xref: /openbmc/linux/mm/sparse.c (revision 7211ec63)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/compiler.h>
9 #include <linux/highmem.h>
10 #include <linux/export.h>
11 #include <linux/spinlock.h>
12 #include <linux/vmalloc.h>
13 
14 #include "internal.h"
15 #include <asm/dma.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
18 
19 /*
20  * Permanent SPARSEMEM data:
21  *
22  * 1) mem_section	- memory sections, mem_map's for valid memory
23  */
24 #ifdef CONFIG_SPARSEMEM_EXTREME
25 struct mem_section *mem_section[NR_SECTION_ROOTS]
26 	____cacheline_internodealigned_in_smp;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 	____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32 
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44 
45 int page_to_nid(const struct page *page)
46 {
47 	return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50 
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 	section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60 
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 	struct mem_section *section = NULL;
65 	unsigned long array_size = SECTIONS_PER_ROOT *
66 				   sizeof(struct mem_section);
67 
68 	if (slab_is_available())
69 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 	else
71 		section = memblock_virt_alloc_node(array_size, nid);
72 
73 	return section;
74 }
75 
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79 	struct mem_section *section;
80 
81 	if (mem_section[root])
82 		return -EEXIST;
83 
84 	section = sparse_index_alloc(nid);
85 	if (!section)
86 		return -ENOMEM;
87 
88 	mem_section[root] = section;
89 
90 	return 0;
91 }
92 #else /* !SPARSEMEM_EXTREME */
93 static inline int sparse_index_init(unsigned long section_nr, int nid)
94 {
95 	return 0;
96 }
97 #endif
98 
99 #ifdef CONFIG_SPARSEMEM_EXTREME
100 int __section_nr(struct mem_section* ms)
101 {
102 	unsigned long root_nr;
103 	struct mem_section* root;
104 
105 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107 		if (!root)
108 			continue;
109 
110 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111 		     break;
112 	}
113 
114 	VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
115 
116 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117 }
118 #else
119 int __section_nr(struct mem_section* ms)
120 {
121 	return (int)(ms - mem_section[0]);
122 }
123 #endif
124 
125 /*
126  * During early boot, before section_mem_map is used for an actual
127  * mem_map, we use section_mem_map to store the section's NUMA
128  * node.  This keeps us from having to use another data structure.  The
129  * node information is cleared just before we store the real mem_map.
130  */
131 static inline unsigned long sparse_encode_early_nid(int nid)
132 {
133 	return (nid << SECTION_NID_SHIFT);
134 }
135 
136 static inline int sparse_early_nid(struct mem_section *section)
137 {
138 	return (section->section_mem_map >> SECTION_NID_SHIFT);
139 }
140 
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143 						unsigned long *end_pfn)
144 {
145 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146 
147 	/*
148 	 * Sanity checks - do not allow an architecture to pass
149 	 * in larger pfns than the maximum scope of sparsemem:
150 	 */
151 	if (*start_pfn > max_sparsemem_pfn) {
152 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 			*start_pfn, *end_pfn, max_sparsemem_pfn);
155 		WARN_ON_ONCE(1);
156 		*start_pfn = max_sparsemem_pfn;
157 		*end_pfn = max_sparsemem_pfn;
158 	} else if (*end_pfn > max_sparsemem_pfn) {
159 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 			*start_pfn, *end_pfn, max_sparsemem_pfn);
162 		WARN_ON_ONCE(1);
163 		*end_pfn = max_sparsemem_pfn;
164 	}
165 }
166 
167 /*
168  * There are a number of times that we loop over NR_MEM_SECTIONS,
169  * looking for section_present() on each.  But, when we have very
170  * large physical address spaces, NR_MEM_SECTIONS can also be
171  * very large which makes the loops quite long.
172  *
173  * Keeping track of this gives us an easy way to break out of
174  * those loops early.
