKED_PRESENT;
198 	}
199 }
200 
201 /*
202  * Only used by the i386 NUMA architecures, but relatively
203  * generic code.
204  */
205 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
206 						     unsigned long end_pfn)
207 {
208 	unsigned long pfn;
209 	unsigned long nr_pages = 0;
210 
211 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
212 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
213 		if (nid != early_pfn_to_nid(pfn))
214 			continue;
215 
216 		if (pfn_present(pfn))
217 			nr_pages += PAGES_PER_SECTION;
218 	}
219 
220 	return nr_pages * sizeof(struct page);
221 }
222 
223 /*
224  * Subtle, we encode the real pfn into the mem_map such that
225  * the identity pfn - section_mem_map will return the actual
226  * physical page frame number.
227  */
228 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
229 {
230 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
231 }
232 
233 /*
234  * Decode mem_map from the coded memmap
235  */
236 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
237 {
238 	/* mask off the extra low bits of information */
239 	coded_mem_map &= SECTION_MAP_MASK;
240 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
241 }
242 
243 static int __meminit sparse_init_one_section(struct mem_section *ms,
244 		unsigned long pnum, struct page *mem_map,
245 		unsigned long *pageblock_bitmap)
246 {
247 	if (!present_section(ms))
248 		return -EINVAL;
249 
250 	ms->section_mem_map &= ~SECTION_MAP_MASK;
251 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
252 							SECTION_HAS_MEM_MAP;
253  	ms->pageblock_flags = pageblock_bitmap;
254 
255 	return 1;
256 }
257 
258 unsigned long usemap_size(void)
259 {
260 	unsigned long size_bytes;
261 	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
262 	size_bytes = roundup(size_bytes, sizeof(unsigned long));
263 	return size_bytes;
264 }
265 
266 #ifdef CONFIG_MEMORY_HOTPLUG
267 static unsigned long *__kmalloc_section_usemap(void)
268 {
269 	return kmalloc(usemap_size(), GFP_KERNEL);
270 }
271 #endif /* CONFIG_MEMORY_HOTPLUG */
272 
273 #ifdef CONFIG_MEMORY_HOTREMOVE
274 static unsigned long * __init
275 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
276 					 unsigned long count)
277 {
278 	unsigned long section_nr;
279 
280 	/*
281 	 * A page may contain usemaps for other sections preventing the
282 	 * page being freed and making a section unremovable while
283 	 * other sections referencing the usemap retmain active. Similarly,
284 	 * a pgdat can prevent a section being removed. If section A
285 	 * contains a pgdat and section B contains the usemap, both
286 	 * sections become inter-dependent. This allocates usemaps
287 	 * from the same section as the pgdat where possible to avoid
288 	 * this problem.
289 	 */
290 	section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
291 	return alloc_bootmem_section(usemap_size() * count, section_nr);
292 }
293 
294 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
295 {
296 	unsigned long usemap_snr, pgdat_snr;
297 	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
298 	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
299 	struct pglist_data *pgdat = NODE_DATA(nid);
300 	int usemap_nid;
301 
302 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
303 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
304 	if (usemap_snr == pgdat_snr)
305 		return;
306 
307 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
308 		/* skip redundant message */
309 		return;
310 
311 	old_usemap_snr = usemap_snr;
312 	old_pgdat_snr = pgdat_snr;
313 
314 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
315 	if (usemap_nid != nid) {
316 		printk(KERN_INFO
317 		       "node %d must be removed before remove section %ld\n",
318 		       nid, usemap_snr);
319 		return;
320 	}
321 	/*
322 	 * There is a circular dependency.
323 	 * Some platforms allow un-removable section because they will just
324 	 * gather other removable sections for dynamic partitioning.
325 	 * Just notify un-removable section's number here.
