1 /* 2 * sparse memory mappings. 3 */ 4 #include <linux/mm.h> 5 #include <linux/slab.h> 6 #include <linux/mmzone.h> 7 #include <linux/bootmem.h> 8 #include <linux/highmem.h> 9 #include <linux/export.h> 10 #include <linux/spinlock.h> 11 #include <linux/vmalloc.h> 12 #include "internal.h" 13 #include <asm/dma.h> 14 #include <asm/pgalloc.h> 15 #include <asm/pgtable.h> 16 17 /* 18 * Permanent SPARSEMEM data: 19 * 20 * 1) mem_section - memory sections, mem_map's for valid memory 21 */ 22 #ifdef CONFIG_SPARSEMEM_EXTREME 23 struct mem_section *mem_section[NR_SECTION_ROOTS] 24 ____cacheline_internodealigned_in_smp; 25 #else 26 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 27 ____cacheline_internodealigned_in_smp; 28 #endif 29 EXPORT_SYMBOL(mem_section); 30 31 #ifdef NODE_NOT_IN_PAGE_FLAGS 32 /* 33 * If we did not store the node number in the page then we have to 34 * do a lookup in the section_to_node_table in order to find which 35 * node the page belongs to. 36 */ 37 #if MAX_NUMNODES <= 256 38 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 39 #else 40 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #endif 42 43 int page_to_nid(const struct page *page) 44 { 45 return section_to_node_table[page_to_section(page)]; 46 } 47 EXPORT_SYMBOL(page_to_nid); 48 49 static void set_section_nid(unsigned long section_nr, int nid) 50 { 51 section_to_node_table[section_nr] = nid; 52 } 53 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 54 static inline void set_section_nid(unsigned long section_nr, int nid) 55 { 56 } 57 #endif 58 59 #ifdef CONFIG_SPARSEMEM_EXTREME 60 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) 61 { 62 struct mem_section *section = NULL; 63 unsigned long array_size = SECTIONS_PER_ROOT * 64 sizeof(struct mem_section); 65 66 if (slab_is_available()) { 67 if (node_state(nid, N_HIGH_MEMORY)) 68 section = kzalloc_node(array_size, GFP_KERNEL, nid); 69 else 70 section = kzalloc(array_size, GFP_KERNEL); 71 } else { 72 section = memblock_virt_alloc_node(array_size, nid); 73 } 74 75 return section; 76 } 77 78 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 79 { 80 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 81 struct mem_section *section; 82 83 if (mem_section[root]) 84 return -EEXIST; 85 86 section = sparse_index_alloc(nid); 87 if (!section) 88 return -ENOMEM; 89 90 mem_section[root] = section; 91 92 return 0; 93 } 94 #else /* !SPARSEMEM_EXTREME */ 95 static inline int sparse_index_init(unsigned long section_nr, int nid) 96 { 97 return 0; 98 } 99 #endif 100 101 /* 102 * Although written for the SPARSEMEM_EXTREME case, this happens 103 * to also work for the flat array case because 104 * NR_SECTION_ROOTS==NR_MEM_SECTIONS. 105 */ 106 int __section_nr(struct mem_section* ms) 107 { 108 unsigned long root_nr; 109 struct mem_section* root; 110 111 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 112 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 113 if (!root) 114 continue; 115 116 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 117 break; 118 } 119 120 VM_BUG_ON(root_nr == NR_SECTION_ROOTS); 121 122 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 123 } 124 125 /* 126 * During early boot, before section_mem_map is used for an actual 127 * mem_map, we use section_mem_map to store the section's NUMA 128 * node. This keeps us from having to use another data structure. The 129 * node information is cleared just before we store the real mem_map. 130 */ 131 static inline unsigned long sparse_encode_early_nid(int nid) 132 { 133 return (nid << SECTION_NID_SHIFT); 134 } 135 136 static inline int sparse_early_nid(struct mem_section *section) 137 { 138 return (section->section_mem_map >> SECTION_NID_SHIFT); 139 } 140 141 /* Validate the physical addressing limitations of the model */ 142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 143 unsigned long *end_pfn) 144 { 145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 146 147 /* 148 * Sanity checks - do not allow an architecture to pass 149 * in larger pfns than the maximum scope of sparsemem: 150 */ 151 if (*start_pfn > max_sparsemem_pfn) { 152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 154 *start_pfn, *end_pfn, max_sparsemem_pfn); 155 WARN_ON_ONCE(1); 156 *start_pfn = max_sparsemem_pfn; 157 *end_pfn = max_sparsemem_pfn; 158 } else if (*end_pfn > max_sparsemem_pfn) { 159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 161 *start_pfn, *end_pfn, max_sparsemem_pfn); 162 WARN_ON_ONCE(1); 163 *end_pfn = max_sparsemem_pfn; 164 } 165 } 166 167 /* Record a memory area