1 /* 2 * sparse memory mappings. 3 */ 4 #include <linux/mm.h> 5 #include <linux/slab.h> 6 #include <linux/mmzone.h> 7 #include <linux/bootmem.h> 8 #include <linux/compiler.h> 9 #include <linux/highmem.h> 10 #include <linux/export.h> 11 #include <linux/spinlock.h> 12 #include <linux/vmalloc.h> 13 14 #include "internal.h" 15 #include <asm/dma.h> 16 #include <asm/pgalloc.h> 17 #include <asm/pgtable.h> 18 19 /* 20 * Permanent SPARSEMEM data: 21 * 22 * 1) mem_section - memory sections, mem_map's for valid memory 23 */ 24 #ifdef CONFIG_SPARSEMEM_EXTREME 25 struct mem_section *mem_section[NR_SECTION_ROOTS] 26 ____cacheline_internodealigned_in_smp; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) 69 section = kzalloc_node(array_size, GFP_KERNEL, nid); 70 else 71 section = memblock_virt_alloc_node(array_size, nid); 72 73 return section; 74 } 75 76 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 77 { 78 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 79 struct mem_section *section; 80 81 if (mem_section[root]) 82 return -EEXIST; 83 84 section = sparse_index_alloc(nid); 85 if (!section) 86 return -ENOMEM; 87 88 mem_section[root] = section; 89 90 return 0; 91 } 92 #else /* !SPARSEMEM_EXTREME */ 93 static inline int sparse_index_init(unsigned long section_nr, int nid) 94 { 95 return 0; 96 } 97 #endif 98 99 #ifdef CONFIG_SPARSEMEM_EXTREME 100 int __section_nr(struct mem_section* ms) 101 { 102 unsigned long root_nr; 103 struct mem_section* root; 104 105 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 106 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 107 if (!root) 108 continue; 109 110 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 111 break; 112 } 113 114 VM_BUG_ON(root_nr == NR_SECTION_ROOTS); 115 116 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 117 } 118 #else 119 int __section_nr(struct mem_section* ms) 120 { 121 return (int)(ms - mem_section[0]); 122 } 123 #endif 124 125 /* 126 * During early boot, before section_mem_map is used for an actual 127 * mem_map, we use section_mem_map to store the section's NUMA 128 * node. This keeps us from having to use another data structure. The 129 * node information is cleared just before we store the real mem_map. 130 */ 131 static inline unsigned long sparse_encode_early_nid(int nid) 132 { 133 return (nid << SECTION_NID_SHIFT); 134 } 135 136 static inline int sparse_early_nid(struct mem_section *section) 137 { 138 return (section->section_mem_map >> SECTION_NID_SHIFT); 139 } 140 141 /* Validate the physical addressing limitations of the model */ 142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 143 unsigned long *end_pfn) 144 { 145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 146 147 /* 148 * Sanity checks - do not allow an architecture to pass 149 * in larger pfns than the maximum scope of sparsemem: 150 */ 151 if (*start_pfn > max_sparsemem_pfn) { 152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 154 *start_pfn, *end_pfn, max_sparsemem_pfn); 155 WARN_ON_ONCE(1); 156 *start_pfn = max_sparsemem_pfn; 157 *end_pfn = max_sparsemem_pfn; 158 } else if (*end_pfn > max_sparsemem_pfn) { 159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 161 *start_pfn, *end_pfn, max_sparsemem_pfn); 162 WARN_ON_ONCE(1); 163 *end_pfn = max_sparsemem_pfn; 164 } 165 } 166 167 /* 168 * There are a number of times that we loop over NR_MEM_SECTIONS, 169 * looking for section_present() on each. But, when we have very 170 * large physical address spaces, NR_MEM_SECTIONS can also be 171 * very large which makes the loops quite long. 172 * 173 * Keeping track of this gives us an easy way to break out of 174 * those loops early. 