1 /* 2 * sparse memory mappings. 3 */ 4 #include <linux/mm.h> 5 #include <linux/mmzone.h> 6 #include <linux/bootmem.h> 7 #include <linux/highmem.h> 8 #include <linux/module.h> 9 #include <linux/spinlock.h> 10 #include <linux/vmalloc.h> 11 #include <asm/dma.h> 12 #include <asm/pgalloc.h> 13 #include <asm/pgtable.h> 14 15 /* 16 * Permanent SPARSEMEM data: 17 * 18 * 1) mem_section - memory sections, mem_map's for valid memory 19 */ 20 #ifdef CONFIG_SPARSEMEM_EXTREME 21 struct mem_section *mem_section[NR_SECTION_ROOTS] 22 ____cacheline_internodealigned_in_smp; 23 #else 24 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 25 ____cacheline_internodealigned_in_smp; 26 #endif 27 EXPORT_SYMBOL(mem_section); 28 29 #ifdef NODE_NOT_IN_PAGE_FLAGS 30 /* 31 * If we did not store the node number in the page then we have to 32 * do a lookup in the section_to_node_table in order to find which 33 * node the page belongs to. 34 */ 35 #if MAX_NUMNODES <= 256 36 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 37 #else 38 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 39 #endif 40 41 int page_to_nid(struct page *page) 42 { 43 return section_to_node_table[page_to_section(page)]; 44 } 45 EXPORT_SYMBOL(page_to_nid); 46 47 static void set_section_nid(unsigned long section_nr, int nid) 48 { 49 section_to_node_table[section_nr] = nid; 50 } 51 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 52 static inline void set_section_nid(unsigned long section_nr, int nid) 53 { 54 } 55 #endif 56 57 #ifdef CONFIG_SPARSEMEM_EXTREME 58 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) 59 { 60 struct mem_section *section = NULL; 61 unsigned long array_size = SECTIONS_PER_ROOT * 62 sizeof(struct mem_section); 63 64 if (slab_is_available()) 65 section = kmalloc_node(array_size, GFP_KERNEL, nid); 66 else 67 section = alloc_bootmem_node(NODE_DATA(nid), array_size); 68 69 if (section) 70 memset(section, 0, array_size); 71 72 return section; 73 } 74 75 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 76 { 77 static DEFINE_SPINLOCK(index_init_lock); 78 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 79 struct mem_section *section; 80 int ret = 0; 81 82 if (mem_section[root]) 83 return -EEXIST; 84 85 section = sparse_index_alloc(nid); 86 if (!section) 87 return -ENOMEM; 88 /* 89 * This lock keeps two different sections from 90 * reallocating for the same index 91 */ 92 spin_lock(&index_init_lock); 93 94 if (mem_section[root]) { 95 ret = -EEXIST; 96 goto out; 97 } 98 99 mem_section[root] = section; 100 out: 101 spin_unlock(&index_init_lock); 102 return ret; 103 } 104 #else /* !SPARSEMEM_EXTREME */ 105 static inline int sparse_index_init(unsigned long section_nr, int nid) 106 { 107 return 0; 108 } 109 #endif 110 111 /* 112 * Although written for the SPARSEMEM_EXTREME case, this happens 113 * to also work for the flat array case because 114 * NR_SECTION_ROOTS==NR_MEM_SECTIONS. 115 */ 116 int __section_nr(struct mem_section* ms) 117 { 118 unsigned long root_nr; 119 struct mem_section* root; 120 121 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 122 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 123 if (!root) 124 continue; 125 126 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 127 break; 128 } 129 130 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 131 } 132 133 /* 134 * During early boot, before section_mem_map is used for an actual 135 * mem_map, we use section_mem_map to store the section's NUMA 136 * node. This keeps us from having to use another data structure. The 137 * node information is cleared just before we store the real mem_map. 138 */ 139 static inline unsigned long sparse_encode_early_nid(int nid) 140 { 141 return (nid << SECTION_NID_SHIFT); 142 } 143 144 static inline int