1 /* 2 * sparse memory mappings. 3 */ 4 #include <linux/mm.h> 5 #include <linux/slab.h> 6 #include <linux/mmzone.h> 7 #include <linux/bootmem.h> 8 #include <linux/highmem.h> 9 #include <linux/export.h> 10 #include <linux/spinlock.h> 11 #include <linux/vmalloc.h> 12 #include "internal.h" 13 #include <asm/dma.h> 14 #include <asm/pgalloc.h> 15 #include <asm/pgtable.h> 16 17 /* 18 * Permanent SPARSEMEM data: 19 * 20 * 1) mem_section - memory sections, mem_map's for valid memory 21 */ 22 #ifdef CONFIG_SPARSEMEM_EXTREME 23 struct mem_section *mem_section[NR_SECTION_ROOTS] 24 ____cacheline_internodealigned_in_smp; 25 #else 26 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 27 ____cacheline_internodealigned_in_smp; 28 #endif 29 EXPORT_SYMBOL(mem_section); 30 31 #ifdef NODE_NOT_IN_PAGE_FLAGS 32 /* 33 * If we did not store the node number in the page then we have to 34 * do a lookup in the section_to_node_table in order to find which 35 * node the page belongs to. 36 */ 37 #if MAX_NUMNODES <= 256 38 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 39 #else 40 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #endif 42 43 int page_to_nid(const struct page *page) 44 { 45 return section_to_node_table[page_to_section(page)]; 46 } 47 EXPORT_SYMBOL(page_to_nid); 48 49 static void set_section_nid(unsigned long section_nr, int nid) 50 { 51 section_to_node_table[section_nr] = nid; 52 } 53 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 54 static inline void set_section_nid(unsigned long section_nr, int nid) 55 { 56 } 57 #endif 58 59 #ifdef CONFIG_SPARSEMEM_EXTREME 60 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) 61 { 62 struct mem_section *section = NULL; 63 unsigned long array_size = SECTIONS_PER_ROOT * 64 sizeof(struct mem_section); 65 66 if (slab_is_available()) { 67 if (node_state(nid, N_HIGH_MEMORY)) 68 section = kzalloc_node(array_size, GFP_KERNEL, nid); 69 else 70 section = kzalloc(array_size, GFP_KERNEL); 71 } else { 72 section = alloc_bootmem_node(NODE_DATA(nid), array_size); 73 } 74 75 return section; 76 } 77 78 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 79 { 80 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 81 struct mem_section *section; 82 83 if (mem_section[root]) 84 return -EEXIST; 85 86 section = sparse_index_alloc(nid); 87 if (!section) 88 return -ENOMEM; 89 90 mem_section[root] = section; 91 92 return 0; 93 } 94 #else /* !SPARSEMEM_EXTREME */ 95 static inline int sparse_index_init(unsigned long section_nr, int nid) 96 { 97 return 0; 98 } 99 #endif 100 101 /* 102 * Although written for the SPARSEMEM_EXTREME case, this happens 103 * to also work for the flat array case because 104 * NR_SECTION_ROOTS==NR_MEM_SECTIONS. 105 */ 106 int __section_nr(struct mem_section* ms) 107 { 108 unsigned long root_nr; 109 struct mem_section* root; 110 111 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 112 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 113 if (!root) 114 continue; 115 116 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 117 break; 118 } 119 120 VM_BUG_ON(root_nr == NR_SECTION_ROOTS); 121 122 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 123 } 124 125 /* 126 * During early boot, before section_mem_map is used for an actual 127 * mem_map, we use section_mem_map to store the section's NUMA 128 * node. This keeps us from having to use another data structure. The 129 * node information is cleared just before we store the real mem_map. 130 */ 131 static inline unsigned long sparse_encode_early_nid(int nid) 132 { 133 return (nid << SECTION_NID_SHIFT); 134 } 135 136 static inline int sparse_early_nid(struct mem_section *section) 137 { 138 return (section->section_mem_map >> SECTION_NID_SHIFT); 139 } 140 141 /* Validate the physical addressing limitations of the model */ 142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 143 unsigned long *end_pfn) 144 { 145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 146 147 /* 148 * Sanity checks - do not allow an architecture to pass 149 * in larger pfns than the maximum scope of sparsemem: 150 */ 151 if (*start_pfn > max_sparsemem_pfn) { 152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 154 *start_pfn, *end_pfn, max_sparsemem_pfn); 155 WARN_ON_ONCE(1); 156 *start_pfn = max_sparsemem_pfn; 157 *end_pfn = max_sparsemem_pfn; 158 } else if (*end_pfn > max_sparsemem_pfn) { 159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 161 *start_pfn, *end_pfn, max_sparsemem_pfn); 162 WARN_ON_ONCE(1); 163 *end_pfn = max_sparsemem_pfn; 164 } 165 } 166 167 /* Record a memory area against a node. */ 168 void __init memory_present(int nid, unsigned long start, unsigned long end) 169 { 170 unsigned long pfn; 171 172 start &= PAGE_SECTION_MASK; 173 mminit_validate_memmodel_limits(&start, &end); 174 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 175 unsigned long section = pfn_to_section_nr(pfn); 176 struct mem_section *ms; 177 178 sparse_index_init(section, nid); 179 set_section_nid(section, nid); 180 181 ms = __nr_to_section(section); 182 if (!ms->section_mem_map) 183 ms->section_mem_map = sparse_encode_early_nid(nid) | 184 SECTION_MARKED_PRESENT; 185 } 186 } 187 188 /* 189 * Only used by the i386 NUMA architecures, but relatively 190 * generic code. 191 */ 192 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 193 unsigned long end_pfn) 194 { 195 unsigned long pfn; 196 unsigned long nr_pages = 0; 197 198 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 199 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 200 if (nid != early_pfn_to_nid(pfn)) 201 continue; 202 203 if (pfn_present(pfn)) 204 nr_pages += PAGES_PER_SECTION; 205 } 206 207 return nr_pages * sizeof(struct page); 208 } 209 210 /* 211 * Subtle, we encode the real pfn into the mem_map such that 212 * the identity pfn - section_mem_map will return the actual 213 * physical page frame number. 214 */ 215 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 216 { 217 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 218 } 219 220 /* 221 * Decode mem_map from the coded memmap 222 */ 223 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 224 { 225 /* mask off the extra low bits of information */ 226 coded_mem_map &= SECTION_MAP_MASK; 227 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 228 } 229 230 static int __meminit sparse_init_one_section(struct mem_section *ms, 231 unsigned long pnum, struct page *mem_map, 232 unsigned long *pageblock_bitmap) 233 { 234 if (!present_section(ms)) 235 return -EINVAL; 236 237 ms->section_mem_map &= ~SECTION_MAP_MASK; 238 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 239 SECTION_HAS_MEM_MAP; 240 ms->pageblock_flags = pageblock_bitmap; 241 242 return 1; 243 } 244 245 unsigned long usemap_size(void) 246 { 247 unsigned long size_bytes; 248 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; 249 size_bytes = roundup(size_bytes, sizeof(unsigned long)); 250 return size_bytes; 251 } 252 253 #ifdef CONFIG_MEMORY_HOTPLUG 254 static unsigned long *__kmalloc_section_usemap(void) 255 { 256 return kmalloc(usemap_size(), GFP_KERNEL); 257 } 258 #endif /* CONFIG_MEMORY_HOTPLUG */ 259 260 #ifdef CONFIG_MEMORY_HOTREMOVE 261 static unsigned long * __init 262 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 263 unsigned long size) 264 { 265 unsigned long goal, limit; 266 unsigned long *p; 267 int nid; 268 /* 269 * A page may contain usemaps for other sections preventing the 270 * page being freed and making a section unremovable while 271 * other sections referencing the usemap retmain active. Similarly, 272 * a pgdat can prevent a section being removed. If section A 273 * contains a pgdat and section B contains the usemap, both 274 * sections become inter-dependent. This allocates usemaps 275 * from the same section as the pgdat where possible to avoid 276 * this problem. 277 */ 278 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 279 limit = goal + (1UL << PA_SECTION_SHIFT); 280 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 281 again: 282 p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size, 283 SMP_CACHE_BYTES, goal, limit); 284 if (!p && limit) { 285 limit = 0; 286 goto again; 287 } 288 return p; 289 } 290 291 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 292 { 293 unsigned long usemap_snr, pgdat_snr; 294 static unsigned long old_usemap_snr = NR_MEM_SECTIONS; 295 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; 296 struct pglist_data *pgdat = NODE_DATA(nid); 297 int usemap_nid; 298 299 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 300 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 301 if (usemap_snr == pgdat_snr) 302 return; 303 304 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 305 /* skip redundant message */ 306 return; 307 308 old_usemap_snr = usemap_snr; 309 old_pgdat_snr = pgdat_snr; 310 311 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 312 if (usemap_nid != nid) { 313 printk(KERN_INFO 314 "node %d must be removed before remove section %ld\n", 315 nid, usemap_snr); 316 return; 317 } 318 /* 319 * There is a circular dependency. 