175 */ 176 int __highest_present_section_nr; 177 static void section_mark_present(struct mem_section *ms) 178 { 179 int section_nr = __section_nr(ms); 180 181 if (section_nr > __highest_present_section_nr) 182 __highest_present_section_nr = section_nr; 183 184 ms->section_mem_map |= SECTION_MARKED_PRESENT; 185 } 186 187 static inline int next_present_section_nr(int section_nr) 188 { 189 do { 190 section_nr++; 191 if (present_section_nr(section_nr)) 192 return section_nr; 193 } while ((section_nr < NR_MEM_SECTIONS) && 194 (section_nr <= __highest_present_section_nr)); 195 196 return -1; 197 } 198 #define for_each_present_section_nr(start, section_nr) \ 199 for (section_nr = next_present_section_nr(start-1); \ 200 ((section_nr >= 0) && \ 201 (section_nr < NR_MEM_SECTIONS) && \ 202 (section_nr <= __highest_present_section_nr)); \ 203 section_nr = next_present_section_nr(section_nr)) 204 205 /* Record a memory area against a node. */ 206 void __init memory_present(int nid, unsigned long start, unsigned long end) 207 { 208 unsigned long pfn; 209 210 start &= PAGE_SECTION_MASK; 211 mminit_validate_memmodel_limits(&start, &end); 212 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 213 unsigned long section = pfn_to_section_nr(pfn); 214 struct mem_section *ms; 215 216 sparse_index_init(section, nid); 217 set_section_nid(section, nid); 218 219 ms = __nr_to_section(section); 220 if (!ms->section_mem_map) { 221 ms->section_mem_map = sparse_encode_early_nid(nid) | 222 SECTION_IS_ONLINE; 223 section_mark_present(ms); 224 } 225 } 226 } 227 228 /* 229 * Only used by the i386 NUMA architecures, but relatively 230 * generic code. 231 */ 232 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 233 unsigned long end_pfn) 234 { 235 unsigned long pfn; 236 unsigned long nr_pages = 0; 237 238 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 239 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 240 if (nid != early_pfn_to_nid(pfn)) 241 continue; 242 243 if (pfn_present(pfn)) 244 nr_pages += PAGES_PER_SECTION; 245 } 246 247 return nr_pages * sizeof(struct page); 248 } 249 250 /* 251 * Subtle, we encode the real pfn into the mem_map such that 252 * the identity pfn - section_mem_map will return the actual 253 * physical page frame number. 254 */ 255 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 256 { 257 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 258 } 259 260 /* 261 * Decode mem_map from the coded memmap 262 */ 263 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 264 { 265 /* mask off the extra low bits of information */ 266 coded_mem_map &= SECTION_MAP_MASK; 267 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 268 } 269 270 static int __meminit sparse_init_one_section(struct mem_section *ms, 271 unsigned long pnum, struct page *mem_map, 272 unsigned long *pageblock_bitmap) 273 { 274 if (!present_section(ms)) 275 return -EINVAL; 276 277 ms->section_mem_map &= ~SECTION_MAP_MASK; 278 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 279 SECTION_HAS_MEM_MAP; 280 ms->pageblock_flags = pageblock_bitmap; 281 282 return 1; 283 } 284 285 unsigned long usemap_size(void) 286 { 287 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 288 } 289 290 #ifdef CONFIG_MEMORY_HOTPLUG 291 static unsigned long *__kmalloc_section_usemap(void) 292 { 293 return kmalloc(usemap_size(), GFP_KERNEL); 294 } 295 #endif /* CONFIG_MEMORY_HOTPLUG */ 296 297 #ifdef CONFIG_MEMORY_HOTREMOVE 298 static unsigned long * __init 299 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 300 unsigned long size) 301 { 302 unsigned long goal, limit; 303 unsigned long *p; 304 int nid; 305 /* 306 * A page may contain usemaps for other sections preventing the 307 * page being freed and making a section unremovable while 308 * other sections referencing the usemap remain active. Similarly, 309 * a pgdat can prevent a section being removed. If section A 310 * contains a pgdat and section B contains the usemap, both 311 * sections become inter-dependent. This allocates usemaps 312 * from the same section as the pgdat where possible to avoid 313 * this problem. 