175  */
176 int __highest_present_section_nr;
177 static void section_mark_present(struct mem_section *ms)
178 {
179 	int section_nr = __section_nr(ms);
180 
181 	if (section_nr > __highest_present_section_nr)
182 		__highest_present_section_nr = section_nr;
183 
184 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
185 }
186 
187 static inline int next_present_section_nr(int section_nr)
188 {
189 	do {
190 		section_nr++;
191 		if (present_section_nr(section_nr))
192 			return section_nr;
193 	} while ((section_nr < NR_MEM_SECTIONS) &&
194 		 (section_nr <= __highest_present_section_nr));
195 
196 	return -1;
197 }
198 #define for_each_present_section_nr(start, section_nr)		\
199 	for (section_nr = next_present_section_nr(start-1);	\
200 	     ((section_nr >= 0) &&				\
201 	      (section_nr < NR_MEM_SECTIONS) &&			\
202 	      (section_nr <= __highest_present_section_nr));	\
203 	     section_nr = next_present_section_nr(section_nr))
204 
205 /* Record a memory area against a node. */
206 void __init memory_present(int nid, unsigned long start, unsigned long end)
207 {
208 	unsigned long pfn;
209 
210 	start &= PAGE_SECTION_MASK;
211 	mminit_validate_memmodel_limits(&start, &end);
212 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
213 		unsigned long section = pfn_to_section_nr(pfn);
214 		struct mem_section *ms;
215 
216 		sparse_index_init(section, nid);
217 		set_section_nid(section, nid);
218 
219 		ms = __nr_to_section(section);
220 		if (!ms->section_mem_map) {
221 			ms->section_mem_map = sparse_encode_early_nid(nid) |
222 							SECTION_IS_ONLINE;
223 			section_mark_present(ms);
224 		}
225 	}
226 }
227 
228 /*
229  * Only used by the i386 NUMA architecures, but relatively
230  * generic code.
231  */
232 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
233 						     unsigned long end_pfn)
234 {
235 	unsigned long pfn;
236 	unsigned long nr_pages = 0;
237 
238 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
239 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
240 		if (nid != early_pfn_to_nid(pfn))
241 			continue;
242 
243 		if (pfn_present(pfn))
244 			nr_pages += PAGES_PER_SECTION;
245 	}
246 
247 	return nr_pages * sizeof(struct page);
248 }
249 
250 /*
251  * Subtle, we encode the real pfn into the mem_map such that
252  * the identity pfn - section_mem_map will return the actual
253  * physical page frame number.
254  */
255 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
256 {
257 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
258 }
259 
260 /*
261  * Decode mem_map from the coded memmap
262  */
263 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
264 {
265 	/* mask off the extra low bits of information */
266 	coded_mem_map &= SECTION_MAP_MASK;
267 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
268 }
269 
270 static int __meminit sparse_init_one_section(struct mem_section *ms,
271 		unsigned long pnum, struct page *mem_map,
272 		unsigned long *pageblock_bitmap)
273 {
274 	if (!present_section(ms))
275 		return -EINVAL;
276 
277 	ms->section_mem_map &= ~SECTION_MAP_MASK;
278 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
279 							SECTION_HAS_MEM_MAP;
280  	ms->pageblock_flags = pageblock_bitmap;
281 
282 	return 1;
283 }
284 
285 unsigned long usemap_size(void)
286 {
287 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
288 }
289 
290 #ifdef CONFIG_MEMORY_HOTPLUG
291 static unsigned long *__kmalloc_section_usemap(void)
292 {
293 	return kmalloc(usemap_size(), GFP_KERNEL);
294 }
295 #endif /* CONFIG_MEMORY_HOTPLUG */
296 
297 #ifdef CONFIG_MEMORY_HOTREMOVE
298 static unsigned long * __init
299 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
300 					 unsigned long size)
301 {
302 	unsigned long goal, limit;
303 	unsigned long *p;
304 	int nid;
305 	/*
306 	 * A page may contain usemaps for other sections preventing the
307 	 * page being freed and making a section unremovable while
308 	 * other sections referencing the usemap remain active. Similarly,
309 	 * a pgdat can prevent a section being removed. If section A
310 	 * contains a pgdat and section B contains the usemap, both
311 	 * sections become inter-dependent. This allocates usemaps
312 	 * from the same section as the pgdat where possible to avoid
313 	 * this problem.