326 	 */
327 	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
328 	       pgdat_snr, nid);
329 	printk(KERN_CONT
330 	       " have a circular dependency on usemap and pgdat allocations\n");
331 }
332 #else
333 static unsigned long * __init
334 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
335 					 unsigned long count)
336 {
337 	return NULL;
338 }
339 
340 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
341 {
342 }
343 #endif /* CONFIG_MEMORY_HOTREMOVE */
344 
345 static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
346 				 unsigned long pnum_begin,
347 				 unsigned long pnum_end,
348 				 unsigned long usemap_count, int nodeid)
349 {
350 	void *usemap;
351 	unsigned long pnum;
352 	int size = usemap_size();
353 
354 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
355 								 usemap_count);
356 	if (!usemap) {
357 		usemap = alloc_bootmem_node(NODE_DATA(nodeid), size * usemap_count);
358 		if (!usemap) {
359 			printk(KERN_WARNING "%s: allocation failed\n", __func__);
360 			return;
361 		}
362 	}
363 
364 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
365 		if (!present_section_nr(pnum))
366 			continue;
367 		usemap_map[pnum] = usemap;
368 		usemap += size;
369 		check_usemap_section_nr(nodeid, usemap_map[pnum]);
370 	}
371 }
372 
373 #ifndef CONFIG_SPARSEMEM_VMEMMAP
374 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
375 {
376 	struct page *map;
377 	unsigned long size;
378 
379 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
380 	if (map)
381 		return map;
382 
383 	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
384 	map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
385 					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
386 	return map;
387 }
388 void __init sparse_mem_maps_populate_node(struct page **map_map,
389 					  unsigned long pnum_begin,
390 					  unsigned long pnum_end,
391 					  unsigned long map_count, int nodeid)
392 {
393 	void *map;
394 	unsigned long pnum;
395 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
396 
397 	map = alloc_remap(nodeid, size * map_count);
398 	if (map) {
399 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
400 			if (!present_section_nr(pnum))
401 				continue;
402 			map_map[pnum] = map;
403 			map += size;
404 		}
405 		return;
406 	}
407 
408 	size = PAGE_ALIGN(size);
409 	map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
410 					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
411 	if (map) {
412 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
413 			if (!present_section_nr(pnum))
414 				continue;
415 			map_map[pnum] = map;
416 			map += size;
417 		}
418 		return;
419 	}
420 
421 	/* fallback */
422 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
423 		struct mem_section *ms;
424 
425 		if (!present_section_nr(pnum))
426 			continue;
427 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
428 		if (map_map[pnum])
429 			continue;
430 		ms = __nr_to_section(pnum);
431 		printk(KERN_ERR "%s: sparsemem memory map backing failed "
432 			"some memory will not be available.\n", __func__);
433 		ms->section_mem_map = 0;
434 	}
435 }
436 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
437 
438 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
439 static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
440 				 unsigned long pnum_begin,
441 				 unsigned long pnum_end,
442 				 unsigned long map_count, int nodeid)
443 {
444 	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
445 					 map_count, nodeid);
446 }
447 #else
448 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
449 {
450 	struct page *map;
451 	struct mem_section *ms = __nr_to_section(pnum);
452 	int nid = sparse_early_nid(ms);
453 
454 	map = sparse_mem_map_populate(pnum, nid);
455 	if (map)
456 		return map;
457 
458 	printk(KERN_ERR "%s: sparsemem memory map backing failed "
459 			"some memory will not be available.\n", __func__);
460 	ms->section_mem_map = 0;
461 	return NULL;
462 }
463 #endif
464 
465 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
466 {
467 }
468 
469 /*
470  * Allocate the accumulated non-linear sections, allocate a mem_map
471  * for each and record the physical to section mapping.
472  */
473 void __init sparse_init(void)
474 {
475 	unsigned long pnum;
476 	struct page *map;
477 	unsigned long *usemap;
478 	unsigned long **usemap_map;
479 	int size;
480 	int nodeid_begin = 0;
481 	unsigned long pnum_begin = 0;
482 	unsigned long usemap_count;
483 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
484 	unsigned long map_count;
485 	int size2;
486 	struct page **map_map;
487 #endif
488 
489 	/*
490 	 * map is using big page (aka 2M in x86 64 bit)
491 	 * usemap is less one page (aka 24 bytes)
492 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
493 	 * make next 2M slip to one more 2M later.
494 	 * then in big system, the memory will have a lot of holes...
