1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/memblock.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 17 #include "internal.h" 18 #include <asm/dma.h> 19 20 /* 21 * Permanent SPARSEMEM data: 22 * 23 * 1) mem_section - memory sections, mem_map's for valid memory 24 */ 25 #ifdef CONFIG_SPARSEMEM_EXTREME 26 struct mem_section **mem_section; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) { 69 section = kzalloc_node(array_size, GFP_KERNEL, nid); 70 } else { 71 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES, 72 nid); 73 if (!section) 74 panic("%s: Failed to allocate %lu bytes nid=%d\n", 75 __func__, array_size, nid); 76 } 77 78 return section; 79 } 80 81 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 82 { 83 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 84 struct mem_section *section; 85 86 /* 87 * An existing section is possible in the sub-section hotplug 88 * case. First hot-add instantiates, follow-on hot-add reuses 89 * the existing section. 90 * 91 * The mem_hotplug_lock resolves the apparent race below. 92 */ 93 if (mem_section[root]) 94 return 0; 95 96 section = sparse_index_alloc(nid); 97 if (!section) 98 return -ENOMEM; 99 100 mem_section[root] = section; 101 102 return 0; 103 } 104 #else /* !SPARSEMEM_EXTREME */ 105 static inline int sparse_index_init(unsigned long section_nr, int nid) 106 { 107 return 0; 108 } 109 #endif 110 111 #ifdef CONFIG_SPARSEMEM_EXTREME 112 unsigned long __section_nr(struct mem_section *ms) 113 { 114 unsigned long root_nr; 115 struct mem_section *root = NULL; 116 117 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 118 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 119 if (!root) 120 continue; 121 122 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 123 break; 124 } 125 126 VM_BUG_ON(!root); 127 128 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 129 } 130 #else 131 unsigned long __section_nr(struct mem_section *ms) 132 { 133 return (unsigned long)(ms - mem_section[0]); 134 } 135 #endif 136 137 /* 138 * During early boot, before section_mem_map is used for an actual 139 * mem_map, we use section_mem_map to store the section's NUMA 140 * node. This keeps us from having to use another data structure. The 141 * node information is cleared just before we store the real mem_map. 142 */ 143 static inline unsigned long sparse_encode_early_nid(int nid) 144 { 145 return (nid << SECTION_NID_SHIFT); 146 } 147 148 static inline int sparse_early_nid(struct mem_section *section) 149 { 150 return (section->section_mem_map >> SECTION_NID_SHIFT); 151 } 152 153 /* Validate the physical addressing limitations of the model */ 154 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 155 unsigned long *end_pfn) 156 { 157 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 158 159 /* 160 * Sanity checks - do not allow an architecture to pass 161 * in larger pfns than the maximum scope of sparsemem: 162 */ 163 if (*start_pfn > max_sparsemem_pfn) { 164 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 165 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 166 *start_pfn, *end_pfn, max_sparsemem_pfn); 167 WARN_ON_ONCE(1); 168 *start_pfn = max_sparsemem_pfn; 169 *end_pfn = max_sparsemem_pfn; 170 } else if (*end_pfn > max_sparsemem_pfn) { 171 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 172 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 173 *start_pfn, *end_pfn, max_sparsemem_pfn); 174 WARN_ON_ONCE(1); 175 *end_pfn = max_sparsemem_pfn; 176 } 177 } 178 179 /* 180 * There are a number of times that we loop over NR_MEM_SECTIONS, 181 * looking for section_present() on each. But, when we have very 182 * large physical address spaces, NR_MEM_SECTIONS can also be 183 * very large which makes the loops quite long. 184 * 185 * Keeping track of this gives us an easy way to break out of 186 * those loops early. 