against a node. */ 168 void __init memory_present(int nid, unsigned long start, unsigned long end) 169 { 170 unsigned long pfn; 171 172 start &= PAGE_SECTION_MASK; 173 mminit_validate_memmodel_limits(&start, &end); 174 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 175 unsigned long section = pfn_to_section_nr(pfn); 176 struct mem_section *ms; 177 178 sparse_index_init(section, nid); 179 set_section_nid(section, nid); 180 181 ms = __nr_to_section(section); 182 if (!ms->section_mem_map) 183 ms->section_mem_map = sparse_encode_early_nid(nid) | 184 SECTION_MARKED_PRESENT; 185 } 186 } 187 188 /* 189 * Only used by the i386 NUMA architecures, but relatively 190 * generic code. 191 */ 192 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 193 unsigned long end_pfn) 194 { 195 unsigned long pfn; 196 unsigned long nr_pages = 0; 197 198 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 199 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 200 if (nid != early_pfn_to_nid(pfn)) 201 continue; 202 203 if (pfn_present(pfn)) 204 nr_pages += PAGES_PER_SECTION; 205 } 206 207 return nr_pages * sizeof(struct page); 208 } 209 210 /* 211 * Subtle, we encode the real pfn into the mem_map such that 212 * the identity pfn - section_mem_map will return the actual 213 * physical page frame number. 214 */ 215 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 216 { 217 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 218 } 219 220 /* 221 * Decode mem_map from the coded memmap 222 */ 223 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 224 { 225 /* mask off the extra low bits of information */ 226 coded_mem_map &= SECTION_MAP_MASK; 227 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 228 } 229 230 static int __meminit sparse_init_one_section(struct mem_section *ms, 231 unsigned long pnum, struct page *mem_map, 232 unsigned long *pageblock_bitmap) 233 { 234 if (!present_section(ms)) 235 return -EINVAL; 236 237 ms->section_mem_map &= ~SECTION_MAP_MASK; 238 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 239 SECTION_HAS_MEM_MAP; 240 ms->pageblock_flags = pageblock_bitmap; 241 242 return 1; 243 } 244 245 unsigned long usemap_size(void) 246 { 247 unsigned long size_bytes; 248 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; 249 size_bytes = roundup(size_bytes, sizeof(unsigned long)); 250 return size_bytes; 251 } 252 253 #ifdef CONFIG_MEMORY_HOTPLUG 254 static unsigned long *__kmalloc_section_usemap(void) 255 { 256 return kmalloc(usemap_size(), GFP_KERNEL); 257 } 258 #endif /* CONFIG_MEMORY_HOTPLUG */ 259 260 #ifdef CONFIG_MEMORY_HOTREMOVE 261 static unsigned long * __init 262 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 263 unsigned long size) 264 { 265 unsigned long goal, limit; 266 unsigned long *p; 267 int nid; 268 /* 269 * A page may contain usemaps for other sections preventing the 270 * page being freed and making a section unremovable while 271 * other sections referencing the usemap retmain active. Similarly, 272 * a pgdat can prevent a section being removed. If section A 273 * contains a pgdat and section B contains the usemap, both 274 * sections become inter-dependent. This allocates usemaps 275 * from the same section as the pgdat where possible to avoid 276 * this problem. 277 */ 278 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 279 limit = goal + (1UL << PA_SECTION_SHIFT); 280 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 281 again: 282 p = memblock_virt_alloc_try_nid_nopanic(size, 283 SMP_CACHE_BYTES, goal, limit, 284 nid); 285 if (!p && limit) { 286 limit = 0; 287 goto again; 288 } 289 return p; 290 } 291 292 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 293 { 294 unsigned long usemap_snr, pgdat_snr; 295 static unsigned long old_usemap_snr = NR_MEM_SECTIONS; 296 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; 297 struct pglist_data *pgdat = NODE_DATA(nid); 298 int usemap_nid; 299 300 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 301 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 302 if (usemap_snr == pgdat_snr) 303 return; 304 305 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 306 /* skip redundant message */ 307 return; 308 309 old_usemap_snr = usemap_snr; 310 old_pgdat_snr = pgdat_snr; 311 312 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 313 if (usemap_nid != nid) { 314 printk(KERN_INFO 315 "node %d must be removed before remove section %ld\n", 316 nid, usemap_snr); 317 return; 318 } 319 /* 320 * There is a circular dependency. 