314 	 */
315 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
316 	limit = goal + (1UL << PA_SECTION_SHIFT);
317 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
318 again:
319 	p = memblock_virt_alloc_try_nid_nopanic(size,
320 						SMP_CACHE_BYTES, goal, limit,
321 						nid);
322 	if (!p && limit) {
323 		limit = 0;
324 		goto again;
325 	}
326 	return p;
327 }
328 
329 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
330 {
331 	unsigned long usemap_snr, pgdat_snr;
332 	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
333 	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
334 	struct pglist_data *pgdat = NODE_DATA(nid);
335 	int usemap_nid;
336 
337 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
338 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
339 	if (usemap_snr == pgdat_snr)
340 		return;
341 
342 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
343 		/* skip redundant message */
344 		return;
345 
346 	old_usemap_snr = usemap_snr;
347 	old_pgdat_snr = pgdat_snr;
348 
349 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
350 	if (usemap_nid != nid) {
351 		pr_info("node %d must be removed before remove section %ld\n",
352 			nid, usemap_snr);
353 		return;
354 	}
355 	/*
356 	 * There is a circular dependency.
357 	 * Some platforms allow un-removable section because they will just
358 	 * gather other removable sections for dynamic partitioning.
359 	 * Just notify un-removable section's number here.
360 	 */
361 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
362 		usemap_snr, pgdat_snr, nid);
363 }
364 #else
365 static unsigned long * __init
366 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
367 					 unsigned long size)
368 {
369 	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
370 }
371 
372 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
373 {
374 }
375 #endif /* CONFIG_MEMORY_HOTREMOVE */
376 
377 static void __init sparse_early_usemaps_alloc_node(void *data,
378 				 unsigned long pnum_begin,
379 				 unsigned long pnum_end,
380 				 unsigned long usemap_count, int nodeid)
381 {
382 	void *usemap;
383 	unsigned long pnum;
384 	unsigned long **usemap_map = (unsigned long **)data;
385 	int size = usemap_size();
386 
387 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
388 							  size * usemap_count);
389 	if (!usemap) {
390 		pr_warn("%s: allocation failed\n", __func__);
391 		return;
392 	}
393 
394 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
395 		if (!present_section_nr(pnum))
396 			continue;
397 		usemap_map[pnum] = usemap;
398 		usemap += size;
399 		check_usemap_section_nr(nodeid, usemap_map[pnum]);
400 	}
401 }
402 
403 #ifndef CONFIG_SPARSEMEM_VMEMMAP
404 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
405 {
406 	struct page *map;
407 	unsigned long size;
408 
409 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
410 	if (map)
411 		return map;
412 
413 	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
414 	map = memblock_virt_alloc_try_nid(size,
415 					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
416 					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
417 	return map;
418 }
419 void __init sparse_mem_maps_populate_node(struct page **map_map,
420 					  unsigned long pnum_begin,
421 					  unsigned long pnum_end,
422 					  unsigned long map_count, int nodeid)
423 {
424 	void *map;
425 	unsigned long pnum;
426 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
427 
428 	map = alloc_remap(nodeid, size * map_count);
429 	if (map) {
430 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
431 			if (!present_section_nr(pnum))
432 				continue;
433 			map_map[pnum] = map;
434 			map += size;
435 		}
436 		return;
437 	}
438 
439 	size = PAGE_ALIGN(size);
440 	map = memblock_virt_alloc_try_nid(size * map_count,
441 					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