187 */ 188 unsigned long __highest_present_section_nr; 189 static void section_mark_present(struct mem_section *ms) 190 { 191 unsigned long section_nr = __section_nr(ms); 192 193 if (section_nr > __highest_present_section_nr) 194 __highest_present_section_nr = section_nr; 195 196 ms->section_mem_map |= SECTION_MARKED_PRESENT; 197 } 198 199 #define for_each_present_section_nr(start, section_nr) \ 200 for (section_nr = next_present_section_nr(start-1); \ 201 ((section_nr != -1) && \ 202 (section_nr <= __highest_present_section_nr)); \ 203 section_nr = next_present_section_nr(section_nr)) 204 205 static inline unsigned long first_present_section_nr(void) 206 { 207 return next_present_section_nr(-1); 208 } 209 210 #ifdef CONFIG_SPARSEMEM_VMEMMAP 211 static void subsection_mask_set(unsigned long *map, unsigned long pfn, 212 unsigned long nr_pages) 213 { 214 int idx = subsection_map_index(pfn); 215 int end = subsection_map_index(pfn + nr_pages - 1); 216 217 bitmap_set(map, idx, end - idx + 1); 218 } 219 220 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 221 { 222 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 223 unsigned long nr, start_sec = pfn_to_section_nr(pfn); 224 225 if (!nr_pages) 226 return; 227 228 for (nr = start_sec; nr <= end_sec; nr++) { 229 struct mem_section *ms; 230 unsigned long pfns; 231 232 pfns = min(nr_pages, PAGES_PER_SECTION 233 - (pfn & ~PAGE_SECTION_MASK)); 234 ms = __nr_to_section(nr); 235 subsection_mask_set(ms->usage->subsection_map, pfn, pfns); 236 237 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr, 238 pfns, subsection_map_index(pfn), 239 subsection_map_index(pfn + pfns - 1)); 240 241 pfn += pfns; 242 nr_pages -= pfns; 243 } 244 } 245 #else 246 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 247 { 248 } 249 #endif 250 251 /* Record a memory area against a node. */ 252 static void __init memory_present(int nid, unsigned long start, unsigned long end) 253 { 254 unsigned long pfn; 255 256 #ifdef CONFIG_SPARSEMEM_EXTREME 257 if (unlikely(!mem_section)) { 258 unsigned long size, align; 259 260 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS; 261 align = 1 << (INTERNODE_CACHE_SHIFT); 262 mem_section = memblock_alloc(size, align); 263 if (!mem_section) 264 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 265 __func__, size, align); 266 } 267 #endif 268 269 start &= PAGE_SECTION_MASK; 270 mminit_validate_memmodel_limits(&start, &end); 271 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 272 unsigned long section = pfn_to_section_nr(pfn); 273 struct mem_section *ms; 274 275 sparse_index_init(section, nid); 276 set_section_nid(section, nid); 277 278 ms = __nr_to_section(section); 279 if (!ms->section_mem_map) { 280 ms->section_mem_map = sparse_encode_early_nid(nid) | 281 SECTION_IS_ONLINE; 282 section_mark_present(ms); 283 } 284 } 285 } 286 287 /* 288 * Mark all memblocks as present using memory_present(). 289 * This is a convenience function that is useful to mark all of the systems 290 * memory as present during initialization. 291 */ 292 static void __init memblocks_present(void) 293 { 294 unsigned long start, end; 295 int i, nid; 296 297 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) 298 memory_present(nid, start, end); 299 } 300 301 /* 302 * Subtle, we encode the real pfn into the mem_map such that 303 * the identity pfn - section_mem_map will return the actual 304 * physical page frame number. 