321 * Some platforms allow un-removable section because they will just 322 * gather other removable sections for dynamic partitioning. 323 * Just notify un-removable section's number here. 324 */ 325 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, 326 pgdat_snr, nid); 327 printk(KERN_CONT 328 " have a circular dependency on usemap and pgdat allocations\n"); 329 } 330 #else 331 static unsigned long * __init 332 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 333 unsigned long size) 334 { 335 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id); 336 } 337 338 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 339 { 340 } 341 #endif /* CONFIG_MEMORY_HOTREMOVE */ 342 343 static void __init sparse_early_usemaps_alloc_node(void *data, 344 unsigned long pnum_begin, 345 unsigned long pnum_end, 346 unsigned long usemap_count, int nodeid) 347 { 348 void *usemap; 349 unsigned long pnum; 350 unsigned long **usemap_map = (unsigned long **)data; 351 int size = usemap_size(); 352 353 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), 354 size * usemap_count); 355 if (!usemap) { 356 printk(KERN_WARNING "%s: allocation failed\n", __func__); 357 return; 358 } 359 360 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 361 if (!present_section_nr(pnum)) 362 continue; 363 usemap_map[pnum] = usemap; 364 usemap += size; 365 check_usemap_section_nr(nodeid, usemap_map[pnum]); 366 } 367 } 368 369 #ifndef CONFIG_SPARSEMEM_VMEMMAP 370 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) 371 { 372 struct page *map; 373 unsigned long size; 374 375 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); 376 if (map) 377 return map; 378 379 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 380 map = memblock_virt_alloc_try_nid(size, 381 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 382 BOOTMEM_ALLOC_ACCESSIBLE, nid); 383 return map; 384 } 385 void __init sparse_mem_maps_populate_node(struct page **map_map, 386 unsigned long pnum_begin, 387 unsigned long pnum_end, 388 unsigned long map_count, int nodeid) 389 { 390 void *map; 391 unsigned long pnum; 392 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; 393 394 map = alloc_remap(nodeid, size * map_count); 395 if (map) { 396 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 397 if (!present_section_nr(pnum)) 398 continue; 399 map_map[pnum] = map; 400 map += size; 401 } 402 return; 403 } 404 405 size = PAGE_ALIGN(size); 406 map = memblock_virt_alloc_try_nid(size * map_count, 407 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 408 BOOTMEM_ALLOC_ACCESSIBLE, nodeid); 409 if (map) { 410 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 411 if (!present_section_nr(pnum)) 412 continue; 413 map_map[pnum] = map; 414 map += size; 415 } 416 return; 417 } 418 419 /* fallback */ 420 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 421 struct mem_section *ms; 422 423 if (!present_section_nr(pnum)) 424 continue; 425 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); 426 if (map_map[pnum]) 427 continue; 428 ms = __nr_to_section(pnum); 429 printk(KERN_ERR "%s: sparsemem memory map backing failed " 430 "some memory will not be available.\n", __func__); 431 ms->section_mem_map = 0; 432 } 433 } 434 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 435 436 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 437 static void __init sparse_early_mem_maps_alloc_node(void *data, 438 unsigned long pnum_begin, 439 unsigned long pnum_end, 440 unsigned long map_count, int nodeid) 441 { 442 struct page **map_map = (struct page **)data; 443 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, 444 map_count, nodeid); 445 } 446 #else 447 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 448 { 449 struct page *map; 450 struct mem_section *ms = __nr_to_section(pnum); 451 int nid = sparse_early_nid(ms); 452 453 map = sparse_mem_map_populate(pnum, nid); 454 if (map) 455 return map; 456 457 printk(KERN_ERR "%s: sparsemem memory map backing failed " 458 "some memory will not be available.