495 	 * here try to allocate 2M pages continuously.
496 	 *
497 	 * powerpc need to call sparse_init_one_section right after each
498 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
499 	 */
500 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
501 	usemap_map = alloc_bootmem(size);
502 	if (!usemap_map)
503 		panic("can not allocate usemap_map\n");
504 
505 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
506 		struct mem_section *ms;
507 
508 		if (!present_section_nr(pnum))
509 			continue;
510 		ms = __nr_to_section(pnum);
511 		nodeid_begin = sparse_early_nid(ms);
512 		pnum_begin = pnum;
513 		break;
514 	}
515 	usemap_count = 1;
516 	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
517 		struct mem_section *ms;
518 		int nodeid;
519 
520 		if (!present_section_nr(pnum))
521 			continue;
522 		ms = __nr_to_section(pnum);
523 		nodeid = sparse_early_nid(ms);
524 		if (nodeid == nodeid_begin) {
525 			usemap_count++;
526 			continue;
527 		}
528 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
529 		sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
530 						 usemap_count, nodeid_begin);
531 		/* new start, update count etc*/
532 		nodeid_begin = nodeid;
533 		pnum_begin = pnum;
534 		usemap_count = 1;
535 	}
536 	/* ok, last chunk */
537 	sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
538 					 usemap_count, nodeid_begin);
539 
540 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
541 	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
542 	map_map = alloc_bootmem(size2);
543 	if (!map_map)
544 		panic("can not allocate map_map\n");
545 
546 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
547 		struct mem_section *ms;
548 
549 		if (!present_section_nr(pnum))
550 			continue;
551 		ms = __nr_to_section(pnum);
552 		nodeid_begin = sparse_early_nid(ms);
553 		pnum_begin = pnum;
554 		break;
555 	}
556 	map_count = 1;
557 	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
558 		struct mem_section *ms;
559 		int nodeid;
560 
561 		if (!present_section_nr(pnum))
562 			continue;
563 		ms = __nr_to_section(pnum);
564 		nodeid = sparse_early_nid(ms);
565 		if (nodeid == nodeid_begin) {
566 			map_count++;
567 			continue;
568 		}
569 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
570 		sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
571 						 map_count, nodeid_begin);
572 		/* new start, update count etc*/
573 		nodeid_begin = nodeid;
574 		pnum_begin = pnum;
575 		map_count = 1;
576 	}
577 	/* ok, last chunk */
578 	sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
579 					 map_count, nodeid_begin);
580 #endif
581 
582 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
583 		if (!present_section_nr(pnum))
584 			continue;
585 
586 		usemap = usemap_map[pnum];
587 		if (!usemap)
588 			continue;
589 
590 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
591 		map = map_map[pnum];
592 #else
593 		map = sparse_early_mem_map_alloc(pnum);
594 #endif
595 		if (!map)
596 			continue;
597 
598 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
599 								usemap);
600 	}
601 
602 	vmemmap_populate_print_last();
603 
604 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
605 	free_bootmem(__pa(map_map), size2);
606 #endif
607 	free_bootmem(__pa(usemap_map), size);
608 }
609 
610 #ifdef CONFIG_MEMORY_HOTPLUG
611 #ifdef CONFIG_SPARSEMEM_VMEMMAP
612 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
613 						 unsigned long nr_pages)
614 {
615 	/* This will make the necessary allocations eventually. */
616 	return sparse_mem_map_populate(pnum, nid);
617 }
618 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
619 {
620 	return; /* XXX: Not implemented yet */
621 }
622 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
623 {
624 }
625 #else
626 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
627 {
628 	struct page *page, *ret;
629 	unsigned long memmap_size = sizeof(struct page) * nr_pages;
630 
631 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
632 	if (page)
633 		goto got_map_page;
634 
635 	ret = vmalloc(memmap_size);
636 	if (ret)
637 		goto got_map_ptr;
638 
639 	return NULL;
640 got_map_page:
641 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
642 got_map_ptr:
643 	memset(ret, 0, memmap_size);
644 
645 	return ret;
646 }
647 
648 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
649 						  unsigned long nr_pages)
650 {
651 	return __kmalloc_section_memmap(nr_pages);
652 }
653 
654 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
655 {
656 	if (is_vmalloc_addr(memmap))
657 		vfree(memmap);
658 	else
659 		free_pages((unsigned long)memmap,
660 			   get_order(sizeof(struct page) * nr_pages));
661 }
662 
663 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
664 {
665 	unsigned long maps_section_nr, removing_section_nr, i;
666 	unsigned long magic;
667 
668 	for (i = 0; i < nr_pages; i++, page++) {
669 		magic = (unsigned long) page->lru.next;
670 
671 		BUG_ON(magic == NODE_INFO);
672 
673 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
674 		removing_section_nr = page->private;
675 
676 		/*
677 		 * When this function is called, the removing section is
678 		 * logical offlined state. This means all pages are isolated
679 		 * from page allocator. If removing section's memmap is placed
680 		 * on the same section, it must not be freed.