442 					  BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
443 	if (map) {
444 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
445 			if (!present_section_nr(pnum))
446 				continue;
447 			map_map[pnum] = map;
448 			map += size;
449 		}
450 		return;
451 	}
452 
453 	/* fallback */
454 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
455 		struct mem_section *ms;
456 
457 		if (!present_section_nr(pnum))
458 			continue;
459 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
460 		if (map_map[pnum])
461 			continue;
462 		ms = __nr_to_section(pnum);
463 		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
464 		       __func__);
465 		ms->section_mem_map = 0;
466 	}
467 }
468 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
469 
470 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
471 static void __init sparse_early_mem_maps_alloc_node(void *data,
472 				 unsigned long pnum_begin,
473 				 unsigned long pnum_end,
474 				 unsigned long map_count, int nodeid)
475 {
476 	struct page **map_map = (struct page **)data;
477 	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
478 					 map_count, nodeid);
479 }
480 #else
481 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
482 {
483 	struct page *map;
484 	struct mem_section *ms = __nr_to_section(pnum);
485 	int nid = sparse_early_nid(ms);
486 
487 	map = sparse_mem_map_populate(pnum, nid);
488 	if (map)
489 		return map;
490 
491 	pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
492 	       __func__);
493 	ms->section_mem_map = 0;
494 	return NULL;
495 }
496 #endif
497 
498 void __weak __meminit vmemmap_populate_print_last(void)
499 {
500 }
501 
502 /**
503  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
504  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
505  */
506 static void __init alloc_usemap_and_memmap(void (*alloc_func)
507 					(void *, unsigned long, unsigned long,
508 					unsigned long, int), void *data)
509 {
510 	unsigned long pnum;
511 	unsigned long map_count;
512 	int nodeid_begin = 0;
513 	unsigned long pnum_begin = 0;
514 
515 	for_each_present_section_nr(0, pnum) {
516 		struct mem_section *ms;
517 
518 		ms = __nr_to_section(pnum);
519 		nodeid_begin = sparse_early_nid(ms);
520 		pnum_begin = pnum;
521 		break;
522 	}
523 	map_count = 1;
524 	for_each_present_section_nr(pnum_begin + 1, pnum) {
525 		struct mem_section *ms;
526 		int nodeid;
527 
528 		ms = __nr_to_section(pnum);
529 		nodeid = sparse_early_nid(ms);
530 		if (nodeid == nodeid_begin) {
531 			map_count++;
532 			continue;
533 		}
534 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
535 		alloc_func(data, pnum_begin, pnum,
536 						map_count, nodeid_begin);
537 		/* new start, update count etc*/
538 		nodeid_begin = nodeid;
539 		pnum_begin = pnum;
540 		map_count = 1;
541 	}
542 	/* ok, last chunk */
543 	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
544 						map_count, nodeid_begin);
545 }
546 
547 /*
548  * Allocate the accumulated non-linear sections, allocate a mem_map
549  * for each and record the physical to section mapping.
550  */
551 void __init sparse_init(void)
552 {
553 	unsigned long pnum;
554 	struct page *map;
555 	unsigned long *usemap;
556 	unsigned long **usemap_map;
557 	int size;
558 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
559 	int size2;
560 	struct page **map_map;
561 #endif
562 
563 	/* see include/linux/mmzone.h 'struct mem_section' definition */
564 	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
565 
566 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
567 	set_pageblock_order();
568 
569 	/*
570 	 * map is using big page (aka 2M in x86 64 bit)
571 	 * usemap is less one page (aka 24 bytes)
572 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
573 	 * make next 2M slip to one more 2M later.
574 	 * then in big system, the memory will have a lot of holes...
575 	 * here try to allocate 2M pages continuously.