305 */ 306 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 307 { 308 unsigned long coded_mem_map = 309 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 310 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); 311 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 312 return coded_mem_map; 313 } 314 315 #ifdef CONFIG_MEMORY_HOTPLUG 316 /* 317 * Decode mem_map from the coded memmap 318 */ 319 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 320 { 321 /* mask off the extra low bits of information */ 322 coded_mem_map &= SECTION_MAP_MASK; 323 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 324 } 325 #endif /* CONFIG_MEMORY_HOTPLUG */ 326 327 static void __meminit sparse_init_one_section(struct mem_section *ms, 328 unsigned long pnum, struct page *mem_map, 329 struct mem_section_usage *usage, unsigned long flags) 330 { 331 ms->section_mem_map &= ~SECTION_MAP_MASK; 332 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) 333 | SECTION_HAS_MEM_MAP | flags; 334 ms->usage = usage; 335 } 336 337 static unsigned long usemap_size(void) 338 { 339 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 340 } 341 342 size_t mem_section_usage_size(void) 343 { 344 return sizeof(struct mem_section_usage) + usemap_size(); 345 } 346 347 #ifdef CONFIG_MEMORY_HOTREMOVE 348 static struct mem_section_usage * __init 349 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 350 unsigned long size) 351 { 352 struct mem_section_usage *usage; 353 unsigned long goal, limit; 354 int nid; 355 /* 356 * A page may contain usemaps for other sections preventing the 357 * page being freed and making a section unremovable while 358 * other sections referencing the usemap remain active. Similarly, 359 * a pgdat can prevent a section being removed. If section A 360 * contains a pgdat and section B contains the usemap, both 361 * sections become inter-dependent. This allocates usemaps 362 * from the same section as the pgdat where possible to avoid 363 * this problem. 364 */ 365 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 366 limit = goal + (1UL << PA_SECTION_SHIFT); 367 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 368 again: 369 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid); 370 if (!usage && limit) { 371 limit = 0; 372 goto again; 373 } 374 return usage; 375 } 376 377 static void __init check_usemap_section_nr(int nid, 378 struct mem_section_usage *usage) 379 { 380 unsigned long usemap_snr, pgdat_snr; 381 static unsigned long old_usemap_snr; 382 static unsigned long old_pgdat_snr; 383 struct pglist_data *pgdat = NODE_DATA(nid); 384 int usemap_nid; 385 386 /* First call */ 387 if (!old_usemap_snr) { 388 old_usemap_snr = NR_MEM_SECTIONS; 389 old_pgdat_snr = NR_MEM_SECTIONS; 390 } 391 392 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT); 393 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 394 if (usemap_snr == pgdat_snr) 395 return; 396 397 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 398 /* skip redundant message */ 399 return; 400 401 old_usemap_snr = usemap_snr; 402 old_pgdat_snr = pgdat_snr; 403 404 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 405 if (usemap_nid != nid) { 406 pr_info("node %d must be removed before remove section %ld\n", 407 nid, usemap_snr); 408 return; 409 } 410 /* 411 * There is a circular dependency. 412 * Some platforms allow un-removable section because they will just 413 * gather other removable sections for dynamic partitioning. 414 * Just notify un-removable section's number here. 415 */ 416 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 417 usemap_snr, pgdat_snr, nid); 418 } 419 #else 420 static struct mem_section_usage * __init 421 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 422 unsigned long size) 423 { 424 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id); 425 } 426 427 static void __init check_usemap_section_nr(int nid, 428 struct mem_section_usage *usage) 429 { 430 } 431 #endif /* CONFIG_MEMORY_HOTREMOVE */ 432 433 #ifdef CONFIG_SPARSEMEM_VMEMMAP 434 static unsigned long __init section_map_size(void) 435 { 436 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); 437 } 438 439 #else 440 static unsigned long __init section_map_size(void) 441 { 442 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 443 } 444 445 struct page __init *__populate_section_memmap(unsigned long pfn, 446 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 447 { 448 unsigned long size = section_map_size(); 449 struct page *map = sparse_buffer_alloc(size); 450 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 451 452 if (map) 453 return map; 454 455 map = memblock_alloc_try_nid_raw(size, size, addr, 456 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 457 if (!map) 458 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n", 459 __func__, size, PAGE_SIZE, nid, &addr); 460 461 return map; 462 } 463 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 464 465 static void *sparsemap_buf __meminitdata; 466 static void *sparsemap_buf_end __meminitdata; 467 468 static inline void __meminit sparse_buffer_free(unsigned long size) 469 { 470 WARN_ON(!sparsemap_buf || size == 0); 471 memblock_free_early(__pa(sparsemap_buf), size); 472 } 473 474 static void __init sparse_buffer_init(unsigned long size, int nid) 475 { 476 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 477 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */ 478 /* 479 * Pre-allocated buffer is mainly used by __populate_section_memmap 480 * and we want it to be properly aligned to the section size - this is 481 * especially the case for VMEMMAP which maps memmap to PMDs 482 */ 483 sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(), 484 addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 485 sparsemap_buf_end = sparsemap_buf + size; 486 } 487 488 static void __init sparse_buffer_fini(void) 489 { 490 unsigned long size = sparsemap_buf_end - sparsemap_buf; 491 492 if (sparsemap_buf && size > 0) 493 sparse_buffer_free(size); 494 sparsemap_buf = NULL; 495 } 496 497 void * __meminit sparse_buffer_alloc(unsigned long size) 498 { 499 void *ptr = NULL; 500 501 if (sparsemap_buf) { 502 ptr = (void *) roundup((unsigned long)sparsemap_buf, size); 503 if (ptr + size > sparsemap_buf_end) 504 ptr = NULL; 505 else { 506 /* Free redundant aligned space */ 507 if ((unsigned long)(ptr - sparsemap_buf) > 0) 508 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf)); 509 sparsemap_buf = ptr + size; 510 } 511 } 512 return ptr; 513 } 514 515 void __weak __meminit vmemmap_populate_print_last(void) 516 { 517 } 518 519 /* 520 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) 521 * And number of present sections in this node is map_count. 522 */ 523 static void __init sparse_init_nid(int nid, unsigned long pnum_begin, 524 unsigned long pnum_end, 525 unsigned long map_count) 526 { 527 struct mem_section_usage *usage; 528 unsigned long pnum; 529 struct page *map; 530 531 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid), 532 mem_section_usage_size() * map_count); 533 if (!usage) { 534 pr_err("%s: node[%d] usemap allocation failed", __func__, nid); 535 goto failed; 536 } 537 sparse_buffer_init(map_count * section_map_size(), nid); 538 for_each_present_section_nr(pnum_begin, pnum) { 539 unsigned long pfn = section_nr_to_pfn(pnum); 540 541 if (pnum >= pnum_end) 542 break; 543 544 map = __populate_section_memmap(pfn, PAGES_PER_SECTION, 545 nid, NULL); 546 if (!map) { 547 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", 548 __func__, nid); 549 pnum_begin = pnum; 550 sparse_buffer_fini(); 551 goto failed; 552 } 553 check_usemap_section_nr(nid, usage); 554 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage, 555 SECTION_IS_EARLY); 556 usage = (void *) usage + mem_section_usage_size(); 557 } 558 sparse_buffer_fini(); 559 return; 560 failed: 561 /* We failed to allocate, mark all the following pnums as not present */ 562 for_each_present_section_nr(pnum_begin, pnum) { 563 struct mem_section *ms; 564 565 if (pnum >= pnum_end) 566 break; 567 ms = __nr_to_section(pnum); 568 ms->section_mem_map = 0; 569 } 570 } 571 572 /* 573 * Allocate the accumulated non-linear sections, allocate a mem_map 574 * for each and record the physical to section mapping. 