sparse_early_nid(struct mem_section *section) 145 { 146 return (section->section_mem_map >> SECTION_NID_SHIFT); 147 } 148 149 /* Record a memory area against a node. */ 150 void __init memory_present(int nid, unsigned long start, unsigned long end) 151 { 152 unsigned long pfn; 153 154 start &= PAGE_SECTION_MASK; 155 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 156 unsigned long section = pfn_to_section_nr(pfn); 157 struct mem_section *ms; 158 159 sparse_index_init(section, nid); 160 set_section_nid(section, nid); 161 162 ms = __nr_to_section(section); 163 if (!ms->section_mem_map) 164 ms->section_mem_map = sparse_encode_early_nid(nid) | 165 SECTION_MARKED_PRESENT; 166 } 167 } 168 169 /* 170 * Only used by the i386 NUMA architecures, but relatively 171 * generic code. 172 */ 173 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 174 unsigned long end_pfn) 175 { 176 unsigned long pfn; 177 unsigned long nr_pages = 0; 178 179 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 180 if (nid != early_pfn_to_nid(pfn)) 181 continue; 182 183 if (pfn_present(pfn)) 184 nr_pages += PAGES_PER_SECTION; 185 } 186 187 return nr_pages * sizeof(struct page); 188 } 189 190 /* 191 * Subtle, we encode the real pfn into the mem_map such that 192 * the identity pfn - section_mem_map will return the actual 193 * physical page frame number. 194 */ 195 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 196 { 197 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 198 } 199 200 /* 201 * We need this if we ever free the mem_maps. While not implemented yet, 202 * this function is included for parity with its sibling. 203 */ 204 static __attribute((unused)) 205 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 206 { 207 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 208 } 209 210 static int __meminit sparse_init_one_section(struct mem_section *ms, 211 unsigned long pnum, struct page *mem_map, 212 unsigned long *pageblock_bitmap) 213 { 214 if (!present_section(ms)) 215 return -EINVAL; 216 217 ms->section_mem_map &= ~SECTION_MAP_MASK; 218 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 219 SECTION_HAS_MEM_MAP; 220 ms->pageblock_flags = pageblock_bitmap; 221 222 return 1; 223 } 224 225 static unsigned long usemap_size(void) 226 { 227 unsigned long size_bytes; 228 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; 229 size_bytes = roundup(size_bytes, sizeof(unsigned long)); 230 return size_bytes; 231 } 232 233 #ifdef CONFIG_MEMORY_HOTPLUG 234 static unsigned long *__kmalloc_section_usemap(void) 235 { 236 return kmalloc(usemap_size(), GFP_KERNEL); 237 } 238 #endif /* CONFIG_MEMORY_HOTPLUG */ 239 240 static unsigned long *sparse_early_usemap_alloc(unsigned long pnum) 241 { 242 unsigned long *usemap; 243 struct mem_section *ms = __nr_to_section(pnum); 244 int nid = sparse_early_nid(ms); 245 246 usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size()); 247 if (usemap) 248 return usemap; 249 250 /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */ 251 nid = 0; 252 253 printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__); 254 return NULL; 255 } 256 257 #ifndef CONFIG_SPARSEMEM_VMEMMAP 258 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) 259 { 260 struct page *map; 261 262 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); 263 if (map) 264 return map; 265 266 map = alloc_bootmem_node(NODE_DATA(nid), 267 sizeof(struct page) * PAGES_PER_SECTION); 268 return map; 269 } 270 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 271 272 struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 273 { 274 struct page *map; 275 struct mem_section *ms = __nr_to_section(pnum); 276 int nid = sparse_early_nid(ms); 277 278 map = sparse_mem_map_populate(pnum, nid); 279 if (map) 280 return map; 281 282 printk(KERN_ERR "%s: sparsemem memory map backing failed " 283 "some memory will not be available.