314 */ 315 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 316 limit = goal + (1UL << PA_SECTION_SHIFT); 317 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 318 again: 319 p = memblock_virt_alloc_try_nid_nopanic(size, 320 SMP_CACHE_BYTES, goal, limit, 321 nid); 322 if (!p && limit) { 323 limit = 0; 324 goto again; 325 } 326 return p; 327 } 328 329 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 330 { 331 unsigned long usemap_snr, pgdat_snr; 332 static unsigned long old_usemap_snr = NR_MEM_SECTIONS; 333 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; 334 struct pglist_data *pgdat = NODE_DATA(nid); 335 int usemap_nid; 336 337 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 338 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 339 if (usemap_snr == pgdat_snr) 340 return; 341 342 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 343 /* skip redundant message */ 344 return; 345 346 old_usemap_snr = usemap_snr; 347 old_pgdat_snr = pgdat_snr; 348 349 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 350 if (usemap_nid != nid) { 351 pr_info("node %d must be removed before remove section %ld\n", 352 nid, usemap_snr); 353 return; 354 } 355 /* 356 * There is a circular dependency. 357 * Some platforms allow un-removable section because they will just 358 * gather other removable sections for dynamic partitioning. 359 * Just notify un-removable section's number here. 360 */ 361 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 362 usemap_snr, pgdat_snr, nid); 363 } 364 #else 365 static unsigned long * __init 366 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 367 unsigned long size) 368 { 369 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id); 370 } 371 372 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 373 { 374 } 375 #endif /* CONFIG_MEMORY_HOTREMOVE */ 376 377 static void __init sparse_early_usemaps_alloc_node(void *data, 378 unsigned long pnum_begin, 379 unsigned long pnum_end, 380 unsigned long usemap_count, int nodeid) 381 { 382 void *usemap; 383 unsigned long pnum; 384 unsigned long **usemap_map = (unsigned long **)data; 385 int size = usemap_size(); 386 387 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), 388 size * usemap_count); 389 if (!usemap) { 390 pr_warn("%s: allocation failed\n", __func__); 391 return; 392 } 393 394 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 395 if (!present_section_nr(pnum)) 396 continue; 397 usemap_map[pnum] = usemap; 398 usemap += size; 399 check_usemap_section_nr(nodeid, usemap_map[pnum]); 400 } 401 } 402 403 #ifndef CONFIG_SPARSEMEM_VMEMMAP 404 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) 405 { 406 struct page *map; 407 unsigned long size; 408 409 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); 410 if (map) 411 return map; 412 413 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 414 map = memblock_virt_alloc_try_nid(size, 415 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 416 BOOTMEM_ALLOC_ACCESSIBLE, nid); 417 return map; 418 } 419 void __init sparse_mem_maps_populate_node(struct page **map_map, 420 unsigned long pnum_begin, 421 unsigned long pnum_end, 422 unsigned long map_count, int nodeid) 423 { 424 void *map; 425 unsigned long pnum; 426 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; 427 428 map = alloc_remap(nodeid, size * map_count); 429 if (map) { 430 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 431 if (!present_section_nr(pnum)) 432 continue; 433 map_map[pnum] = map; 434 map += size; 435 } 436 return; 437 } 438 439 size = PAGE_ALIGN(size); 440 map = memblock_virt_alloc_try_nid(size * map_count, 441 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 442 BOOTMEM_ALLOC_ACCESSIBLE, nodeid); 443 if (map) { 444 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 445 if (!present_section_nr(pnum)) 446 continue; 447 map_map[pnum] = map; 448 map += size; 449 } 450 return; 451 } 452 453 /* fallback */ 454 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 455 struct