576 	 *
577 	 * powerpc need to call sparse_init_one_section right after each
578 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
579 	 */
580 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
581 	usemap_map = memblock_virt_alloc(size, 0);
582 	if (!usemap_map)
583 		panic("can not allocate usemap_map\n");
584 	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
585 							(void *)usemap_map);
586 
587 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
588 	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
589 	map_map = memblock_virt_alloc(size2, 0);
590 	if (!map_map)
591 		panic("can not allocate map_map\n");
592 	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
593 							(void *)map_map);
594 #endif
595 
596 	for_each_present_section_nr(0, pnum) {
597 		usemap = usemap_map[pnum];
598 		if (!usemap)
599 			continue;
600 
601 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
602 		map = map_map[pnum];
603 #else
604 		map = sparse_early_mem_map_alloc(pnum);
605 #endif
606 		if (!map)
607 			continue;
608 
609 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
610 								usemap);
611 	}
612 
613 	vmemmap_populate_print_last();
614 
615 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
616 	memblock_free_early(__pa(map_map), size2);
617 #endif
618 	memblock_free_early(__pa(usemap_map), size);
619 }
620 
621 #ifdef CONFIG_MEMORY_HOTPLUG
622 
623 /* Mark all memory sections within the pfn range as online */
624 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
625 {
626 	unsigned long pfn;
627 
628 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
629 		unsigned long section_nr = pfn_to_section_nr(pfn);
630 		struct mem_section *ms;
631 
632 		/* onlining code should never touch invalid ranges */
633 		if (WARN_ON(!valid_section_nr(section_nr)))
634 			continue;
635 
636 		ms = __nr_to_section(section_nr);
637 		ms->section_mem_map |= SECTION_IS_ONLINE;
638 	}
639 }
640 
641 #ifdef CONFIG_MEMORY_HOTREMOVE
642 /* Mark all memory sections within the pfn range as online */
643 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
644 {
645 	unsigned long pfn;
646 
647 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
648 		unsigned long section_nr = pfn_to_section_nr(start_pfn);
649 		struct mem_section *ms;
650 
651 		/*
652 		 * TODO this needs some double checking. Offlining code makes
653 		 * sure to check pfn_valid but those checks might be just bogus
654 		 */
655 		if (WARN_ON(!valid_section_nr(section_nr)))
656 			continue;
657 
658 		ms = __nr_to_section(section_nr);
659 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
660 	}
661 }
662 #endif
663 
664 #ifdef CONFIG_SPARSEMEM_VMEMMAP
665 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
666 {
667 	/* This will make the necessary allocations eventually. */
668 	return sparse_mem_map_populate(pnum, nid);
669 }
670 static void __kfree_section_memmap(struct page *memmap)
671 {
672 	unsigned long start = (unsigned long)memmap;
673 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
674 
675 	vmemmap_free(start, end);
676 }
677 #ifdef CONFIG_MEMORY_HOTREMOVE
678 static void free_map_bootmem(struct page *memmap)
679 {
680 	unsigned long start = (unsigned long)memmap;
681 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
682 
683 	vmemmap_free(start, end);
684 }
685 #endif /* CONFIG_MEMORY_HOTREMOVE */
686 #else
687 static struct page *__kmalloc_section_memmap(void)
688 {
689 	struct page *page, *ret;
690 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
691 
692 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
693 	if (page)
694 		goto got_map_page;
695 
696 	ret = vmalloc(memmap_size);
697 	if (ret)
698 		goto got_map_ptr;
699 
700 	return NULL;
701 got_map_page:
702 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
703 got_map_ptr:
704 
705 	return ret;
706 }
707 
708 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
709 {
710 	return __kmalloc_section_memmap();
711 }
712 
713 static void __kfree_section_memmap(struct page *memmap)
714 {
715 	if (is_vmalloc_addr(memmap))
716 		vfree(memmap);
717 	else
718 		free_pages((unsigned long)memmap,
719 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
720 }
721 
722 #ifdef CONFIG_MEMORY_HOTREMOVE
723 static void free_map_bootmem(struct page *memmap)
724 {
725 	unsigned long maps_section_nr, removing_section_nr, i;
726 	unsigned long magic, nr_pages;
727 	struct page *page = virt_to_page(memmap);
728 
729 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
730 		>> PAGE_SHIFT;
731 
732 	for (i = 0; i < nr_pages; i++, page++) {
733 		magic = (unsigned long) page->freelist;
734 
735 		BUG_ON(magic == NODE_INFO);
736 
737 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
738 		removing_section_nr = page_private(page);
739 
740 		/*
741 		 * When this function is called, the removing section is
742 		 * logical offlined state. This means all pages are isolated
743 		 * from page allocator. If removing section's memmap is placed
744 		 * on the same section, it must not be freed.