320 * Some platforms allow un-removable section because they will just 321 * gather other removable sections for dynamic partitioning. 322 * Just notify un-removable section's number here. 323 */ 324 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, 325 pgdat_snr, nid); 326 printk(KERN_CONT 327 " have a circular dependency on usemap and pgdat allocations\n"); 328 } 329 #else 330 static unsigned long * __init 331 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 332 unsigned long size) 333 { 334 return alloc_bootmem_node_nopanic(pgdat, size); 335 } 336 337 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 338 { 339 } 340 #endif /* CONFIG_MEMORY_HOTREMOVE */ 341 342 static void __init sparse_early_usemaps_alloc_node(void *data, 343 unsigned long pnum_begin, 344 unsigned long pnum_end, 345 unsigned long usemap_count, int nodeid) 346 { 347 void *usemap; 348 unsigned long pnum; 349 unsigned long **usemap_map = (unsigned long **)data; 350 int size = usemap_size(); 351 352 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), 353 size * usemap_count); 354 if (!usemap) { 355 printk(KERN_WARNING "%s: allocation failed\n", __func__); 356 return; 357 } 358 359 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 360 if (!present_section_nr(pnum)) 361 continue; 362 usemap_map[pnum] = usemap; 363 usemap += size; 364 check_usemap_section_nr(nodeid, usemap_map[pnum]); 365 } 366 } 367 368 #ifndef CONFIG_SPARSEMEM_VMEMMAP 369 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) 370 { 371 struct page *map; 372 unsigned long size; 373 374 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); 375 if (map) 376 return map; 377 378 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 379 map = __alloc_bootmem_node_high(NODE_DATA(nid), size, 380 PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 381 return map; 382 } 383 void __init sparse_mem_maps_populate_node(struct page **map_map, 384 unsigned long pnum_begin, 385 unsigned long pnum_end, 386 unsigned long map_count, int nodeid) 387 { 388 void *map; 389 unsigned long pnum; 390 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; 391 392 map = alloc_remap(nodeid, size * map_count); 393 if (map) { 394 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 395 if (!present_section_nr(pnum)) 396 continue; 397 map_map[pnum] = map; 398 map += size; 399 } 400 return; 401 } 402 403 size = PAGE_ALIGN(size); 404 map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count, 405 PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 406 if (map) { 407 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 408 if (!present_section_nr(pnum)) 409 continue; 410 map_map[pnum] = map; 411 map += size; 412 } 413 return; 414 } 415 416 /* fallback */ 417 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 418 struct mem_section *ms; 419 420 if (!present_section_nr(pnum)) 421 continue; 422 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); 423 if (map_map[pnum]) 424 continue; 425 ms = __nr_to_section(pnum); 426 printk(KERN_ERR "%s: sparsemem memory map backing failed " 427 "some memory will not be available.\n", __func__); 428 ms->section_mem_map = 0; 429 } 430 } 431 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 432 433 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 434 static void __init sparse_early_mem_maps_alloc_node(void *data, 435 unsigned long pnum_begin, 436 unsigned long pnum_end, 437 unsigned long map_count, int nodeid) 438 { 439 struct page **map_map = (struct page **)data; 440 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, 441 map_count, nodeid); 442 } 443 #else 444 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 445 { 446 struct page *map; 447 struct mem_section *ms = __nr_to_section(pnum); 448 int nid = sparse_early_nid(ms); 449 450 map = sparse_mem_map_populate(pnum, nid); 451 if (map) 452 return map; 453 454 printk(KERN_ERR "%s: sparsemem memory map backing failed " 455 "some memory will not be available.