681 		 * If it is freed, page allocator may allocate it which will
682 		 * be removed physically soon.
683 		 */
684 		if (maps_section_nr != removing_section_nr)
685 			put_page_bootmem(page);
686 	}
687 }
688 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
689 
690 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
691 {
692 	struct page *usemap_page;
693 	unsigned long nr_pages;
694 
695 	if (!usemap)
696 		return;
697 
698 	usemap_page = virt_to_page(usemap);
699 	/*
700 	 * Check to see if allocation came from hot-plug-add
701 	 */
702 	if (PageSlab(usemap_page)) {
703 		kfree(usemap);
704 		if (memmap)
705 			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
706 		return;
707 	}
708 
709 	/*
710 	 * The usemap came from bootmem. This is packed with other usemaps
711 	 * on the section which has pgdat at boot time. Just keep it as is now.
712 	 */
713 
714 	if (memmap) {
715 		struct page *memmap_page;
716 		memmap_page = virt_to_page(memmap);
717 
718 		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
719 			>> PAGE_SHIFT;
720 
721 		free_map_bootmem(memmap_page, nr_pages);
722 	}
723 }
724 
725 /*
726  * returns the number of sections whose mem_maps were properly
727  * set.  If this is <=0, then that means that the passed-in
728  * map was not consumed and must be freed.
729  */
730 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
731 			   int nr_pages)
732 {
733 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
734 	struct pglist_data *pgdat = zone->zone_pgdat;
735 	struct mem_section *ms;
736 	struct page *memmap;
737 	unsigned long *usemap;
738 	unsigned long flags;
739 	int ret;
740 
741 	/*
742 	 * no locking for this, because it does its own
743 	 * plus, it does a kmalloc
744 	 */
745 	ret = sparse_index_init(section_nr, pgdat->node_id);
746 	if (ret < 0 && ret != -EEXIST)
747 		return ret;
748 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
749 	if (!memmap)
750 		return -ENOMEM;
751 	usemap = __kmalloc_section_usemap();
752 	if (!usemap) {
753 		__kfree_section_memmap(memmap, nr_pages);
754 		return -ENOMEM;
755 	}
756 
757 	pgdat_resize_lock(pgdat, &flags);
758 
759 	ms = __pfn_to_section(start_pfn);
760 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
761 		ret = -EEXIST;
762 		goto out;
763 	}
764 
765 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
766 
767 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
768 
769 out:
770 	pgdat_resize_unlock(pgdat, &flags);
771 	if (ret <= 0) {
772 		kfree(usemap);
773 		__kfree_section_memmap(memmap, nr_pages);
774 	}
775 	return ret;
776 }
777 
778 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
779 {
780 	struct page *memmap = NULL;
781 	unsigned long *usemap = NULL;
782 
783 	if (ms->section_mem_map) {
784 		usemap = ms->pageblock_flags;
785 		memmap = sparse_decode_mem_map(ms->section_mem_map,
786 						__section_nr(ms));
787 		ms->section_mem_map = 0;
788 		ms->pageblock_flags = NULL;
789 	}
790 
791 	free_section_usemap(memmap, usemap);
792 }
793 #endif
794