745 		 * If it is freed, page allocator may allocate it which will
746 		 * be removed physically soon.
747 		 */
748 		if (maps_section_nr != removing_section_nr)
749 			put_page_bootmem(page);
750 	}
751 }
752 #endif /* CONFIG_MEMORY_HOTREMOVE */
753 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
754 
755 /*
756  * returns the number of sections whose mem_maps were properly
757  * set.  If this is <=0, then that means that the passed-in
758  * map was not consumed and must be freed.
759  */
760 int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn)
761 {
762 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
763 	struct mem_section *ms;
764 	struct page *memmap;
765 	unsigned long *usemap;
766 	unsigned long flags;
767 	int ret;
768 
769 	/*
770 	 * no locking for this, because it does its own
771 	 * plus, it does a kmalloc
772 	 */
773 	ret = sparse_index_init(section_nr, pgdat->node_id);
774 	if (ret < 0 && ret != -EEXIST)
775 		return ret;
776 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
777 	if (!memmap)
778 		return -ENOMEM;
779 	usemap = __kmalloc_section_usemap();
780 	if (!usemap) {
781 		__kfree_section_memmap(memmap);
782 		return -ENOMEM;
783 	}
784 
785 	pgdat_resize_lock(pgdat, &flags);
786 
787 	ms = __pfn_to_section(start_pfn);
788 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
789 		ret = -EEXIST;
790 		goto out;
791 	}
792 
793 	memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
794 
795 	section_mark_present(ms);
796 
797 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
798 
799 out:
800 	pgdat_resize_unlock(pgdat, &flags);
801 	if (ret <= 0) {
802 		kfree(usemap);
803 		__kfree_section_memmap(memmap);
804 	}
805 	return ret;
806 }
807 
808 #ifdef CONFIG_MEMORY_HOTREMOVE
809 #ifdef CONFIG_MEMORY_FAILURE
810 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
811 {
812 	int i;
813 
814 	if (!memmap)
815 		return;
816 
817 	for (i = 0; i < nr_pages; i++) {
818 		if (PageHWPoison(&memmap[i])) {
819 			atomic_long_sub(1, &num_poisoned_pages);
820 			ClearPageHWPoison(&memmap[i]);
821 		}
822 	}
823 }
824 #else
825 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
826 {
827 }
828 #endif
829 
830 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
831 {
832 	struct page *usemap_page;
833 
834 	if (!usemap)
835 		return;
836 
837 	usemap_page = virt_to_page(usemap);
838 	/*
839 	 * Check to see if allocation came from hot-plug-add
840 	 */
841 	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
842 		kfree(usemap);
843 		if (memmap)
844 			__kfree_section_memmap(memmap);
845 		return;
846 	}
847 
848 	/*
849 	 * The usemap came from bootmem. This is packed with other usemaps
850 	 * on the section which has pgdat at boot time. Just keep it as is now.
851 	 */
852 
853 	if (memmap)
854 		free_map_bootmem(memmap);
855 }
856 
857 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
858 		unsigned long map_offset)
859 {
860 	struct page *memmap = NULL;
861 	unsigned long *usemap = NULL, flags;
862 	struct pglist_data *pgdat = zone->zone_pgdat;
863 
864 	pgdat_resize_lock(pgdat, &flags);
865 	if (ms->section_mem_map) {
866 		usemap = ms->pageblock_flags;
867 		memmap = sparse_decode_mem_map(ms->section_mem_map,
868 						__section_nr(ms));
869 		ms->section_mem_map = 0;
870 		ms->pageblock_flags = NULL;
871 	}
872 	pgdat_resize_unlock(pgdat, &flags);
873 
874 	clear_hwpoisoned_pages(memmap + map_offset,
875 			PAGES_PER_SECTION - map_offset);
876 	free_section_usemap(memmap, usemap);
877 }
878 #endif /* CONFIG_MEMORY_HOTREMOVE */
879 #endif /* CONFIG_MEMORY_HOTPLUG */
880