\n", __func__); 456 ms->section_mem_map = 0; 457 return NULL; 458 } 459 #endif 460 461 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void) 462 { 463 } 464 465 /** 466 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap 467 * @map: usemap_map for pageblock flags or mmap_map for vmemmap 468 */ 469 static void __init alloc_usemap_and_memmap(void (*alloc_func) 470 (void *, unsigned long, unsigned long, 471 unsigned long, int), void *data) 472 { 473 unsigned long pnum; 474 unsigned long map_count; 475 int nodeid_begin = 0; 476 unsigned long pnum_begin = 0; 477 478 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 479 struct mem_section *ms; 480 481 if (!present_section_nr(pnum)) 482 continue; 483 ms = __nr_to_section(pnum); 484 nodeid_begin = sparse_early_nid(ms); 485 pnum_begin = pnum; 486 break; 487 } 488 map_count = 1; 489 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { 490 struct mem_section *ms; 491 int nodeid; 492 493 if (!present_section_nr(pnum)) 494 continue; 495 ms = __nr_to_section(pnum); 496 nodeid = sparse_early_nid(ms); 497 if (nodeid == nodeid_begin) { 498 map_count++; 499 continue; 500 } 501 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 502 alloc_func(data, pnum_begin, pnum, 503 map_count, nodeid_begin); 504 /* new start, update count etc*/ 505 nodeid_begin = nodeid; 506 pnum_begin = pnum; 507 map_count = 1; 508 } 509 /* ok, last chunk */ 510 alloc_func(data, pnum_begin, NR_MEM_SECTIONS, 511 map_count, nodeid_begin); 512 } 513 514 /* 515 * Allocate the accumulated non-linear sections, allocate a mem_map 516 * for each and record the physical to section mapping. 517 */ 518 void __init sparse_init(void) 519 { 520 unsigned long pnum; 521 struct page *map; 522 unsigned long *usemap; 523 unsigned long **usemap_map; 524 int size; 525 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 526 int size2; 527 struct page **map_map; 528 #endif 529 530 /* see include/linux/mmzone.h 'struct mem_section' definition */ 531 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section))); 532 533 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 534 set_pageblock_order(); 535 536 /* 537 * map is using big page (aka 2M in x86 64 bit) 538 * usemap is less one page (aka 24 bytes) 539 * so alloc 2M (with 2M align) and 24 bytes in turn will 540 * make next 2M slip to one more 2M later. 541 * then in big system, the memory will have a lot of holes... 542 * here try to allocate 2M pages continuously. 543 * 544 * powerpc need to call sparse_init_one_section right after each 545 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 546 */ 547 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 548 usemap_map = alloc_bootmem(size); 549 if (!usemap_map) 550 panic("can not allocate usemap_map\n"); 551 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node, 552 (void *)usemap_map); 553 554 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 555 size2 = sizeof(struct page *) * NR_MEM_SECTIONS; 556 map_map = alloc_bootmem(size2); 557 if (!map_map) 558 panic("can not allocate map_map\n"); 559 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node, 560 (void *)map_map); 561 #endif 562 563 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 564 if (!present_section_nr(pnum)) 565 continue; 566 567 usemap = usemap_map[pnum]; 568 if (!usemap) 569 continue; 570 571 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 572 map = map_map[pnum]; 573 #else 574 map = sparse_early_mem_map_alloc(pnum); 575 #endif 576 if (!map) 577 continue; 578 579 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 580 usemap); 581 } 582 583 vmemmap_populate_print_last(); 584 585 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 586 free_bootmem(__pa(map_map), size2); 587 #endif 588 free_bootmem(__pa(usemap_map), size); 589 } 590 591 #ifdef CONFIG_MEMORY_HOTPLUG 592 #ifdef CONFIG_SPARSEMEM_VMEMMAP 593 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid) 594 { 595 /* This will make the necessary allocations eventually. */ 596 return sparse_mem_map_populate(pnum, nid); 597 } 598 static void __kfree_section_memmap(struct page *memmap) 599 { 600 unsigned long start = (unsigned long)memmap; 601 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 602 603 vmemmap_free(start, end); 604 } 605 #ifdef CONFIG_MEMORY_HOTREMOVE 606 static void free_map_bootmem(struct page *memmap) 607 { 608 unsigned long start = (unsigned long)memmap; 609 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 610 611 vmemmap_free(start, end); 612 } 613 #endif /* CONFIG_MEMORY_HOTREMOVE */ 614 #else 615 static struct page *__kmalloc_section_memmap(void) 616 { 617 struct page *page, *ret; 618 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION; 619 620 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 621 if (page) 622 goto got_map_page; 623 624 ret = vmalloc(memmap_size); 625 if (ret) 626 goto got_map_ptr; 627 628 return NULL; 629 got_map_page: 630 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 631 got_map_ptr: 632 633 return ret; 634 } 635 636 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid) 637 { 638 return __kmalloc_section_memmap(); 