mem_section *ms; 456 457 if (!present_section_nr(pnum)) 458 continue; 459 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); 460 if (map_map[pnum]) 461 continue; 462 ms = __nr_to_section(pnum); 463 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 464 __func__); 465 ms->section_mem_map = 0; 466 } 467 } 468 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 469 470 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 471 static void __init sparse_early_mem_maps_alloc_node(void *data, 472 unsigned long pnum_begin, 473 unsigned long pnum_end, 474 unsigned long map_count, int nodeid) 475 { 476 struct page **map_map = (struct page **)data; 477 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, 478 map_count, nodeid); 479 } 480 #else 481 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 482 { 483 struct page *map; 484 struct mem_section *ms = __nr_to_section(pnum); 485 int nid = sparse_early_nid(ms); 486 487 map = sparse_mem_map_populate(pnum, nid); 488 if (map) 489 return map; 490 491 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 492 __func__); 493 ms->section_mem_map = 0; 494 return NULL; 495 } 496 #endif 497 498 void __weak __meminit vmemmap_populate_print_last(void) 499 { 500 } 501 502 /** 503 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap 504 * @map: usemap_map for pageblock flags or mmap_map for vmemmap 505 */ 506 static void __init alloc_usemap_and_memmap(void (*alloc_func) 507 (void *, unsigned long, unsigned long, 508 unsigned long, int), void *data) 509 { 510 unsigned long pnum; 511 unsigned long map_count; 512 int nodeid_begin = 0; 513 unsigned long pnum_begin = 0; 514 515 for_each_present_section_nr(0, pnum) { 516 struct mem_section *ms; 517 518 ms = __nr_to_section(pnum); 519 nodeid_begin = sparse_early_nid(ms); 520 pnum_begin = pnum; 521 break; 522 } 523 map_count = 1; 524 for_each_present_section_nr(pnum_begin + 1, pnum) { 525 struct mem_section *ms; 526 int nodeid; 527 528 ms = __nr_to_section(pnum); 529 nodeid = sparse_early_nid(ms); 530 if (nodeid == nodeid_begin) { 531 map_count++; 532 continue; 533 } 534 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 535 alloc_func(data, pnum_begin, pnum, 536 map_count, nodeid_begin); 537 /* new start, update count etc*/ 538 nodeid_begin = nodeid; 539 pnum_begin = pnum; 540 map_count = 1; 541 } 542 /* ok, last chunk */ 543 alloc_func(data, pnum_begin, NR_MEM_SECTIONS, 544 map_count, nodeid_begin); 545 } 546 547 /* 548 * Allocate the accumulated non-linear sections, allocate a mem_map 549 * for each and record the physical to section mapping. 550 */ 551 void __init sparse_init(void) 552 { 553 unsigned long pnum; 554 struct page *map; 555 unsigned long *usemap; 556 unsigned long **usemap_map; 557 int size; 558 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 559 int size2; 560 struct page **map_map; 561 #endif 562 563 /* see include/linux/mmzone.h 'struct mem_section' definition */ 564 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section))); 565 566 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 567 set_pageblock_order(); 568 569 /* 570 * map is using big page (aka 2M in x86 64 bit) 571 * usemap is less one page (aka 24 bytes) 572 * so alloc 2M (with 2M align) and 24 bytes in turn will 573 * make next 2M slip to one more 2M later. 574 * then in big system, the memory will have a lot of holes... 575 * here try to allocate 2M pages continuously. 