575 */ 576 void __init sparse_init(void) 577 { 578 unsigned long pnum_end, pnum_begin, map_count = 1; 579 int nid_begin; 580 581 memblocks_present(); 582 583 pnum_begin = first_present_section_nr(); 584 nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); 585 586 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 587 set_pageblock_order(); 588 589 for_each_present_section_nr(pnum_begin + 1, pnum_end) { 590 int nid = sparse_early_nid(__nr_to_section(pnum_end)); 591 592 if (nid == nid_begin) { 593 map_count++; 594 continue; 595 } 596 /* Init node with sections in range [pnum_begin, pnum_end) */ 597 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 598 nid_begin = nid; 599 pnum_begin = pnum_end; 600 map_count = 1; 601 } 602 /* cover the last node */ 603 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 604 vmemmap_populate_print_last(); 605 } 606 607 #ifdef CONFIG_MEMORY_HOTPLUG 608 609 /* Mark all memory sections within the pfn range as online */ 610 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 611 { 612 unsigned long pfn; 613 614 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 615 unsigned long section_nr = pfn_to_section_nr(pfn); 616 struct mem_section *ms; 617 618 /* onlining code should never touch invalid ranges */ 619 if (WARN_ON(!valid_section_nr(section_nr))) 620 continue; 621 622 ms = __nr_to_section(section_nr); 623 ms->section_mem_map |= SECTION_IS_ONLINE; 624 } 625 } 626 627 #ifdef CONFIG_MEMORY_HOTREMOVE 628 /* Mark all memory sections within the pfn range as offline */ 629 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 630 { 631 unsigned long pfn; 632 633 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 634 unsigned long section_nr = pfn_to_section_nr(pfn); 635 struct mem_section *ms; 636 637 /* 638 * TODO this needs some double checking. Offlining code makes 639 * sure to check pfn_valid but those checks might be just bogus 640 */ 641 if (WARN_ON(!valid_section_nr(section_nr))) 642 continue; 643 644 ms = __nr_to_section(section_nr); 645 ms->section_mem_map &= ~SECTION_IS_ONLINE; 646 } 647 } 648 #endif 649 650 #ifdef CONFIG_SPARSEMEM_VMEMMAP 651 static struct page * __meminit populate_section_memmap(unsigned long pfn, 652 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 653 { 654 return __populate_section_memmap(pfn, nr_pages, nid, altmap); 655 } 656 657 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 658 struct vmem_altmap *altmap) 659 { 660 unsigned long start = (unsigned long) pfn_to_page(pfn); 661 unsigned long end = start + nr_pages * sizeof(struct page); 662 663 vmemmap_free(start, end, altmap); 664 } 665 static void free_map_bootmem(struct page *memmap) 666 { 667 unsigned long start = (unsigned long)memmap; 668 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 669 670 vmemmap_free(start, end, NULL); 671 } 672 673 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 674 { 675 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 676 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 }; 677 struct mem_section *ms = __pfn_to_section(pfn); 678 unsigned long *subsection_map = ms->usage 679 ? &ms->usage->subsection_map[0] : NULL; 680 681 subsection_mask_set(map, pfn, nr_pages); 682 if (subsection_map) 683 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION); 684 685 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION), 686 "section already deactivated (%#lx + %ld)\n", 687 pfn, nr_pages)) 688 return -EINVAL; 689 690 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION); 691 return 0; 692 } 693 694 static bool is_subsection_map_empty(struct mem_section *ms) 695 { 696 return bitmap_empty(&ms->usage->subsection_map[0], 697 SUBSECTIONS_PER_SECTION); 698 } 699 700 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 701 { 702 struct mem_section *ms = __pfn_to_section(pfn); 703 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 704 unsigned long *subsection_map; 705 int rc = 0; 706 707 subsection_mask_set(map, pfn, nr_pages); 708 709 subsection_map = &ms->usage->subsection_map[0]; 710 711 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION)) 