\n", __func__); 459 ms->section_mem_map = 0; 460 return NULL; 461 } 462 #endif 463 464 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void) 465 { 466 } 467 468 /** 469 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap 470 * @map: usemap_map for pageblock flags or mmap_map for vmemmap 471 */ 472 static void __init alloc_usemap_and_memmap(void (*alloc_func) 473 (void *, unsigned long, unsigned long, 474 unsigned long, int), void *data) 475 { 476 unsigned long pnum; 477 unsigned long map_count; 478 int nodeid_begin = 0; 479 unsigned long pnum_begin = 0; 480 481 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 482 struct mem_section *ms; 483 484 if (!present_section_nr(pnum)) 485 continue; 486 ms = __nr_to_section(pnum); 487 nodeid_begin = sparse_early_nid(ms); 488 pnum_begin = pnum; 489 break; 490 } 491 map_count = 1; 492 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { 493 struct mem_section *ms; 494 int nodeid; 495 496 if (!present_section_nr(pnum)) 497 continue; 498 ms = __nr_to_section(pnum); 499 nodeid = sparse_early_nid(ms); 500 if (nodeid == nodeid_begin) { 501 map_count++; 502 continue; 503 } 504 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 505 alloc_func(data, pnum_begin, pnum, 506 map_count, nodeid_begin); 507 /* new start, update count etc*/ 508 nodeid_begin = nodeid; 509 pnum_begin = pnum; 510 map_count = 1; 511 } 512 /* ok, last chunk */ 513 alloc_func(data, pnum_begin, NR_MEM_SECTIONS, 514 map_count, nodeid_begin); 515 } 516 517 /* 518 * Allocate the accumulated non-linear sections, allocate a mem_map 519 * for each and record the physical to section mapping. 520 */ 521 void __init sparse_init(void) 522 { 523 unsigned long pnum; 524 struct page *map; 525 unsigned long *usemap; 526 unsigned long **usemap_map; 527 int size; 528 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 529 int size2; 530 struct page **map_map; 531 #endif 532 533 /* see include/linux/mmzone.h 'struct mem_section' definition */ 534 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section))); 535 536 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 537 set_pageblock_order(); 538 539 /* 540 * map is using big page (aka 2M in x86 64 bit) 541 * usemap is less one page (aka 24 bytes) 542 * so alloc 2M (with 2M align) and 24 bytes in turn will 543 * make next 2M slip to one more 2M later. 544 * then in big system, the memory will have a lot of holes... 545 * here try to allocate 2M pages continuously. 546 * 547 * powerpc need to call sparse_init_one_section right after each 548 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 549 */ 550 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 551 usemap_map = memblock_virt_alloc(size, 0); 552 if (!usemap_map) 553 panic("can not allocate usemap_map\n"); 554 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node, 555 (void *)usemap_map); 556 557 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 558 size2 = sizeof(struct page *) * NR_MEM_SECTIONS; 559 map_map = memblock_virt_alloc(size2, 0); 560 if (!map_map) 561 panic("can not allocate map_map\n"); 562 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node, 563 (void *)map_map); 564 #endif 565 566 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 567 if (!present_section_nr(pnum)) 568 continue; 569 570 usemap = usemap_map[pnum]; 571 if (!usemap) 572 continue; 573 574 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 575 map = map_map[pnum]; 576 #else 577 map = sparse_early_mem_map_alloc(pnum); 578 #endif 579 if (!map) 580 continue; 581 582 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 583 usemap); 584 } 585 586 vmemmap_populate_print_last(); 587 588 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 589 memblock_free_early(__pa(map_map), size2); 590 #endif 591 memblock_free_early(__pa(usemap_map), size); 592 } 593 594 #ifdef CONFIG_MEMORY_HOTPLUG 595 #ifdef CONFIG_SPARSEMEM_VMEMMAP 596 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid) 597 { 598 /* This will make the necessary allocations eventually. */ 599 return sparse_mem_map_populate(pnum, nid); 600 } 601 static void __kfree_section_memmap(struct page *memmap) 602 { 603 unsigned long start = (unsigned long)memmap; 604 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 605 606 vmemmap_free(start, end); 607 } 608 #ifdef CONFIG_MEMORY_HOTREMOVE 609 static void free_map_bootmem(struct page *memmap) 610 { 611 unsigned long start = (unsigned long)memmap; 612 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 613 614 vmemmap_free(start, end); 615 } 616 #endif /* CONFIG_MEMORY_HOTREMOVE */ 617 #else 618 static struct page *__kmalloc_section_memmap(void) 619 { 620 struct page *page, *ret; 621 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION; 622 623 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 624 if (page) 625 goto got_map_page; 626 627 ret = vmalloc(memmap_size); 628 if (ret) 629 goto got_map_ptr; 630 631 return NULL; 632 got_map_page: 633 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 634 got_map_ptr: 635 636 return ret; 637 } 638 639 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid) 640 { 641 return __kmalloc_section_memmap(); 642 } 643 644 static void __kfree_section_memmap(struct page *memmap) 645 { 646 if (is_vmalloc_addr(memmap)) 647 vfree(memmap); 648 else 649 free_pages((unsigned long)memmap, 650 get_order(sizeof(struct page) * PAGES_PER_SECTION)); 651 } 652 653 #ifdef CONFIG_MEMORY_HOTREMOVE 654 static void free_map_bootmem(struct page *memmap) 655 { 656 unsigned long maps_section_nr, removing_section_nr, i; 657 unsigned long magic, nr_pages; 658 struct page *page = virt_to_page(memmap); 659 660 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 661 >> PAGE_SHIFT; 662 663 for (i = 0; i < nr_pages; i++, page++) { 664 magic = (unsigned long) page->lru.next; 665 666 BUG_ON(magic == NODE_INFO); 667 668 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 669 removing_section_nr = page->private; 670 671 /* 672 * When this function is called, the removing section is 673 * logical offlined state. This means all pages are isolated 674 * from page allocator. If removing section's memmap is placed 675 * on the same section, it must not be freed. 676 * If it is freed, page allocator may allocate it which will 677 * be removed physically soon. 678 */ 679 if (maps_section_nr != removing_section_nr) 680 put_page_bootmem(page); 681 } 682 } 683 #endif /* CONFIG_MEMORY_HOTREMOVE */ 684 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 685 686 /* 687 * returns the number of sections whose mem_maps were properly 688 * set. If this is <=0, then that means that the passed-in 689 * map was not consumed and must be freed. 690 */ 691 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn) 692 { 693 unsigned long section_nr = pfn_to_section_nr(start_pfn); 694 struct pglist_data *pgdat = zone->zone_pgdat; 695 struct mem_section *ms; 696 struct page *memmap; 697 unsigned long *usemap; 698 unsigned long flags; 699 int ret; 700 701 /* 702 * no locking for this, because it does its own 703 * plus, it does a kmalloc 704 */ 705 ret = sparse_index_init(section_nr, pgdat->node_id); 706 if (ret < 0 && ret != -EEXIST) 707 return ret; 708 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id); 709 if (!memmap) 710 return -ENOMEM; 711 usemap = __kmalloc_section_usemap(); 712 if (!usemap) { 713 __kfree_section_memmap(memmap); 714 return -ENOMEM; 715 } 716 717 pgdat_resize_lock(pgdat, &flags); 718 719 ms = __pfn_to_section(start_pfn); 720 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 721 ret = -EEXIST; 722 goto out; 723 } 724 725 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION); 726 727 ms->section_mem_map |= SECTION_MARKED_PRESENT; 728 729 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 730 731 out: 732 pgdat_resize_unlock(pgdat, &flags); 733 if (ret <= 0) { 734 kfree(usemap); 735 __kfree_section_memmap(memmap); 736 } 737 return ret; 738 } 739 740 #ifdef CONFIG_MEMORY_HOTREMOVE 741 #ifdef CONFIG_MEMORY_FAILURE 742 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 743 { 744 int i; 745 746 if (!memmap) 747 return; 748 749 for (i = 0; i < PAGES_PER_SECTION; i++) { 750 if (PageHWPoison(&memmap[i])) { 751 atomic_long_sub(1, &num_poisoned_pages); 752 ClearPageHWPoison(&memmap[i]); 753 } 754 } 755 } 756 #else 757 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 758 { 759 } 760 #endif 761 762 static void free_section_usemap(struct page *memmap, unsigned long *usemap) 763 { 764 struct page *usemap_page; 765 766 if (!usemap) 767 return; 768 769 usemap_page = virt_to_page(usemap); 770 /* 771 * Check to see if allocation came from hot-plug-add 772 */ 773 if (PageSlab(usemap_page) || PageCompound(usemap_page)) { 774 kfree(usemap); 775 if (memmap) 776 __kfree_section_memmap(memmap); 777 return; 778 } 779 780 /* 781 * The usemap came from bootmem. This is packed with other usemaps 782 * on the section which has pgdat at boot time. Just keep it as is now. 783 */ 784 785 if (memmap) 786 free_map_bootmem(memmap); 787 } 788 789 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms) 790 { 791 struct page *memmap = NULL; 792 unsigned long *usemap = NULL, flags; 793 struct pglist_data *pgdat = zone->zone_pgdat; 794 795 pgdat_resize_lock(pgdat, &flags); 796 if (ms->section_mem_map) { 797 usemap = ms->pageblock_flags; 798 memmap = sparse_decode_mem_map(ms->section_mem_map, 799 __section_nr(ms)); 800 ms->section_mem_map = 0; 801 ms->pageblock_flags = NULL; 802 } 803 pgdat_resize_unlock(pgdat, &flags); 804 805 clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION); 806 free_section_usemap(memmap, usemap); 807 } 808 #endif /* CONFIG_MEMORY_HOTREMOVE */ 809 #endif /* CONFIG_MEMORY_HOTPLUG */ 810