\n", __FUNCTION__); 284 ms->section_mem_map = 0; 285 return NULL; 286 } 287 288 /* 289 * Allocate the accumulated non-linear sections, allocate a mem_map 290 * for each and record the physical to section mapping. 291 */ 292 void __init sparse_init(void) 293 { 294 unsigned long pnum; 295 struct page *map; 296 unsigned long *usemap; 297 298 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 299 if (!present_section_nr(pnum)) 300 continue; 301 302 map = sparse_early_mem_map_alloc(pnum); 303 if (!map) 304 continue; 305 306 usemap = sparse_early_usemap_alloc(pnum); 307 if (!usemap) 308 continue; 309 310 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 311 usemap); 312 } 313 } 314 315 #ifdef CONFIG_MEMORY_HOTPLUG 316 #ifdef CONFIG_SPARSEMEM_VMEMMAP 317 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 318 unsigned long nr_pages) 319 { 320 /* This will make the necessary allocations eventually. */ 321 return sparse_mem_map_populate(pnum, nid); 322 } 323 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) 324 { 325 return; /* XXX: Not implemented yet */ 326 } 327 #else 328 static struct page *__kmalloc_section_memmap(unsigned long nr_pages) 329 { 330 struct page *page, *ret; 331 unsigned long memmap_size = sizeof(struct page) * nr_pages; 332 333 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 334 if (page) 335 goto got_map_page; 336 337 ret = vmalloc(memmap_size); 338 if (ret) 339 goto got_map_ptr; 340 341 return NULL; 342 got_map_page: 343 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 344 got_map_ptr: 345 memset(ret, 0, memmap_size); 346 347 return ret; 348 } 349 350 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 351 unsigned long nr_pages) 352 { 353 return __kmalloc_section_memmap(nr_pages); 354 } 355 356 static int vaddr_in_vmalloc_area(void *addr) 357 { 358 if (addr >= (void *)VMALLOC_START && 359 addr < (void *)VMALLOC_END) 360 return 1; 361 return 0; 362 } 363 364 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) 365 { 366 if (vaddr_in_vmalloc_area(memmap)) 367 vfree(memmap); 368 else 369 free_pages((unsigned long)memmap, 370 get_order(sizeof(struct page) * nr_pages)); 371 } 372 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 373 374 /* 375 * returns the number of sections whose mem_maps were properly 376 * set. If this is <=0, then that means that the passed-in 377 * map was not consumed and must be freed. 378 */ 379 int sparse_add_one_section(struct zone *zone, unsigned long start_pfn, 380 int nr_pages) 381 { 382 unsigned long section_nr = pfn_to_section_nr(start_pfn); 383 struct pglist_data *pgdat = zone->zone_pgdat; 384 struct mem_section *ms; 385 struct page *memmap; 386 unsigned long *usemap; 387 unsigned long flags; 388 int ret; 389 390 /* 391 * no locking for this, because it does its own 392 * plus, it does a kmalloc 393 */ 394 ret = sparse_index_init(section_nr, pgdat->node_id); 395 if (ret < 0 && ret != -EEXIST) 396 return ret; 397 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages); 398 if (!memmap) 399 return -ENOMEM; 400 usemap = __kmalloc_section_usemap(); 401 if (!usemap) { 402 __kfree_section_memmap(memmap, nr_pages); 403 return -ENOMEM; 404 } 405 406 pgdat_resize_lock(pgdat, &flags); 407 408 ms = __pfn_to_section(start_pfn); 409 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 410 ret = -EEXIST; 411 goto out; 412 } 413 414 ms->section_mem_map |= SECTION_MARKED_PRESENT; 415 416 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 417 418 out: 419 pgdat_resize_unlock(pgdat, &flags); 420 if (ret <= 0) { 421 kfree(usemap); 422 __kfree_section_memmap(memmap, nr_pages); 423 } 424 return ret; 425 } 426 #endif 427