712 rc = -EINVAL; 713 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION)) 714 rc = -EEXIST; 715 else 716 bitmap_or(subsection_map, map, subsection_map, 717 SUBSECTIONS_PER_SECTION); 718 719 return rc; 720 } 721 #else 722 struct page * __meminit populate_section_memmap(unsigned long pfn, 723 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 724 { 725 return kvmalloc_node(array_size(sizeof(struct page), 726 PAGES_PER_SECTION), GFP_KERNEL, nid); 727 } 728 729 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 730 struct vmem_altmap *altmap) 731 { 732 kvfree(pfn_to_page(pfn)); 733 } 734 735 static void free_map_bootmem(struct page *memmap) 736 { 737 unsigned long maps_section_nr, removing_section_nr, i; 738 unsigned long magic, nr_pages; 739 struct page *page = virt_to_page(memmap); 740 741 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 742 >> PAGE_SHIFT; 743 744 for (i = 0; i < nr_pages; i++, page++) { 745 magic = (unsigned long) page->freelist; 746 747 BUG_ON(magic == NODE_INFO); 748 749 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 750 removing_section_nr = page_private(page); 751 752 /* 753 * When this function is called, the removing section is 754 * logical offlined state. This means all pages are isolated 755 * from page allocator. If removing section's memmap is placed 756 * on the same section, it must not be freed. 757 * If it is freed, page allocator may allocate it which will 758 * be removed physically soon. 759 */ 760 if (maps_section_nr != removing_section_nr) 761 put_page_bootmem(page); 762 } 763 } 764 765 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 766 { 767 return 0; 768 } 769 770 static bool is_subsection_map_empty(struct mem_section *ms) 771 { 772 return true; 773 } 774 775 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 776 { 777 return 0; 778 } 779 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 780 781 /* 782 * To deactivate a memory region, there are 3 cases to handle across 783 * two configurations (SPARSEMEM_VMEMMAP={y,n}): 784 * 785 * 1. deactivation of a partial hot-added section (only possible in 786 * the SPARSEMEM_VMEMMAP=y case). 787 * a) section was present at memory init. 788 * b) section was hot-added post memory init. 789 * 2. deactivation of a complete hot-added section. 790 * 3. deactivation of a complete section from memory init. 791 * 792 * For 1, when subsection_map does not empty we will not be freeing the 793 * usage map, but still need to free the vmemmap range. 794 * 795 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified 796 */ 797 static void section_deactivate(unsigned long pfn, unsigned long nr_pages, 798 struct vmem_altmap *altmap) 799 { 800 struct mem_section *ms = __pfn_to_section(pfn); 801 bool section_is_early = early_section(ms); 802 struct page *memmap = NULL; 803 bool empty; 804 805 if (clear_subsection_map(pfn, nr_pages)) 806 return; 807 808 empty = is_subsection_map_empty(ms); 809 if (empty) { 810 unsigned long section_nr = pfn_to_section_nr(pfn); 811 812 /* 813 * When removing an early section, the usage map is kept (as the 814 * usage maps of other sections fall into the same page). It 815 * will be re-used when re-adding the section - which is then no 816 * longer an early section. If the usage map is PageReserved, it 817 * was allocated during boot. 818 */ 819 if (!PageReserved(virt_to_page(ms->usage))) { 820 kfree(ms->usage); 821 ms->usage = NULL; 822 } 823 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 824 /* 825 * Mark the section invalid so that valid_section() 826 * return false. This prevents code from dereferencing 827 * ms->usage array. 828 */ 829 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP; 830 } 831 832 /* 833 * The memmap of early sections is always fully populated. See 834 * section_activate() and pfn_valid() . 