639 } 640 641 static void __kfree_section_memmap(struct page *memmap) 642 { 643 if (is_vmalloc_addr(memmap)) 644 vfree(memmap); 645 else 646 free_pages((unsigned long)memmap, 647 get_order(sizeof(struct page) * PAGES_PER_SECTION)); 648 } 649 650 #ifdef CONFIG_MEMORY_HOTREMOVE 651 static void free_map_bootmem(struct page *memmap) 652 { 653 unsigned long maps_section_nr, removing_section_nr, i; 654 unsigned long magic, nr_pages; 655 struct page *page = virt_to_page(memmap); 656 657 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 658 >> PAGE_SHIFT; 659 660 for (i = 0; i < nr_pages; i++, page++) { 661 magic = (unsigned long) page->lru.next; 662 663 BUG_ON(magic == NODE_INFO); 664 665 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 666 removing_section_nr = page->private; 667 668 /* 669 * When this function is called, the removing section is 670 * logical offlined state. This means all pages are isolated 671 * from page allocator. If removing section's memmap is placed 672 * on the same section, it must not be freed. 673 * If it is freed, page allocator may allocate it which will 674 * be removed physically soon. 675 */ 676 if (maps_section_nr != removing_section_nr) 677 put_page_bootmem(page); 678 } 679 } 680 #endif /* CONFIG_MEMORY_HOTREMOVE */ 681 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 682 683 /* 684 * returns the number of sections whose mem_maps were properly 685 * set. If this is <=0, then that means that the passed-in 686 * map was not consumed and must be freed. 687 */ 688 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn) 689 { 690 unsigned long section_nr = pfn_to_section_nr(start_pfn); 691 struct pglist_data *pgdat = zone->zone_pgdat; 692 struct mem_section *ms; 693 struct page *memmap; 694 unsigned long *usemap; 695 unsigned long flags; 696 int ret; 697 698 /* 699 * no locking for this, because it does its own 700 * plus, it does a kmalloc 701 */ 702 ret = sparse_index_init(section_nr, pgdat->node_id); 703 if (ret < 0 && ret != -EEXIST) 704 return ret; 705 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id); 706 if (!memmap) 707 return -ENOMEM; 708 usemap = __kmalloc_section_usemap(); 709 if (!usemap) { 710 __kfree_section_memmap(memmap); 711 return -ENOMEM; 712 } 713 714 pgdat_resize_lock(pgdat, &flags); 715 716 ms = __pfn_to_section(start_pfn); 717 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 718 ret = -EEXIST; 719 goto out; 720 } 721 722 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION); 723 724 ms->section_mem_map |= SECTION_MARKED_PRESENT; 725 726 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 727 728 out: 729 pgdat_resize_unlock(pgdat, &flags); 730 if (ret <= 0) { 731 kfree(usemap); 732 __kfree_section_memmap(memmap); 733 } 734 return ret; 735 } 736 737 #ifdef CONFIG_MEMORY_HOTREMOVE 738 #ifdef CONFIG_MEMORY_FAILURE 739 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 740 { 741 int i; 742 743 if (!memmap) 744 return; 745 746 for (i = 0; i < PAGES_PER_SECTION; i++) { 747 if (PageHWPoison(&memmap[i])) { 748 atomic_long_sub(1, &num_poisoned_pages); 749 ClearPageHWPoison(&memmap[i]); 750 } 751 } 752 } 753 #else 754 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 755 { 756 } 757 #endif 758 759 static void free_section_usemap(struct page *memmap, unsigned long *usemap) 760 { 761 struct page *usemap_page; 762 763 if (!usemap) 764 return; 765 766 usemap_page = virt_to_page(usemap); 767 /* 768 * Check to see if allocation came from hot-plug-add 769 */ 770 if (PageSlab(usemap_page) || PageCompound(usemap_page)) { 771 kfree(usemap); 772 if (memmap) 773 __kfree_section_memmap(memmap); 774 return; 775 } 776 777 /* 778 * The usemap came from bootmem. This is packed with other usemaps 779 * on the section which has pgdat at boot time. Just keep it as is now. 780 */ 781 782 if (memmap) 783 free_map_bootmem(memmap); 784 } 785 786 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms) 787 { 788 struct page *memmap = NULL; 789 unsigned long *usemap = NULL, flags; 790 struct pglist_data *pgdat = zone->zone_pgdat; 791 792 pgdat_resize_lock(pgdat, &flags); 793 if (ms->section_mem_map) { 794 usemap = ms->pageblock_flags; 795 memmap = sparse_decode_mem_map(ms->section_mem_map, 796 __section_nr(ms)); 797 ms->section_mem_map = 0; 798 ms->pageblock_flags = NULL; 799 } 800 pgdat_resize_unlock(pgdat, &flags); 801 802 clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION); 803 free_section_usemap(memmap, usemap); 804 } 805 #endif /* CONFIG_MEMORY_HOTREMOVE */ 806 #endif /* CONFIG_MEMORY_HOTPLUG */ 807