576 * 577 * powerpc need to call sparse_init_one_section right after each 578 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 579 */ 580 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 581 usemap_map = memblock_virt_alloc(size, 0); 582 if (!usemap_map) 583 panic("can not allocate usemap_map\n"); 584 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node, 585 (void *)usemap_map); 586 587 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 588 size2 = sizeof(struct page *) * NR_MEM_SECTIONS; 589 map_map = memblock_virt_alloc(size2, 0); 590 if (!map_map) 591 panic("can not allocate map_map\n"); 592 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node, 593 (void *)map_map); 594 #endif 595 596 for_each_present_section_nr(0, pnum) { 597 usemap = usemap_map[pnum]; 598 if (!usemap) 599 continue; 600 601 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 602 map = map_map[pnum]; 603 #else 604 map = sparse_early_mem_map_alloc(pnum); 605 #endif 606 if (!map) 607 continue; 608 609 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 610 usemap); 611 } 612 613 vmemmap_populate_print_last(); 614 615 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 616 memblock_free_early(__pa(map_map), size2); 617 #endif 618 memblock_free_early(__pa(usemap_map), size); 619 } 620 621 #ifdef CONFIG_MEMORY_HOTPLUG 622 623 /* Mark all memory sections within the pfn range as online */ 624 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 625 { 626 unsigned long pfn; 627 628 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 629 unsigned long section_nr = pfn_to_section_nr(pfn); 630 struct mem_section *ms; 631 632 /* onlining code should never touch invalid ranges */ 633 if (WARN_ON(!valid_section_nr(section_nr))) 634 continue; 635 636 ms = __nr_to_section(section_nr); 637 ms->section_mem_map |= SECTION_IS_ONLINE; 638 } 639 } 640 641 #ifdef CONFIG_MEMORY_HOTREMOVE 642 /* Mark all memory sections within the pfn range as online */ 643 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 644 { 645 unsigned long pfn; 646 647 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 648 unsigned long section_nr = pfn_to_section_nr(start_pfn); 649 struct mem_section *ms; 650 651 /* 652 * TODO this needs some double checking. Offlining code makes 653 * sure to check pfn_valid but those checks might be just bogus 654 */ 655 if (WARN_ON(!valid_section_nr(section_nr))) 656 continue; 657 658 ms = __nr_to_section(section_nr); 659 ms->section_mem_map &= ~SECTION_IS_ONLINE; 660 } 661 } 662 #endif 663 664 #ifdef CONFIG_SPARSEMEM_VMEMMAP 665 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid) 666 { 667 /* This will make the necessary allocations eventually. */ 668 return sparse_mem_map_populate(pnum, nid); 669 } 670 static void __kfree_section_memmap(struct page *memmap) 671 { 672 unsigned long start = (unsigned long)memmap; 673 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 674 675 vmemmap_free(start, end); 676 } 677 #ifdef CONFIG_MEMORY_HOTREMOVE 678 static void free_map_bootmem(struct page *memmap) 679 { 680 unsigned long start = (unsigned long)memmap; 681 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 682 683 vmemmap_free(start, end); 684 } 685 #endif /* CONFIG_MEMORY_HOTREMOVE */ 686 #else 687 static struct page *__kmalloc_section_memmap(void) 688 { 689 struct page *page, *ret; 690 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION; 691 692 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 693 if (page) 694 goto got_map_page; 695 696 ret = vmalloc(memmap_size); 697 if (ret) 698 goto got_map_ptr; 699 700 return NULL; 701 got_map_page: 702 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 703 got_map_ptr: 704 705 return ret; 706 } 707 708 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid) 709 { 710 return __kmalloc_section_memmap(); 711 } 712 713 static void __kfree_section_memmap(struct page *memmap) 714 { 715 if (is_vmalloc_addr(memmap)) 716 vfree(memmap); 717 else 718 free_pages((unsigned long)memmap, 719 get_order(sizeof(struct page) * PAGES_PER_SECTION)); 720 } 721 722 #ifdef CONFIG_MEMORY_HOTREMOVE 723 static void free_map_bootmem(struct page *memmap) 724 { 725 unsigned long maps_section_nr, removing_section_nr, i; 726 unsigned long magic, nr_pages; 727 struct page *page = virt_to_page(memmap); 728 729 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 730 >> PAGE_SHIFT; 731 732 for (i = 0; i < nr_pages; i++, page++) { 733 magic = (unsigned long) page->freelist; 734 735 BUG_ON(magic == NODE_INFO); 736 737 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 738 removing_section_nr = page_private(page); 739 740 /* 741 * When this function is called, the removing section is 742 * logical offlined state. This means all pages are isolated 743 * from page allocator. If removing section's memmap is placed 744 * on the same section, it must not be freed. 