835 */ 836 if (!section_is_early) 837 depopulate_section_memmap(pfn, nr_pages, altmap); 838 else if (memmap) 839 free_map_bootmem(memmap); 840 841 if (empty) 842 ms->section_mem_map = (unsigned long)NULL; 843 } 844 845 static struct page * __meminit section_activate(int nid, unsigned long pfn, 846 unsigned long nr_pages, struct vmem_altmap *altmap) 847 { 848 struct mem_section *ms = __pfn_to_section(pfn); 849 struct mem_section_usage *usage = NULL; 850 struct page *memmap; 851 int rc = 0; 852 853 if (!ms->usage) { 854 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL); 855 if (!usage) 856 return ERR_PTR(-ENOMEM); 857 ms->usage = usage; 858 } 859 860 rc = fill_subsection_map(pfn, nr_pages); 861 if (rc) { 862 if (usage) 863 ms->usage = NULL; 864 kfree(usage); 865 return ERR_PTR(rc); 866 } 867 868 /* 869 * The early init code does not consider partially populated 870 * initial sections, it simply assumes that memory will never be 871 * referenced. If we hot-add memory into such a section then we 872 * do not need to populate the memmap and can simply reuse what 873 * is already there. 874 */ 875 if (nr_pages < PAGES_PER_SECTION && early_section(ms)) 876 return pfn_to_page(pfn); 877 878 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap); 879 if (!memmap) { 880 section_deactivate(pfn, nr_pages, altmap); 881 return ERR_PTR(-ENOMEM); 882 } 883 884 return memmap; 885 } 886 887 /** 888 * sparse_add_section - add a memory section, or populate an existing one 889 * @nid: The node to add section on 890 * @start_pfn: start pfn of the memory range 891 * @nr_pages: number of pfns to add in the section 892 * @altmap: device page map 893 * 894 * This is only intended for hotplug. 895 * 896 * Note that only VMEMMAP supports sub-section aligned hotplug, 897 * the proper alignment and size are gated by check_pfn_span(). 898 * 899 * 900 * Return: 901 * * 0 - On success. 902 * * -EEXIST - Section has been present. 903 * * -ENOMEM - Out of memory. 904 */ 905 int __meminit sparse_add_section(int nid, unsigned long start_pfn, 906 unsigned long nr_pages, struct vmem_altmap *altmap) 907 { 908 unsigned long section_nr = pfn_to_section_nr(start_pfn); 909 struct mem_section *ms; 910 struct page *memmap; 911 int ret; 912 913 ret = sparse_index_init(section_nr, nid); 914 if (ret < 0) 915 return ret; 916 917 memmap = section_activate(nid, start_pfn, nr_pages, altmap); 918 if (IS_ERR(memmap)) 919 return PTR_ERR(memmap); 920 921 /* 922 * Poison uninitialized struct pages in order to catch invalid flags 923 * combinations. 924 */ 925 page_init_poison(memmap, sizeof(struct page) * nr_pages); 926 927 ms = __nr_to_section(section_nr); 928 set_section_nid(section_nr, nid); 929 section_mark_present(ms); 930 931 /* Align memmap to section boundary in the subsection case */ 932 if (section_nr_to_pfn(section_nr) != start_pfn) 933 memmap = pfn_to_page(section_nr_to_pfn(section_nr)); 934 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0); 935 936 return 0; 937 } 938 939 #ifdef CONFIG_MEMORY_FAILURE 940 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 941 { 942 int i; 943 944 /* 945 * A further optimization is to have per section refcounted 946 * num_poisoned_pages. But that would need more space per memmap, so 947 * for now just do a quick global check to speed up this routine in the 948 * absence of bad pages. 949 */ 950 if (atomic_long_read(&num_poisoned_pages) == 0) 951 return; 952 953 for (i = 0; i < nr_pages; i++) { 954 if (PageHWPoison(&memmap[i])) { 955 num_poisoned_pages_dec(); 956 ClearPageHWPoison(&memmap[i]); 957 } 958 } 959 } 960 #else 961 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 962 { 963 } 964 #endif 965 966 void sparse_remove_section(struct mem_section *ms, unsigned long pfn, 967 unsigned long nr_pages, unsigned long map_offset, 968 struct vmem_altmap *altmap) 969 { 970 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset, 971 nr_pages - map_offset); 972 section_deactivate(pfn, nr_pages, altmap); 973 } 974 #endif /* CONFIG_MEMORY_HOTPLUG */ 975