745 * If it is freed, page allocator may allocate it which will 746 * be removed physically soon. 747 */ 748 if (maps_section_nr != removing_section_nr) 749 put_page_bootmem(page); 750 } 751 } 752 #endif /* CONFIG_MEMORY_HOTREMOVE */ 753 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 754 755 /* 756 * returns the number of sections whose mem_maps were properly 757 * set. If this is <=0, then that means that the passed-in 758 * map was not consumed and must be freed. 759 */ 760 int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn) 761 { 762 unsigned long section_nr = pfn_to_section_nr(start_pfn); 763 struct mem_section *ms; 764 struct page *memmap; 765 unsigned long *usemap; 766 unsigned long flags; 767 int ret; 768 769 /* 770 * no locking for this, because it does its own 771 * plus, it does a kmalloc 772 */ 773 ret = sparse_index_init(section_nr, pgdat->node_id); 774 if (ret < 0 && ret != -EEXIST) 775 return ret; 776 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id); 777 if (!memmap) 778 return -ENOMEM; 779 usemap = __kmalloc_section_usemap(); 780 if (!usemap) { 781 __kfree_section_memmap(memmap); 782 return -ENOMEM; 783 } 784 785 pgdat_resize_lock(pgdat, &flags); 786 787 ms = __pfn_to_section(start_pfn); 788 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 789 ret = -EEXIST; 790 goto out; 791 } 792 793 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION); 794 795 section_mark_present(ms); 796 797 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 798 799 out: 800 pgdat_resize_unlock(pgdat, &flags); 801 if (ret <= 0) { 802 kfree(usemap); 803 __kfree_section_memmap(memmap); 804 } 805 return ret; 806 } 807 808 #ifdef CONFIG_MEMORY_HOTREMOVE 809 #ifdef CONFIG_MEMORY_FAILURE 810 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 811 { 812 int i; 813 814 if (!memmap) 815 return; 816 817 for (i = 0; i < nr_pages; i++) { 818 if (PageHWPoison(&memmap[i])) { 819 atomic_long_sub(1, &num_poisoned_pages); 820 ClearPageHWPoison(&memmap[i]); 821 } 822 } 823 } 824 #else 825 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 826 { 827 } 828 #endif 829 830 static void free_section_usemap(struct page *memmap, unsigned long *usemap) 831 { 832 struct page *usemap_page; 833 834 if (!usemap) 835 return; 836 837 usemap_page = virt_to_page(usemap); 838 /* 839 * Check to see if allocation came from hot-plug-add 840 */ 841 if (PageSlab(usemap_page) || PageCompound(usemap_page)) { 842 kfree(usemap); 843 if (memmap) 844 __kfree_section_memmap(memmap); 845 return; 846 } 847 848 /* 849 * The usemap came from bootmem. This is packed with other usemaps 850 * on the section which has pgdat at boot time. Just keep it as is now. 851 */ 852 853 if (memmap) 854 free_map_bootmem(memmap); 855 } 856 857 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms, 858 unsigned long map_offset) 859 { 860 struct page *memmap = NULL; 861 unsigned long *usemap = NULL, flags; 862 struct pglist_data *pgdat = zone->zone_pgdat; 863 864 pgdat_resize_lock(pgdat, &flags); 865 if (ms->section_mem_map) { 866 usemap = ms->pageblock_flags; 867 memmap = sparse_decode_mem_map(ms->section_mem_map, 868 __section_nr(ms)); 869 ms->section_mem_map = 0; 870 ms->pageblock_flags = NULL; 871 } 872 pgdat_resize_unlock(pgdat, &flags); 873 874 clear_hwpoisoned_pages(memmap + map_offset, 875 PAGES_PER_SECTION - map_offset); 876 free_section_usemap(memmap, usemap); 877 } 878 #endif /* CONFIG_MEMORY_HOTREMOVE */ 879 #endif /* CONFIG_MEMORY_HOTPLUG */ 880